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Abstract Intravital microscopy can provide unique insights into the function of biological

processes in a native context. However, physiological motion caused by peristalsis, respiration and

the heartbeat can present a significant challenge, particularly for functional readouts such as

fluorescence lifetime imaging (FLIM), which require longer acquisition times to obtain a quantitative

readout. Here, we present and benchmark Galene, a versatile multi-platform software tool for

image-based correction of sample motion blurring in both time resolved and conventional laser

scanning fluorescence microscopy data in two and three dimensions. We show that Galene is able

to resolve intravital FLIM-FRET images of intra-abdominal organs in murine models and NADH

autofluorescence of human dermal tissue imaging subject to a wide range of physiological motions.

Thus, Galene can enable FLIM imaging in situations where a stable imaging platform is not always

possible and rescue previously discarded quantitative imaging data.

DOI: https://doi.org/10.7554/eLife.35800.001

Introduction
In recent years, a number of fluorescence imaging techniques such as fluorescence lifetime imaging

microscopy (FLIM) have allowed researchers to visualize not only the structure but also the activity

and function of molecules in living cells and tissues. Genetically-expressed Förster resonant energy

transfer (FRET)-based biosensors enable researchers to probe signalling events in native tissues

(Conway et al., 2017; Ellenbroek and van Rheenen, 2014; Nobis et al., 2018) where they can pro-

vide spatio-temporal information about drug target response in a tumour (Conway et al., 2018,

2014; Hirata et al., 2015; Nobis et al., 2017, 2013) or dynamic signalling events in migrating cells

(Mizuno et al., 2016). Time resolved imaging of NADH autofluorescence (Blacker and Duchen,
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2016; Skala et al., 2007) can be used to probe the metabolic state of cells and multispectral imag-

ing (Patalay et al., 2012) has been investigated for the diagnosis of dermatitis and malignant

melanoma (König, 2012), among other applications. Hyperspectral imaging, time resolved imaging

in multiple spectral channels, can be used to extract microenvironmental information from autofluor-

escence (Cutrale et al., 2017). These techniques depend on measuring small changes in the fluores-

cence signal, such as a small change in lifetime or change in spectral properties. Consequently, more

signal is required to determine the parameters of interest, often necessitating relatively long integra-

tion times. This requirement has proved to be a significant constraint to the uptake of FLIM in intravi-

tal microscopy, where physiological motion due to, for example peristalsis, respiration or the

heartbeat can induce significant motion during the image acquisition. This motion can often be toler-

ated in intensity-based imaging where acquisition times are short. However, when an image must be

integrated over tens or even hundreds of seconds, sample motion rapidly renders the image unintel-

ligible. While physical restraints such as tissue clamping or the application of negative pressure, may

be used to limit the sample motion to a degree, this approach is not always effective to the extent

required for high resolution microscopy and, in some cases, can compromise the sample integrity.

Given the increasingly wide application of both intravital and FLIM imaging, there is a growing need

to enable the functional readouts provided by FLIM even in the presence of physiological motion

(Conway et al., 2014). Here, we describe a motion blurring compensation approach using image-

based realignment that can be applied directly to data acquired on existing commercial and clinical

FLIM and conventional fluorescence microscopy systems in two and three dimensions in post

processing.

FLIM is most commonly implemented using laser scanning microscopy (LSM). To acquire sufficient

number of photons, an image is constructed by integrating the photon signal over many frames

(passes over the scan area). A typical FLIM image may take several minutes to acquire and so is sus-

ceptible to motion blurring from physiological motion. Several image-based approaches have been

used to correct for sample motion in intensity-based time lapse data without additional measure-

ments in the context of LSM time series acquisitions. (i) Where the motion is slow relative to the

frame rate, (e.g. a slow drift), rigid body image registration (Thévenaz et al., 1998) or feature-based

registration such as Scale Invariant Feature Transform (SIFT)-based algorithms have been applied to

eLife digest Understanding how molecules and cells behave in living animals can give

researchers key insights into what goes wrong in diseases such as cancer, and how well potential

treatments for these diseases work. A number of tools help us to see these processes. For example,

fluorescent ‘biosensors’ change colour to tell us how active a particular protein is. This can indicate

how well a drug works in different parts of a tumour.

High resolution microscopy makes it possible to image events happening in single cells, or even

specific parts of a cell. However, small movements like those due to the heartbeat or breathing can

blur the images, making it difficult to study living animals. This is particularly problematic for images

that take several minutes to capture.

Warren et al. have now developed a new open source software tool called Galene. The tool can

correct for small movements in images collected by a technique called fluorescence lifetime imaging

microscopy (FLIM). As a result, clear images can be captured in situations that were not previously

possible. For example, Warren et al. watched cancer cells migrating to the liver of a mouse from the

spleen over 24 hours, and, using a fluorescent biosensor, showed that a repurposed drug interferes

with how well the cells can attach to the liver. In addition, Warren et al. used the software to take

steady 3D images of human skin in a volunteer’s arm, which could be used to study drug

penetration.

Galene could help researchers to study a wide range of biological processes in living animals. The

software can also be applied to existing data to clean up blurred images. In the future Galene could

be further developed to work with the imaging techniques used during surgery. For example,

surgeons could use it to help them find the edges of tumours.

DOI: https://doi.org/10.7554/eLife.35800.002
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correct for the motion, (ii) When the motion is intermittent, frames captured during the motion may

be automatically detected and excluded from the time series (Soulet et al., 2013), and (iii) When

the motion is fast relative to the frame rate, each frame will appear distorted as the sample moves

while the laser is scanned across the field of view. In this case, more advanced approaches that

model the intra-frame motion using methods such as Hidden-Markov-Models (Dombeck et al.,

2007), the Lucas–Kanade framework (Greenberg and Kerr, 2009), or algorithms based on Lie

groups (Vercauteren et al., 2006) have been employed. These techniques have not, to date, been

applied to FLIM data. This is because during FLIM acquisition, histograms of photon arrival times are

typically accumulated to produce a single image. In this approach, blurring due to sample motion is

‘baked into’ the data and thus cannot be compensated. More recently, however, improved device-

computer bandwidth and storage have enabled the recording of individual photon arrival times and

markers associated with the scan frame and line clocks (Becker et al., 2006). Most modern commer-

cial time-correlated single photon counting (TCSPC) FLIM systems support this mode, often by

default.

Here, we describe an approach whereby we reconstruct each frame from this time-tagged FLIM

data and determine the motion both between and within each frame using an approach based on

the Lucas-Kanade framework (Baker and Matthews, 2004). We have implemented these algorithms

in a new open source package, Galene, which can be used to correct for motion in two- and three-

dimensional FLIM data collected using widely deployed commercial systems. We first evaluate the

range of motions that can be effectively compensated using simulated data and compare the perfor-

mance of Galene’s core motion correction algorithms with open source and commercially available

motion correction tools. We then validate our approach using intravital imaging of a number of

FRET biosensors in vivo in a murine system and in clinical applications by imaging autofluorescence

of human skin. While the main focus of this manuscript is motion correction of time resolved data,

we show that Galene may also be used to correct conventional fluorescence microscopy data using

intravital 3D multispectral imaging data of labelled immune cells in the murine lymph node highlight-

ing its wider application for intravital imaging applications.

Results

Correction for motion in time-tagged, time-resolved FLIM data
The motion correction procedure is illustrated schematically in Figure 1 and outlined in Video 1. We

acquire FLIM data in a time-tagged time-resolved (TTTR) mode whereby each photon arrival time is

recorded alongside frame and line markers, which allow us to locate each photon within the image.

From these data, we first reconstruct the intensity of each constituent frame, or, in the 3D case, stack

of frames (Figure 1A–C), that make up the image. We use these intensity data to determine the

sample motion during the image acquisition relative to a reference stack (Figure 1D–H). For each

stack, we first perform a fast, rigid realignment using a 3D generalisation of the phase correlation

method (Foroosh et al., 2002). This corrects for coarse sample displacements but cannot correct for

sample motion during the stack, which leads to distortions, rather than simply displacement of the

stack. To estimate the displacement of the sample during the stack acquisition, we use a fitting

approach where we account explicitly for the raster scan pattern used to acquire the data following

the approach of Greenberg and Kerr (2009). The microscope takes a finite time to scan over the

stack. We assume that the sample moves linearly between a series of initially unknown two- or three-

dimensional displacements spaced equally through the scan duration. For a given set of displace-

ments, we know where the sample was when the microscope acquired each pixel, and we can thus

reconstruct the undistorted stack by three-dimensional interpolation and compare this reconstruc-

tion to the reference stack. By estimating the motion at a number of points across the image, we

can account for motion in both the fast-axis, which appears as a ‘wave-like’ pattern in the data, and

in the slow axis, which appears as compression or expansion of sections of the image. We can then

determine the sample motion during the stack acquisition by finding the set of displacements which

minimises the difference between the corrected stack and the reference stack using a trust-region

non-linear optimisation algorithm. This approach requires that we compute the Jacobian of this error

function, that is the gradient of the difference between the two stacks at each pixel with respect to

the unknown displacement parameters. To perform this optimisation efficiently we use a variant of
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Figure 1. Illustration of motion correction procedure. (A) Intensity merged FLIM image of intestinal crypt acquired in vivo using a titanium optical

window from a Rac1 FRET biosensor mouse, composed of 443 separate frames. (B) As the data are acquired in a time-tagged mode, the arrival time

and position of each photon in the dataset can be extracted. (C) Using these data, the intensity of each frame can be reconstructed. (D) One frame is

selected as the reference (magenta). To realign subsequent frames (example shown in green), (E) a rigid realignment step is first performed, estimating

the coarse offset between the images. (F) To estimate the motion during the frame leading the residual difference between the two images, we select a

number of points equally spaced in time during the frame scan and estimate the displacement of the sample at each point (red arrows). (G) We use the

Figure 1 continued on next page
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the inverse-compositional Lucas-Kanade algorithm (Lucas and Kanade, 1981), used extensively in

image registration applications (Baker and Matthews, 2004); its key insight is that, rather than cal-

culating the gradient of the interpolated stack at every iteration, a computationally expensive proce-

dure, we can instead use the gradient of the reference stack, which is of course invariant (Baker and

Matthews, 2004). This optimisation yields an estimate of the sample motion during the scan. With

this sample displacement information, the FLIM image can be reconstructed accounting for the

motion, reassigning each photon arrival to the correct pixel producing a distortion-free image

(Figure 1I–L). We use the displacement information to determine the effective dwell time in each

pixel (which will vary across the image due to the sample motion). This information is stored along-

side the corrected FLIM data and may be used when displaying intensity-merged FLIM data.

Evaluating performance limits using simulated FLIM data
To determine the range of amplitudes and frequencies of sample motion that can be reliably cor-

rected, we used Monte Carlo simulations of FLIM data in the presence of sample motion

(Figure 2A). We compare these results with reference to average values for physiological events

known to impair image acquisition; the heartrate (red arrow, 350 bpm, ~6 Hz) and respiratory rate

(blue arrow, 60 bpm, 1 Hz) of an adult mouse anaesthetized under ~1% isoflurane (Ewald et al.,

2011) are shown. Figure 2B shows the average correlation coefficient, a measure of how well the

correction has performed, for a range of frequencies and amplitudes of motion relative to the field

of view (FOV) size. We observed that the system could compensate for motion parallel to the fast

axis (0˚) more effectively than motion parallel to the slow axis (90˚); this is unsurprising as motion in

the slow axis will result in whole lines of the sample being sampled either twice or not at all.

Figure 2C–G illustrate several example alignment results with different motion conditions; the red

dots indicate the location on the frequency-magnitude plot shown in Figure 2B for each condition.

Figure 2C and D show, respectively, slow (1.5 Hz) and fast (6 Hz) motion with the same magnitude

of ~10% of the FOV aligned with scanner fast axis. Here, we can effectively correct for the motion as

shown in the realigned images and estimated displacements plotted with the simulated displace-

ments. Figure 2E shows fast motion at 45˚ to the fast axis; again, we can effectively compensate for

this motion although the resultant realigned image is marginally degraded. Figure 2F shows a larger

(higher magnitude) motion, approximately ~20% of the field of view at 45˚ to the fast axis. In this

case, we are not able to effectively compensate

for the motion, and the realigned image is signif-

icantly degraded. We note that a similar motion

along the fast axis could be corrected (see

matching point on Figure 2Bi). Figure 2G shows

a very large (~30% of the field of view) motion

along the slow axis, which we are unable to cor-

rect. We note that the range of amplitudes and

frequencies that Galene is able to correct covers

a broad range of physiologically relevant

motions commonly observed during functional

intravital imaging and will therefore be of use in

a range of in vivo imaging applications.

Figure 1 continued

rigid realignment as the initial estimate for the displacement. (H) As the fit progresses, the displacement estimates reduce the difference between the

two images. The displacement of pixels between each point are computed using linear interpolation (grey arrows). The (I) displacement during each

frame and (J) correlation between each frame and the reference is computed by repeating this process for each frame. (K) The FLIM image is

reprocessed and each photon arrival is reassigned to its estimated origin point on the sample using the interpolated displacements. (L) The final

intensity merged FLIM image can then be analyzed using conventional approaches. Mouse and intestine illustrations were adapted from Servier Medial

Art, licensed under the Creative Commons Attribution 3.0 Unported license.

DOI: https://doi.org/10.7554/eLife.35800.003

Video 1. Video abstract. Overview of motion correction

using Galene.

DOI: https://doi.org/10.7554/eLife.35800.004
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Figure 2. Evaluation of motion correction performance with simulated data. (A) Illustration of generation of a frame in a simulated TTTR dataset. Main

image shows high SNR intensity image used as the reference sample intensity. Red lines indicate the sample motion during the illustrated frame. Inset

image shows the resultant simulated frame. (B) Average correlation coefficient over a range of magnitudes and frequencies of sinusoidal sample motion

along an axis (i) 0˚, (ii) 45˚ and (iii) 90˚, respectively, from the fast axis. For comparison, indicative average values for the heart rate (red arrow, 350 bpm,

Figure 2 continued on next page
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Comparison with other software packages for intensity-based
realignment
We compared the core motion correction algorithm used by Galene with three open source motion

correction packages using intensity-only data. We used two ImageJ plugins, StackReg, implementing

a rigid registration algorithm (Thévenaz et al., 1998) and ‘Linear Stack Alignment with SIFT’, an

approach based on the Scale Invariant Feature Transform (Lowe, 2004). We also evaluated the

python package SIMA (Kaifosh et al., 2014), which uses a Hidden Markov Model (HMM)-based

approach (Dombeck et al., 2007). We generated simulated time lapse intensity data with sample

motion at 45˚ to the fast axis over a range of amplitudes and frequencies. We performed motion cor-

rection of these data with each software package and plotted the average correlation between each

motion corrected frame and the reference frame as a function of frequency and amplitude of motion

(Figure 2—figure supplement 1). StackReg and SIFT both correct for rigid transformations between

each frame and so are unable to cope with the distortion produced by LSM with a moving sample;

consequently, these packages are only able to correct for low frequency motion (as, for example,

encountered during slow sample drifts where the observed motion artefact can be approximated by

a linear transformation (for example, Figure 2—figure supplement 1B). SIMA uses a HMM model

which uses information about the laser scan pattern and so is able to cope with a larger range of

motion (for example, Figure 2—figure supplement 1C, equivalent to a small displacement caused

by the heartbeat). However, Galene is able to correct for significantly larger sample motions than

SIMA (compare Figure 2—figure supplement 1Aiv, SIMA and v, Galene), for example the larger

motion shown in Figure 2—figure supplement 1D, corresponding to a larger motion induced by

the heartbeat, and so will be useful in a broader range of intravital experimental conditions.

Evaluation of the effect of image scan configuration on motion
correction performance
We went on to evaluate the use of Galene in an intravital imaging setting. As demonstrated using

the simulated data, the speed and direction of the motion has a significant effect on the extent to

which we are able to correct the data. The critical parameter is, in fact, the relative speed of the

motion with respect to the scan rate; a 5 Hz motion acquired with a frame rate of 1 Hz will appear to

oscillate five times during each frame acquisition while the same speed acquired with a frame rate of

5 Hz will only appear to oscillate once per frame. Since the scan rate is generally a user controllable

parameter, we imaged the same region at different scan rates to determine how this parameter

affects the motion correction performance.

We acquired images through surgically implanted titanium windows (see schematic in Figure 3)

that enable longitudinal imaging of abdominal organs (Ritsma et al., 2014). Imaging abdominal

organs through an optical window is challenging as they experience considerable motion as a result

of physiological activity in nearby organs such as respiration and the heartbeat. Simply finding areas

sufficiently stable to acquire FLIM images significantly limits the usable area of the window, and, in

some cases, can render mice completely unusable. Using these windows, we imaged the pancreas in

a genetically engineered mouse expressing a FRET biosensor for the small GTPase Rac1 (Itoh et al.,

2002; Johnsson et al., 2014). We analyzed the FLIM data before and after motion correction by

Figure 2 continued

5.8 Hz) and respiration rate (blue arrow, 60 bpm, 1 Hz) of an adult mouse anaesthetized under ~1% isoflurane are shown. Black dots indicate results

illustrated in the following panels. (C–G) Exemplar simulation results showing intensity merged lifetime images (i) without and (ii) with motion

compensation. (iii) Estimated displacement traces in (blue) x and (red) y directions over time. In D-Giii, inset panels show expanded views of

displacements between 1 and 3 s. (iv) Correlation between reference frame and (red) uncorrected and (blue) corrected images over time. Examples

shown in C–E were corrected successfully, while the motion in examples F and G was too large to effectively compensate. (C) Motion parallel to fast

axis with frequency 1.5 Hz and magnitude 10% of FOV. (D) Motion parallel to fast axis with frequency 6 Hz and magnitude 10% of FOV. (E) Motion at

45˚ to fast axis with frequency 6 Hz and magnitude 10% of FOV. (F) Motion at 45˚ to fast axis with frequency 6 Hz and magnitude 20% of FOV. (G)

Motion at 90˚ to fast axis with frequency 6 Hz and magnitude 28% of FOV.

DOI: https://doi.org/10.7554/eLife.35800.005

The following figure supplement is available for figure 2:

Figure supplement 1. Benchmarking of intensity-only motion correction performance with simulated data.

DOI: https://doi.org/10.7554/eLife.35800.006
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Figure 3. Evaluation of effect of scan speed and angle on motion correction performance. (A) Imaging of pancreatic tissue in vivo in a Rac1 FRET

biosensor mouse using an abdominal titanium imaging window. (A) Estimated displacement for first 20 s of motion (i) dominated by heartbeat and (ii)

dominated by respiration and peristalsis recorded at 1400 Hz. (B) Amplitude spectrum of displacements for two data series showing dominant

contributions from the heartbeat (~5.6 Hz) and respiration and peristalsis (0.5–2.5 Hz). (C) Peak-to-peak displacements for the data series. Error bars

Figure 3 continued on next page
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fitting each pixel to a single-exponential model as previously demonstrated (Johnsson et al., 2014).

We acquired FLIM-FRET images in two locations with different motion patterns, (i) where motion

was dominated by the heartbeat and (ii) where motion is dominated by respiration and peristalsis

(see displacement traces shown in Figure 3Ai,ii) at 700, 1000 and 1400 Hz line rates. We performed

an amplitude-spectrum analysis on the estimated displacements (Figure 3B,C) and found motion of

(i) a frequency of 5.4 Hz and peak-peak amplitude of 27 mm (approximately 10% of the FOV), corre-

sponding to the heartbeat and (ii) slower motions with a range of frequencies from 0.2 to 2.2 Hz

with an average peak-peak amplitude of 42 mm (approximately 15% of the field of view), corre-

sponding to respiration. We found that for the faster but smaller motion due to the heartbeat we

were able to correct for motion equally well at all scan rates (see Figure 3D, average correlation

quantified in Figure 3Div). Note that for the same correction performance the correlation is reduced

slightly at higher scan rates due to the lower signal to noise in each image. For the larger due to res-

piration and peristalsis, we found that we were only able to successfully correct for motion at 1400

Hz scan rates; partial correction was obtained at 1000 Hz and effectively no correction at 700 Hz

(see Figure 3E). Underscoring the simulated data results, these data indicate that for larger motions

it may be helpful to acquire at a faster frame rate where possible.

We went on to evaluate the effect of the relative alignment between the dominant direction of

motion and the fast scanner axis. We imaged the pancreas with the motion aligned with the slow

axis (red) and fast axis (blue) at 700 and 1400 Hz (see Figure 3F and G respectively) by rotating the

microscope scan field. Figure 3F, Gv shows an angular histogram of the displacements showing the

alignment with the scanner axes for the two cases and Figure 3F, Giv shows the average correlation

between the realigned frames. At 700 Hz the realignment is significantly improved when the motion

is aligned with the fast axis. At 1400 Hz, when the motion is slower relative to the scan rate, the

motion is corrected equally well in either case. This highlights both the importance of using a fast

scan rate where possible and, where there is a clear direction of motion, approximately aligning it

with the scanner fast axis by rotating the scanner field of view.

Evaluation of the effect of realignment parameters on motion
correction performance
There are a number of user controllable options for performing the realignment. The first is the num-

ber of realignment points used across each frame of the image. The motion is interpolated linearly

between these points across the image. In principle, using a larger number of points allows correc-

tion of higher frequency motions. We acquired 256 � 256 images of the pancreas and realigned the

data using either coarse translation-only information determined using phase correlation or realign-

ment with 3, 5, 10, 20 and 40 points per image (Figure 3A, quantified in Figure 3B). For images of

this size, there was a slight improvement in the average correlation with increasing number of

realignment points up to 20 points. Using 40 points, however, the correlation was slightly reduced.

Using a very large number of realignment points can be detrimental; as the number of points

increases, the number of pixels which constrain each point is reduced and eventually there is not

enough information to accurately determine the motion at each point. In general, we found that

using between 5–20 realignment points for 256 � 256 images and 10–20 points for 512 � 512

images was sufficient to obtain good correction over a broad range of conditions.

Figure 3 continued

show standard deviation over series. (D,E) Motion corrected FLIM images acquired in (D) heartbeat dominated regime and (E) respiration dominated

regime at (i) 700 Hz, (ii) 1000 Hz and (iii) 1400 Hz, (iv) average correlation of corrected frames over series. (F,G) FLIM data were acquired with

predominant motion occurring along the slow scan axis (red, top-bottom) and fast scan axis (blue, left-right) at (F) 700 Hz and (G) 1400 Hz. FLIM images

are shown (i) before and (ii) after motion correction for motion along the slow axis and (iii) before and (iv) after motion correction for motion along the

fast axis. (v) Angular histogram of displacements for data acquired along the slow and fast axis. (iv) Average correlation of data acquired with motion

aligned along the slow and fast axis. White scale bars 100 mm. Mouse and pancreas illustrations were adapted from Servier Medial Art, licensed under

the Creative Commons Attribution 3.0 Unported license.

DOI: https://doi.org/10.7554/eLife.35800.007

The following figure supplement is available for figure 3:

Figure supplement 1. Evaluating the effect of realignment parameters on motion correction performance.

DOI: https://doi.org/10.7554/eLife.35800.008
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As the signal to noise level in each frame of a FLIM image is often low due to the restricted count

rate requirements of TCSPC imaging, a Gaussian smoothing kernel may optionally be applied to

each frame before realignment to improve the realignment. This smoothing is only applied in the x

(fast-) axis so that pixels are only convolved with those acquired immediately before and after. To

evaluate the effect of the degree of smoothing, we realigned an image with low signal to noise with

a range of smoothing kernel widths between 0 and 10 pixels (Figure 3C, quantified in Figure 3D).

We normally use the correlation between the smoothed images to reduce the effect of noise on the

realignment result quantification. Here, however, we use the correlation between the unsmoothed

images to allow us to compare the correlation between different smoothing kernels. We found a

noticeable improvement in the realignment result using a kernel of with 2 or 4 pixels compared to

no smoothing. At larger kernel sizes, the correlation gradually reduced; using excessively large

smoothing kernels can reduce the quality of the realignment as the contrast in the image is reduced.

We have found that using a smoothing kernel of 2–4 pixels works well over a broad range of

conditions.

Imaging intestinal crypts in vivo and ex vivo in a Rac1 FRET biosensor
mouse
We went on to use Galene to image Rac1 activity in the intestinal crypts. Rac1 regulates a diverse

array of cellular events including the cell cycle, cell-cell adhesion, motility and differentiation

(Heasman and Ridley, 2008) and has been shown to be a key driver of Wnt-induced stem cell acti-

vation within the intestinal crypt (Myant et al., 2013). The Rac1 biosensor contains an ECFP donor,

which has a complex decay profile, dominated by contributions from two conformations with similar

spectral profiles. Here, we have fitted the data to a complex-donor FRET model previously described

(Warren et al., 2013) consisting of two contributions with different levels of FRET. Using global anal-

ysis, we determined the FRET efficiencies of the Rac1 GTP (active) and GDP bound (inactive) states

to be E = 0.65 and E = 0.02. By fitting the contributions of each component, we can estimate the

fraction of active Rac1 biosensor in each pixel as shown in Figure 4A.

Imaging of the intestine is further complicated by motion induced by peristalsis, wave-like con-

tractions of the digestive tract which propel food through the intestine. The gut can be attached

only gently to the window (Ritsma et al., 2012) as immobilizing a tract of the intestine can obstruct

the bowel. The movement caused by peristalsis almost completely obscures the sample structure

when imaging for even a few seconds (Figure 4Ai). Video 2 shows the individual frames from the

acquisition with and without correction and the accumulated time resolved image. When imaging

crypts we noted that, alongside persistent smaller motion, occasional large, transient displacements

occur where the crypt under observation moves completely out of the field of view (shown in the dis-

placement estimates, Figure 4Aiii); this, of course, cannot be compensated. We automatically iden-

tify and remove these frames by applying a threshold to the correlation between the reference

image and the best estimate of the corrected frame, in this case 0.8 (Figure 4Aiv), discarding frames

with lower correlation values. Figure 4A shows examples of frames which were successfully cor-

rected (vi before correction, vii after correction) and frames which were excluded from the recon-

structed image (viii, ix). Using this procedure, we can successfully recover an undistorted image of

the live crypt (Figure 4Aii), and, by fitting to a complex-donor FRET model, estimate the fraction of

the active biosensor in each pixel.

Peristaltic motion continues even ex vivo when the intestine is maintained appropriately for live

cell imaging. We imaged intestinal crypts in freshly excised tissue from the Rac1 and observed signif-

icant peristaltic motion which we could effectively correct using Galene, as illustrated in Figure 4B

and Video 3. To inhibit peristalsis for imaging, researchers often use scopolamine, a small molecule

muscarinic antagonist that inhibits the contraction of the smooth muscle layer surrounding the intes-

tine (Wang et al., 2008). To compare this approach to image based correction, we imaged tissue

with and without pre-treatment with scopolamine. To quantify the data, we first used phasor analysis

(Figure 4C, phasor analysis of image shown in Figure 4B) to separate the biosensor fluorescence

(blue gate) from the tissue autofluorescence (red gate). We then manually segmented single cells

and computed the average fraction of active Rac1 biosensor. Treatment with scopolamine effectively

inhibited peristalsis; however, unexpectedly we also observed a significant activation of Rac1 in tis-

sue treated with scopolamine compared to untreated tissue (Figure 4D, quantified in E) This activa-

tion was of a similar magnitude to that of tissue treated with phorbol myristate acetate (PMA)
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Figure 4. FLIM of intestinal crypts from the Rac1-FRET biosensor mouse in vivo and ex vivo using motion compensation. (A) Imaging of intestinal crypts

in vivo using an abdominal titanium imaging window (i–ii) Example FRET biosensor activity maps (i) before and (ii) after motion compensation showing

fraction of active FRET biosensor determined by fitting to a FRET model accounting for the complex exponential decay of ECFP. White scale bars, 50

mm. (iii) Estimated displacement traces in (blue) x and (red) y directions over time. Pastel shaded regions indicate frames that could not be successfully

corrected with correlation coefficients < 0.8. (iv) Correlation between reference frame and (red) uncorrected and (blue) corrected images over time.

Black dashed line denotes threshold (0.8) used to reject frames which could not be corrected. (v) Selected reference frame (vi,vii) Example of a

successfully corrected frame (vi) before and (vii) after correction. (viii,ix) Example of a frame that could not be corrected. (B) Imaging of intestinal crypts

ex vivo. (i–iv) as (A), no correlation threshold applied. (C) (i) Phasor plot of image shown in (B) to separate biosensor fluorescence (blue) from

autofluorescence (red) and i) back projection of selected gates. (D) Intensity merged lifetime images of crypts (i) before and (ii) after motion

compensation treated with (left-right) no drug, 200 nM PMA or 1 mM scopolamine. White scale bars 50 mm. (E) Quantification of fraction of active

biosensor in crypts after drug treatment. (F) Subcellular analysis of fraction of active biosensor in basal (blue) and apical (red) membranes after drug

treatment, shown per cell. Error bars show means ± SEM. **p<0.01; ***p<0.001 using one-way ANOVA. Mouse and intestine illustrations were adapted

from Servier Medial Art, licensed under the Creative Commons Attribution 3.0 Unported license.

DOI: https://doi.org/10.7554/eLife.35800.009

The following source data and figure supplements are available for figure 4:

Source data 1. Source data for graphs show in Figure 4E and F.

Figure 4 continued on next page
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(Johnsson et al., 2014), a potent small molecule activator of Rac1. This effect was also observed

when fixed tissue was stained with a Rac1-GTP specific antibody (Myant et al., 2013) (representative

images and quantification shown in Figure 4—figure supplement 1). This interference with Rac1 sig-

nalling highlights the need to ensure pharmacological approaches to reducing sample motion do

not affect the process under observation. In contrast, by using image based correction, these arte-

facts can be avoided when looking, for example, at subtle changes in Rac1 GTPase regulation which

is known to drive stem cell activity in intestinal crypts (Myant et al., 2013).

Without motion correction, it is extremely difficult to identify subcellular compartments in a

majority of the intestinal crypt data. After correcting for motion, however, we are able to robustly

identify subcellular regions and structures in the data. We performed sub-cellular analysis of Rac1

activity in the basal and apical membranes of intestinal crypts with and without drug treatment

(Figure 4F). We observed a lower level of Rac1 activation the basal membrane compared to the api-

cal membrane after application of PMA or scoloplamine, suggesting a potential negative regulation

of Rac1 at the basal membrane. This may be consistent with the critical role of Rac1 in intestinal

crypt patterning and differentiation (de Santa Barbara et al., 2003).

Benchmarking galene using in vivo and ex vivo intestinal crypt imaging
data
To benchmark the core motion correction algorithm used in Galene using real data, we exported

the intensity of each frame from the intestinal crypt FLIM data shown in Figure 4 as time series data.

Each frame has relatively low signal to noise and we found that the SIFT algorithm was unable to reli-

ably extract feature points from the data to use

for realignment. We therefore assessed the per-

formance of StackReg, SIMA and Galene. Fig-

ure 4—figure supplement 2 shows the results

of the realignment of intensity only versions of

the intestinal crypt data acquired (A) in vivo

through an optical window and (B) ex vivo. Due

to the rapid motion observed in this image, the

linear transformation used by StackReg is not

able to adequately correct for the motion and

the correlation between each frame and the ref-

erence frame is not improved compared to the

unaligned data. SIMA provides an improvement

in the image quality compared to the unaligned

data and an increase in the average correlation

between frames; however, a substantial motion

artefact is still visible in the integrated image.

Galene produces a significant improvement in

the image quality over SIMA and StackReg. In

line with the results of our simulations and in

addition to enabling correction of time resolved

data, Galene demonstrates a significant

improvement in the realignment of both in vivo

and ex vivo imaging data.

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.35800.012

Source data 2. Source data for graph show in Figure 4—figure supplement 1C, showing (Sheet 1) average optical densities for active-Rac1 IHC stain-

ing per mouse and (Sheet 2) individual optical densities for active Rac1 IHC staining per cell for each mouse.

DOI: https://doi.org/10.7554/eLife.35800.013

Figure supplement 1. IHC for Rac1-GTP in intestinal crypts.

DOI: https://doi.org/10.7554/eLife.35800.010

Figure supplement 2. Benchmarking of intensity-only motion correction performance with frames from intestinal crypts.

DOI: https://doi.org/10.7554/eLife.35800.011

Video 2. Motion correction of Rac1 biosensor FRET of

an intestinal crypt imaged in vivo through an optical

window. Associated with Figure 3.

DOI: https://doi.org/10.7554/eLife.35800.014
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Functional and structural
longitudinal imaging during early
adhesion events in an intrasplenic
model of pancreatic cancer
metastasis through an optical
window
In a recent study, we demonstrated that tran-

sient ‘priming’ using the pharmaceutical Rho

kinase inhibitor Fasudil in a model of pancreatic

cancer (PC) improved response to chemotherapy

and impaired metastasis to the liver in an intra-

splenic model (Vennin et al., 2017). Src kinase

has been shown to play a critical role in cell

adhesion and proliferation in cancer

(Brunton and Frame, 2008) and is potentially an

anti-invasive target in PC (Evans et al., 2012;

Morton et al., 2010b; Nobis et al., 2013). We

previously observed a reduction in Src kinase

activity in in vitro models of invasion and in end-

point xenograft models of a primary tumour

imaged using a skin flap technique. We there-

fore hypothesised that the reduction in the num-

ber of metastases after priming with Fasudil

could be, in part, a consequence of a reduction

in early adhesion events caused by disruption of Src activation. However, without correction for sam-

ple motion, the assessment of such early transient events using FRET (illustrated schematically in

Figure 5B) is not possible in vivo, limiting our ability to quantify colonisation efficiency at this impor-

tant stage.

We used Galene to track Src activity in early adhesion events and so directly assess the effects of

Fasudil during early attachment. We injected KPC cells expressing the Src-FRET biosensor

(Wang et al., 2005) into mice implanted with abdominal imaging windows implanted on top of the

liver (see Figure 5A) and imaged cells arriving in the liver 4, 8, 16 and 24 hr (see timeline in

Figure 5C) after injection. We used a multispectral FLIM system to allow us to record the lifetime of

the Src biosensor alongside microenvironmental context using a variant of the hyperspectral unmix-

ing approach recently demonstrated (Cutrale et al., 2017). Figure 5Di shows an example motion

corrected merged intensity image in the three spectral channels used and Figure 5Dii and iii show

the temporal phasor of the 525/50 nm channel and the spectral phasor respectively. Phasor gates

associated with Src-FRET, hepatocytes, the vasculature and collagen were identified as shown and

used to identify the associated region in the image (Figure 5Div). Using the data from these regions,

we created a pattern associated with each component and performed non-negative least squares to

unmix the autofluorescence signal from nearby liver cells, blood vessels and the collagen network

which have distinct hyperspectral signatures. To determine the lifetime of the Src biosensor, we

identified regions containing the biosensor using phasor analysis and fitted the data to a single

exponential model in the donor channel. We manually segmented single cells to determine the aver-

age lifetime per cell.

The liver shows significant motion when imaged behind an optical window due to its proximity to

the lungs and heart and attachment to the diaphragm. This frustrates attempts to acquire data for

lifetime and hyperspectral unmixing as integration over even a few frames leads to significant image

blurring as illustrated in Figure 5Ei. Figure 5Eii shows the same image after correction for motion

with liver cells shown in grey, blood vessels in red, collagen in magenta. The lifetime of the biosensor

is color-coded from blue (low lifetime, low Src activity) to red (high lifetime, high Src activity, see

schematic). Using Galene, we were able to reliably correct for motion in this context and so probe

the activation of Src in relation to the true attachment state or spreading phenotype of cells during

these early adhesion events in the liver. Here, we saw a significant increase in Src activity (increase in

Src biosensor lifetime) after 8 hr, which was maintained up to 16 hr before plateauing after 24 hr

Video 3. Motion correction of Rac1 biosensor FRET in

an intestinal crypt stimulated with PMA imaged ex vivo.

Associated with Figure 3.

DOI: https://doi.org/10.7554/eLife.35800.015
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Figure 5. Longitudinal imaging of Src activity in cancer cells colonising the liver in an intrasplenic model of pancreatic cancer metastasis with micro-

environmental context in response to priming with Fasudil. (A) Cartoon of intrasplenic model of pancreatic cancer using KPC cancer cells expressing a

Src-FRET biosensor. (B) Cartoon of morphology of KPC cells during early attachment events. (C) Experimental timeline showing timings of window

implantation, intrasplenic injection, Fasudil (or vehicle) administration and imaging. (D) Illustration of identification of fluorescence components; (i)

merged spectral intensity image, (ii) temporal phasor plot of 525/50 nm channel with gates used to select fluorescence components, (iii) spectral phasor

plot, (iv) back projection image showing gates highlighted in (ii) and (iii). (E) Merged Src-FRET biosensor lifetime and hyperspectral unmixing image i

before and (ii) after motion correction acquired 8 hr after intrasplenic injection. Cancer cells expressing the Src biosensor are colour-coded using the

rainbow lifetime scale. Autofluorescence contributions obtained using hyperspectral unmixing shown in (red) vasculature, (grey) hepatocytes and

(magenta) collagen. (iii) Estimated displacement traces in (blue) x and (red) y directions over time. (iv) Correlation between reference frame and (red)

uncorrected and (blue) corrected images over time. (F) (i,ii) Example images showing Src activity and micro-environmental context in mice treated with

Figure 5 continued on next page
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upon spreading (see Figure 5E, control situation). In line with our previous study (Vennin et al.,

2017), to mimic systematic ROCK inhibition or adjuvant therapy in the presence of circulating

tumour cells, we treated mice with Fasudil at 12 hr intervals with three treatments before intrasplenic

injection (see timeline in Figure 5C). Mice treated with Fasudil exhibited a significantly reduced and

delayed Src activity, in line with a delayed spreading phenotype, compared to those treated with

the vehicle (see Figure 5Fi, blue-green shift at 8 hr and Figure 5Fii, blue-green shift at 24 hr, quanti-

fied in Figure 5G), indicating that Src-dependent spreading and activation during the first attach-

ment events in the liver are indeed impaired by treatment with Fasudil. These results demonstrate a

new role of Fasudil priming in altering adhesion

efficiency in secondary sites (Rath et al., 2017;

Vennin et al., 2017). There is an urgent need to

develop anti-metastatic treatments in PC and

other metastatic cancer types (Steeg, 2016) and

functional intravital microscopy combined with

Galene may help development of new strategies

to monitor agents that affect this critical event

preceding colonisation (Ritsma et al., 2012;

Steeg et al., 2011).

We note that aside from reducing the image

quality, motion during acquisition can have a

number of more subtle effects: (1) blurring of the

biosensor fluorescence with background auto-

fluorescence which may have a very different life-

time can artificially change the apparent lifetime

of the biosensor, giving a misleading result and

(2) motion can significantly distort the apparent

shape of the cells. Both artefacts are observed

here; we see a reduction in the apparent lifetime

of the biosensor due to blurring with the low

autofluorescence lifetime of surrounding liver

cells and an artefactual elongation and apparent

spreading of the cancer cell (compare

Figure 5Di–ii) which may lead to an incorrect

assumption about their attachment state (see

Figure 5B). Video 4 shows the accumulated

frames before and after correction (note that

Video 4 shows the mean arrival time of all chan-

nels acquired, not just the Src biosensor donor).

To evaluate the impact of motion correction on

our ability to quantify Src activity in dataset, we

analysed the lifetime of the uncorrected data in

the same way (Figure 5H). The blurring of the

biosensor lifetime with the background

Figure 5 continued

(i) vehicle and (ii) 100 mg/kg Fasudil according to the timeline show in (C) at 4, 8, 16 and 24 hr after intrasplenic injection respectively. (G,H) Average Src

biosensor lifetime in cancer cells colonising the liver in response to Fasudil treatment, using images (G) before and (H) after motion correction. n = 3

mice per condition, 20–45 cells per time point. Results show means ± SEM (shaded). p values were determined per-mouse by unpaired t-test, *p<0.05;

**p<0.01. Mouse and liver illustrations were adapted from Servier Medial Art, licensed under the Creative Commons Attribution 3.0 Unported license.

DOI: https://doi.org/10.7554/eLife.35800.016

The following source data is available for figure 5:

Source data 1. Source data for graphs show in Figure 5H and G, showing average Src-FRET biosensor lifetimes at 4, 8, 16 and 24 hr after intrasplenic

injection per mouse, (Sheet 1) before motion correction and (Sheet 2) after motion correction.

DOI: https://doi.org/10.7554/eLife.35800.017

Video 4. Motion correction of KPC Src-FRET biosensor

cells and liver autofluorescence imaged in an

intrasplenic experiment through optical window.

Associated with Figure 5D. (top left) Each intensity

frame from the FLIM acquisition (green) superimposed

on the reference frame (magenta). (top right) The

motion compensated frames (green) superimposed on

the reference frame (magenta); frames which have been

excluded due to a poor correlation are marked as such.

(bottom left) Cumulative intensity merged FLIM lifetime

image without motion correction, estimated using the

first moment of the decay. (bottom right) Cumulative

intensity merged FLIM lifetime image with motion

correction, estimated using the first moment of the

decay.

DOI: https://doi.org/10.7554/eLife.35800.018
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autofluorescence leads to an overall reduction in the lifetime in all treatment conditions. As the mag-

nitude of this effect varies greatly from cell to cell depending on the motion and the environment of

each cell, we found a significantly higher degree of variance within each condition. This increased

variability abolishes our ability to statistically distinguish the conditions, highlighting the importance

of motion correction to obtain robust results in this context (compare in Figure 5G–H).

Motion correction of clinical autofluorescence imaging of human skin in
three dimensions
The lifetime of NADH and FAD autofluorescence can be used as a readout of metabolic activity

(Blacker and Duchen, 2016; Lakowicz et al., 1992; Skala et al., 2007) with potential applications in

the detection of precancerous tissue. This autofluorescence signal has been investigated in a clinical

context for diagnostic purposes (König, 2012) using static (Patalay et al., 2012), flexible

(König et al., 2008) and handheld multiphoton (Sherlock et al., 2015) microscopes. Unlike optical

window experiments, where the inverted imaging configuration and weight of the mouse largely

constrains the sample motion to two dimensions, the movement observed imaging human skin in an

upright configuration occurs isotropically in three dimensions and so correction for lateral motion

alone is insufficient. We therefore demonstrate two approaches for handling motion in three dimen-

sions: (1) real-time detection and compensation for axial sample motion when imaging a single plane

and (2) 3D motion correction within a z-stack. We recently demonstrated (Sherlock et al., 2015) a

handheld multiphoton microscope system that incorporates an active (online) axial motion compen-

sation system that corrects for motion in z-axis in real time. The optical coherence tomography

(OCT)-based correction system tracks sample motion perpendicular to the imaging plane in real

time and adjusts the objective position to keep the selected plane in focus. We applied this system

to collect short FLIM images of human epidermis; Figure 6Ai–iii shows the autofluorescence FLIM

images (i) without motion compensation, (ii) with axial motion compensation alone and (iii) both axial

and lateral motion compensation with Galene. The combination of active axial motion compensation

and software-based lateral motion compensation is able to effectively remove the motion artefact

observed.

In a clinical setting, it is often desirable to obtain a 3D map of the autofluorescence lifetime to

build up structural and functional information resolved into the strata of the skin, for example to

quantify drug penetrance and delivery (Roberts et al., 2011). We acquired 3D FLIM images of auto-

fluorescence from the dorsal forearm of a volunteer using a commercial clinical FLIM instrument

(Leite-Silva et al., 2016). Capturing time-resolved depth stacks with sufficient photon counts can be

a time-consuming process; a 30–50 mm stack may take 10–15 min to acquire. A certain degree of

motion during this period is inevitable in live subjects and, since conventionally each frame is accu-

mulated consecutively (Figure 6Bi), this can lead to both blurring of individual images in the stack

and displacement between images in the stack. To overcome this issue, we accumulated a number

of scans over the entire stack (Figure 6Bii). We then apply the same motion estimation approach as

used in 2D data, extending the displacement points to 3D. Each stack is aligned to a reference stack.

Motion in three dimensions during each stack acquisition can then be estimated and corrected. To

enable correction of these large volumes, we used GPU computation and several algorithmic optimi-

sations to reduce the processing time (see Methods, Figure 7—figure supplement 1). We acquired

50 mm stacks with 36 images, accumulating 10 stacks in total. Figure 6C shows the autofluorescence

FLIM images before and after image-based 3D motion compensation. We see that we are able to

track and correct for motion in three dimensions during the stack acquisition, obtaining undistorted

deep-tissue data free from motion artefacts. These approaches may enable the use of autofluores-

cence imaging of other parts of the body more susceptible to sample motion in three dimensions

such as the chest.

Motion correction of three dimensional multispectral intensity data
Galene can also be used to correct for motion in time lapse fluorescence microscopy data, support-

ing data import and export from a number of common microscopy formats, OME-TIFF

(Goldberg et al., 2005) and Imaris data formats. We applied Galene to intravital multi-channel 3D

imaging of immune cells in the inguinal lymph node (Suan et al., 2015) and benchmarked its perfor-

mance against drift correction in Imaris. Intravital imaging is a crucial tool in immunology, providing
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unique spatiotemporal information about the localisation, function and interactions between immune

cells in their native environment. The organisation and migration of different classes of immune cells

within the lymph nodes has been shown to play a critical role in the adaptive immune response

(Kastenmüller et al., 2012). For example, the production of antibodies in response to antigen re-

exposure after vaccination depends on the interaction between CD4+ T cells and B cells at a number

of specific locations in the lymph node. Tracking of the migration of these cells is therefore critical to

understanding this process and its dysregulation. We imaged tdTomato labelled B cells (red), Kaede

CD4+ OT2 T cells (green) and subcapsular sinus macrophages labelled with Alexa680 (magenta) in a

150 mm z-stack through the inguinal lymph node (SHG signal from fibrillar capsule, blue) over 30 min
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Figure 6. Motion correction of autofluorescence imaging of human skin in vivo. (A) Example intensity merged FLIM image of human skin around a hair

follicle on a handheld multiphoton microscope with an active axial motion correction system, (i) without motion compensation, (ii) with axial motion

correction and (iii) with axial and lateral motion compensation. White scale bars 50 mm. (iv) Estimated displacement traces in (blue) x and (red) y

directions over time. Correlation between reference frame and (red) uncorrected and (blue) corrected images over time. (B) Cartoon illustration of (i)

conventional frame-accumulation 3D stack acquisition strategy where frames from each slice in the volume are accumulated in turn and (ii) stack based

accumulation where multiple acquisition of the entire stack recorded in a single pass are acquired, enabling motion correction in three dimensions. (C)

Example intensity merged orthogonal projection of a 3D volume of human skin acquired on a commercial DermaInspect multiphoton microscope (i)

before and (ii) after motion correction showing xy, yz, and xz sections through the volume. White scale bars 100 mm. (iv) Estimated displacement traces

in (blue) x and (red) y directions over time. (v) Correlation between reference frame and (red) uncorrected and (blue) corrected images over time. Data

shown in (A) were acquired at Imperial College, London (Sherlock et al., 2018) and reanalysed with kind permission under the Creative Commons

Attribution 4.0 International licence. Mouse and liver illustrations were adapted from Servier Medial Art, licensed under the Creative Commons

Attribution 3.0 Unported license.
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(Figure 7A). Over the time series, the macrophages and capsule are essentially static while there is

significant migration of the CD4+ T cells. Over this period, substantial sample motion is observed;

there is a slow drift due to slight shifts in the immersion liquid meniscus and faster displacements

due to physiological motion, primarily respiration. These displacements are visible in the temporally
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Figure 7. Motion correction of multispectral 3D imaging of labelled immune cells in a murine lymph node. tdTomato labelled B cells (red), Kaede

labelled OT2 T cells (green) and subcapsular sinus macrophages labelled with Alexa 680 (magenta) imaged in a 150 mm z-stack through the inguinal

lymph node (SHG signal from fibrillar capsule, blue) over 30 min. (A) One time point rendered volumetrically. (B–D) Temporally colour-coded (blue,

early time points; red, late time points) orthogonal projections of time series (with spectral channels merged) with (B) no correction, (C) Imaris drift

correction and (D) motion correction with Galene. Inset, expanded view of region highlighted in white. (E) Correlation between the stationary collagen

and macrophage signal for each volume in the sequence and the reference volume for each package. (F) Average correlation for each correction

package. Results show mean ± SEM, calculated per time point.

DOI: https://doi.org/10.7554/eLife.35800.020

The following figure supplement is available for figure 7:

Figure supplement 1. Algorithmic optimisation for realignment of three dimensional data.

DOI: https://doi.org/10.7554/eLife.35800.021
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colour-coded projections shown in Figure 7B, where early time points are shown in blue and late

time points in red. We used the Imaris ‘spot tracking’ function to track the stationary macrophages

and used their trajectory to correct for drift. This provides a reduction in the motion artefact, how-

ever the correction is not complete (see Figure 7C inset, Video 5), and there is a gradual loss in the

correlation between the nominally static capsule signal over time (Figure 7E and F). We then used

Galene to correct for the motion based on the static capsule and macrophages and observed a sig-

nificant improvement in the quality of the correction (see Figure 7D, Video 5). This will allow more

accurate quantification of in vivo cell movement within this organ over long imaging periods even in

the presence of physiological motion and sample drift.

Discussion
We developed Galene, an open source tool to correct for sample motion in two and three-dimen-

sional intravital functional imaging data where many frames are integrated to provide sufficient sig-

nal to noise to accurately determine, for example, the activity of FRET reporters using FLIM. The

source code for Galene is freely available alongside compiled executable for Windows and Mac at

http://galene.flimfit.org/.

Galene uses a fitting approach that explicitly accounting for the raster scan pattern performed by

laser scanning microscopes to determine sample motion both between frames and during each

frame. We use the Lucas-Kanade framework to efficiently estimate the sample displacements follow-

ing the approach of Greenberg and Kerr (2009). Using the motion estimate, both FLIM and inten-

sity-based data can be reconstructed, allowing quantitative analysis free from artefacts introduced

by motion. To scale this approach to motion correction across 3D volumes where there may be thou-

sands of displacement points, we implement two modifications. First, we take advantage of graphi-

cal co-processors to accelerate computationally intensive sections of the motion correction

algorithm using to take advantage of graphical co-processors. We then exploit the structure of the

optimisation problem to radically reduce the computational burden of estimating each optimisation

step. These modifications reduce the time required to perform motion correction by a factor of 30

for typical volumetric datasets and open the door to online motion correction in the future.

Using simulations of FLIM data, we explored the range of motions that can be effectively com-

pensated with Galene. As expected, we found that motion perpendicular to the scanner fast axis – a

user controllable parameter on most modern confocal microscopes – can be more effectively com-

pensated than those along the slow axis. We found that motions covering a broad range of physio-

logically relevant motions, from respiration to the heartbeat can be effectively compensated when

the magnitude of the motion was ~10% of the FOV, while significantly large motions, up to 30% of

the FOV could be corrected at lower frequencies. We note that faster motions still may be compen-

sated by using faster scan rate, for example by employing a resonant scanner. The difference in qual-

ity of correction of motions in the fast and slow axis is due to the frequency with which different

positions are sampled during the acquisition. Acquiring a 256 � 256 image at 1000 Hz means that

every x-position will be sampled every millisecond (albeit at a different y position), while every

y-position is sampled every 256 milliseconds. A motion purely in the fast scan (x-) direction will

appear as a wave-like motion while a motion in the slow axis will appear to compress and stretch the

image and, for sufficiently large motion, whole lines may be missed. This means that the data con-

strain the estimate of motion in the fast axis

more strongly than in the slow axis.

We benchmarked the core motion correction

algorithm against existing open source packages

by generating simulated fluorescence intensity

time series data and found that Galene can cor-

rect for a significantly larger range of motions

than these packages. We confirmed these results

using intravital FLIM-FRET biosensor imaging

data and multispectral intensity-based data to

demonstrate that we can compensate for a

range of physiological motions. We showed that

we can correct for motion occurring both

Video 5. Motion correction of multispectral imaging of

labelled immune cells in a murine lymph node.

Associated with Figure 7. (left) Uncorrected time

series. (middle) Time series corrected using Imaris drift

correction (right) Time series corrected with Galene.
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between frames and within frames which otherwise render the image unintelligible and thereby

retrieve both cellular and subcellular resolution. This will enable researchers to apply functional

imaging modalities in contexts previously inaccessible due to excessive motion and therefore extend

acquisition times, providing higher signal to noise (or using a lower excitation power to prevent tis-

sue damage or photo-bleaching). Other recent applications of intravital FRET investigating, for

example, RhoA (Nobis et al., 2017), intricate Erk signalling propagation events from in the skin

(Hiratsuka et al., 2015) or cancer stemness (Kumagai et al., 2015), PKA in vascular permeability

(Yamauchi et al., 2016) and stromal targeting in melanoma (Hirata et al., 2015) could benefit from

this approach. We contrasted our approach with pharmacological inhibition of motion using scopol-

amine in sections of ex vivo intestine. We observed that, although scopolamine effectively inhibited

sample motion, it induces a significant activation of Rac1. This would compromise any study of Rac1

signalling in this context, illustrating the potential pitfalls of pharmacological approaches to inhibit-

ing sample motion.

We used Galene to image the activation of Src, a key regulator of metastasis in PC (Erami et al.,

2016; Evans et al., 2012; Nobis et al., 2013; Vennin et al., 2017), via FLIM-FRET in cancer cells

arriving and attaching in the liver in an intrasplenic metastasis model of pancreatic cancer using live

longitudinal imaging with titanium windows. We previously demonstrated that ROCK inhibition with

Fasudil improved response to standard-of-care chemotherapy and reduced metastasis of pancreatic

cancer cells using intrasplenic and orthotopic models and have shown that Src is a key regulator of

metastasis in PC (Erami et al., 2016; Evans et al., 2012; Nobis et al., 2013; Vennin et al., 2017).

To date, our ability to use FLIM-FRET imaging to observe these early, first attachment events has

been hindered by sample motion. The extensive physiological motion observed in the liver not only

significantly degrades the image but also, by mixing the FRET signal with the autofluorescence back-

ground, introduces a significant artefact into the FLIM readout of the Src-FRET activity. Using

Galene, we observe a significant delay in Src activity after priming with Fasudil at early time points,

providing a potential mechanism for the significant reduction in metastatic colonisation observed in

endpoint metastatic burden experiments (Vennin et al., 2017). As highlighted above, this may have

wider applications in other metastatic cancers where early adhesion events are difficult to study.

Imaging human skin autofluorescence using two clinical multiphoton systems we found that,

unlike murine optical window experiments, where the weight of the mouse tends to constrain sam-

ple motion laterally within the image plane, in a clinical context sample motion occurs isotropically in

the x, y and z-axis. Motion in the z-axis cannot be corrected when imaging at a fixed focal plane as

the sample physically moves out of the scan area. We demonstrated two methods for motion correc-

tion in three dimensions; we first combined Galene with a custom handheld multiphoton system

incorporating axial motion correction (Sherlock et al., 2015) while imaging human skin. By combin-

ing online axial motion compensation with lateral motion using Galene we can effectively compen-

sate for motion in three dimensions. In an alternative approach, we acquired z-stacks of human skin,

frequently used, for example, in skin penetration studies (Labouta et al., 2011). Here, integration

times on the order of tens of minutes are not uncommon due to weak autofluorescence signal and

excitation powers limited by safety considerations. We showed that, by generalising the 2D motion

correction approach to estimate motion in a three dimensional raster scan, we can effectively correct

for isotropic motion in 3D. This will enable longer and more accurate FLIM volume acquisitions and

imaging in locations more susceptible to physiological motion such as the chest where respiration is

a significant challenge.

We have demonstrated that it is possible to robustly analyse motion corrected FLIM data using

several methods which require a high signal noise levels and sample stability using data from two

widely available commercial FLIM systems. Galene may be applied directly to data acquired on sys-

tems post capture and may even be applied retrospectively to existing data. This approach could be

readily applied to confocal endoscopic systems (Kennedy et al., 2010; Siegel et al., 2003; Sparks

et al., in press; Sun et al., 2013) to allow TCSPC FLIM acquisitions in an intraoperative context, for

example for tumour margin assessment (Gorpas et al., 2015; Wang et al., 2017). For such applica-

tions, this approach could readily be extended to enable real time correction of FLIM data, as the

processing time is typically significantly shorter than data acquisition, even for high speed 3D appli-

cations. In principle, this system could be combined with a hardware-based lateral motion correction

approach (Sherlock et al., 2018), that can track large displacements to enable high fidelity
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correction when the microscope itself is moving. This would allow, for example, a macro scale FLIM

map to be constructed by freely moving the imaging system across the sample.

In addition to correction of time resolved fluorescence data, we also demonstrated that Galene

can effectively correct for motion in fluorescence intensity time series data in both two and three

dimensions using multispectral intravital imaging data.

Galene will therefore allow researchers to apply time resolved functional imaging in a broader

range of contexts, relaxing previous restrictions on sample stability and imaging duration and make

use of data which would have previously been discarded, in vitro, in vivo and in the clinic.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Strain, strain background
(Rac1-FRET, C57BL/6 (mixed))

Rac1-FRET biosensor
mouse

Johnsson et al. (2014) Rac1-FRET biosensor
mouse

Strain, strain background
(BALB/c-Fox1nuAusb, Mus)

BALB/c-Fox1nuAusb Australian BioResources BALB/c-Fox1nuAusb

Cell line (Mus) KPC Morton et al. (2010a) KPC primary cancer
cells

Antibody active Rac1-GTP NewEast Biosciences RRID:AB_1961793 1:400 concentration

Recombinant DNA
reagent

Rac1-FRET biosensor Itoh et al. (2002) Raichu-1011X ECFP-
SEYFP

Recombinant DNA
reagent

Src-FRET biosensor Wang et al. (2005),
Vennin et al. (2017)

Src-FRET biosensor

Chemical compound,
drug

(-)-Scopolamine-N-
butylbromide

Sigma-Aldrich PubChem:CID_6852391;
Sigma:S7882

Chemical compound,
drug

Phorbol myristate
acetate

Sigma-Aldrich PubChem:CID_27924;
Sigma:P8139

Chemical compound,
drug

Fasudil Jomar Life Research PubChem:CID_163751;
Jomar:HA-1077

Software, algorithm Matlab R2018a Mathworks RRID:SCR_001622

Software, algorithm FLIMfit Warren et al. (2013) RRID:SCR_016298

Motion compensation in TTTR data
Reconstruction of frames from TTTR data
FLIM data saved in a TTTR format were read in using a custom reader implemented in C++. The

TTTR data consist of a stream of events; markers corresponding to the start of frames and beginning

and end of lines and photon arrival times. Each event is tagged with a ’macro’ time marker, a coarse

marker of the time since the experiment start, and photons contain ’micro’ time information about

their arrival time with respect to the last excitation pulse.

From these markers, the duration of each line, tline, the time between the start of each line, tinter-

line and the time between the frames tframe are determined. For many microscopes, only around a

third of the total line scan time is ’active.’ The photons are divided into pixels of equal duration

tpixel = tline/npixel. For realignment, the intensity of each frame in the FLIM image is reconstructed,

disregarding micro-time information. Using tline, tinterline and the image dimensions, the macro time

of each pixel can then be determined. To reduce noise, an elliptical Gaussian filter with a user-con-

trollable radius in the fast scan axis and a 1px radius in the slow scan axis is applied. This filter is

applied to the reference frame and each frame used for realignment but not to the final, realigned

data.

Estimation of sample motion
For each reconstructed frame, we aim to determine the motion during that frame with respect to a

user selectable reference frame. We model the sample displacement D tð Þ using a series of n vectorial
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displacements r ið Þ
� 	

equally spaced over the frame time tframe and assume that the sample moves

linearly between these displacements. The sample displacement at time t is then

D tð Þ ¼ r ið Þ þ r iþ1ð Þ � r ið Þ
� �

t� tið Þ
n� 1

tframe

: (1)

For a given set of displacements, we can reconstruct the image using subpixel interpolation. For

each pixel in the displaced image I
~

, the intensity is given by

I
~

x;y; zð Þ ¼
i¼0;1

P

j¼0;1

P

k¼0;1

P

w ið Þ
x w jð Þ

y w kð Þ
z I x þ dx þ i; y þ dyþ j; zþ dzþ k

� �

(2)

where

t¼ x � tpixel þ y � tline þ tinterlineð Þþ z � tframeð Þ

dx;y;z ¼ Dx;y;z tð Þ
�

c; w0

x;y;z ¼ 1�Dx;y;zþ Dx;y;z tð Þ
�

c; w1

x;y;z ¼ 1�w0

x;y;z (3)

Note that, unlike the final reconstructed FLIM data, this is not an intensity preserving transforma-

tion; instead of displacing each pixel in the input image (potentially leaving gaps in the output image

due to motion), we attempt to estimate the intensity for every pixel in the output image. This gives a

smoother error function and so improves the convergence.

We wish to determine the optimal set of displacements r ið Þ
� 	

that minimise the sum of square E

error between the reference image and the displaced image. We use a variant of the Lucas-Kanade

algorithm (Baker and Matthews, 2004). The error function is given by

E pð Þ ¼
X

x;y;z

I
~

x;y; z;pð Þ�T x;y; zð Þ
� �2

: (4)

Where p¼ r 1ð Þ
x ; r 1ð Þ

y ; r 1ð Þ
z . . . r nð Þ

x ; r nð Þ
y ; r nð Þ

z

n o

is a vector of the fit parameters. We use a trust region

algorithm (Byrd et al., 2000) to iteratively minimize the error E. In the trust region method, we use a

quadratic approximation to the error function and take steps within a trusted region. The size of the

trusted region, D is expanded or reduced depending on how well the actual reduction in the error

function agrees with the predicted reduction. To determine the k+1th step, Dp, we need to solve the

sub problem

p
min Ek þrET

k pþ
1

2
pTHkp

� �

s:t: pk k<Dk (5)

Where Ek is the value of the error function at the kth step, rE and H and are the Jacobian and

Hessian of the error function respectively. We solve the trust region problem using the approach

described by Nocedal and Wright (Nocedal and Wright, 1999) using the open source dlib

(King, 2009) implementation.

Using this algorithm, we require analytical estimates of the Jacobian and the Hessian of the error

function (Equation 4) at each step. Using the formulation above the Hessian depends on the last dis-

placement parameters and so must be recomputed at each step. This imposes a significant compu-

tational burden. Instead of displacing the image to match the reference at each step, we can

conceptually imagine displacing the reference to match the last shifted image. We then invert the

displacements and apply them to the image and iterate. This approach is known as the ’inverse com-

positional’ approach (Baker and Matthews, 2004). In this formulation, the error function for the

update step Dp is

E
0

pþDpð Þ ¼
X

x;y

I
~

x;y;pð Þ�T
~

x;y;Dpð Þ
� �2

: (6)

This formulation has been demonstrated to be equivalent to the conventional Lucas-Kanade

approach (Baker and Matthews, 2004) in terms of convergence, but significantly reduces the

computational complexity of each update step.
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The Jacobian rE0 w.r.t the parameter updates is given by

rE
0

¼
X

x;y;z

2 �
qT
~

x;y; z;Dpð Þ

qDp
� I

~

x;y; z;pð Þ�T
~

x;y; z;Dpð Þ
� �

: (7)

To first order, the derivative of the template image with respect to the parameters is given by

qT
~

x;y; z;Dpð Þ

qDp
»rT x;y; zð Þ �

qD x;y; zð Þ

qp
(8)

Where rT ¼ qT
qx
; qT
qy
; qT
qz

� �

is the gradient of the template image. For the model of motion described

above, the partial derivatives of the displacements with respect to p are given by

qDi x;y; zð Þ

qik
¼

1� t�tkð Þ n�1ð Þ
tframe

tk<t�tk+1
t�tkð Þ n�1ð Þ

tframe
tk-1<t�tk

0 otherwise

8

<

:

; i2 x;y; zf g

qDi x;y; zð Þ

qjk
¼ 0; i; j; z2 x;y; zf g; i 6¼ j 6¼ k (9)

extending the formulation of Greenberg (Greenberg and Kerr, 2009). The Hessian matrix is given

by

H ¼
X

x;y;z

rT
qD

qp

� �T

rT
qD

qp

� �

(10)

Since the Hessian does not depend on the current values of the parameters, it may be precom-

puted and reused at each iteration, and indeed between frames. This means that the update step

may be performed efficiently, even for relatively large images or numbers of realignment points.

Using this formulation, the following parameters may be computed in advance

1. The gradient images qT
qx
, qT
qy

and qT
qz
of the template image T.

2. The Jacobian of the displacements qD
qp

(Equation 9).

3. The steepest decent images rT qD
qp
.

4. The Hessian H (Equation 10).

The trust region algorithm is performed iteratively until the change in the error function is below

a certain threshold, in this case DE<10�5.

Exploiting structure in the hessian matrix
The computational complexity of computing the error value and the Hessian is O npx

� �

. We note that

the particular form of the Jacobian (Equation 6) means that the Hessian is relatively sparse; increas-

ingly so as the number of parameters increases since the displacement of distant points do not

interact.

The computational complexity of each step in the trust region algorithm is dominated by the

Cholesky factorization of the Hessian matrix, with is O m3ð Þ »O n3px

� �

, since the number of displace-

ment points required scales approximately linearly with the number of pixels for a given motion pro-

file. For 2D problems, the former calculation dominates the computation time, however for even

moderate 3D problems, the Cholesky factorization quickly dominates the computation time. For the

3D z-stack timeseries analysed in Figure 7, with 51 slices, 51 time points and 15 points per frame

(giving 2295 parameter in total), factorisation uses approximately 90% of the computational effort

and the realignment process takes 1.5 hours (Figure 7—figure supplement 1C).

Greenberg and Kerr (2009) organise the parameters p ¼ r ið Þ
x

� 	

; r ið Þ
y

n on o

. In this case, the non-

zero entries of the Hessian are organized as shown in Figure 7—figure supplement 1. In this case,

the non-zero entries are distributed throughout the Hessian. However, if the parameters are
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organized according to p ¼ r 1ð Þ
x ; r 1ð Þ

y ; r 1ð Þ
z . . . r nð Þ

x ; r nð Þ
y ; r nð Þ

z

n o

then the non-zero entries appear as shown

in Figure 7—figure supplement 1B. In this case, the matrix takes a banded structure with band-

width b ¼ 6. Matrices of this form can be factorized significantly more efficiently (Martin and Wilkin-

son, 1965). We use the lapack routine pbtrf with computational complexity O bm2ð Þ. Using banded

factorisation, the realignment of the data in Figure 7 takes 7.5 minutes (Figure 7—figure supple-

ment 1B) and, in this case, the computation time is dominated again by the computation of the error

value and Hessian matrix.

GPU acceleration
Computation of the error value (Equation 6) and the Jacobian (Equation 7) at a particular set of dis-

placements is a highly parallel task as the contribution from each pixel can be calculated indepen-

dently. This task is particularly suited for computation on a GPU for a number of reasons: (1) modern

GPUs implement 3D interpolation (Equation 2) in hardware, a task which can be relatively inefficient

to perform on CPUs due to the random and highly strided nature of the memory access pattern. (2)

The host-GPU memory transfer during the computation (often the rate limiting step for GPU acceler-

ation) is low as the images can be stored on the GPU at the start of the optimization and do not

need to be subsequently updated.

We have implemented a GPU version of the code for calculating both these values. The parame-

ters which may be computed in advance for each optimization are computed on the CPU and trans-

ferred to the GPU. Equations 6 and 7 are implemented on the GPU and a GPU parallel reduction

used to compute the respective sums. Since the steepest decent images rT qD
qp

can be very large for

a 3D problem (e.g. over 2 Gb for the problem shown in Figure 7, too large to fit in many consumer

GPUs) these values are streamed to the GPU from the host in parallel with the computation. This

allows even large problems to be computed on low to mid-range GPU hardware with 1-2 Gb of

memory. Using the GPU routines, realignment of the data in Figure 7 is reduced by over a factor of

2, to 3.4 minutes.

Thresholding based on image correlation
To assess the quality of the motion estimation, the correlation coefficient r between each motion

corrected frame I
~

and the reference frame R is computed according to

r¼

P

x;y;zð~Iðx;y; zÞ� j ~I j ÞðRðx;y; zÞ� j R j Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½
P

x;y;zð~Iðx;y; zÞ� j ~I j Þ2�
q

½
P

x;yðRðx;y; zÞ� j R j Þ2�
(11)

where �j j denotes the image mean. A threshold rthresh value may be set such that any motion cor-

rected frames where r<rthresh are excluded from the reconstructed image. This allows the user to

exclude frames where the motion could not be corrected, or the sample has temporarily moved out

of the field of view, from the final reconstruction.

Initial displacement estimates
In any non-linear estimation problem, judicious selection of the initial parameters is important to

ensure the global minimum is obtained. Here, we evaluate two potential initial parameter sets. The

set yielding the lowest error is used. First, a null displacement r ið Þ
x;y;z ¼ 0 is evaluated. Then a three

dimensional rigid body displacement estimated using a 3D version of the phase correlation algo-

rithm (Foroosh et al., 2002) is evaluated according to Algorithm 1.

Algorithm 1. Rigid body estimation of displacement

1. Apply a 3D Hanning window to each stack to reduce edge artefacts.
2. Compute the discrete Fourier transform of each image, FA and FB respectively, using the fast

Fourier transform algorithm.
3. Compute the cross power spectrum R,
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R¼
FA �F

0

B

FA �F
0

Bj j

4. where 0 denotes complex conjugation and � element-wise multiplication.
5. Determine the sub-pixel location of the maximum position of the peak value of the cross-

power spectrum by interpolation around the peak.
6. Determine the translation between the two images given by the displacement of the peak

location from the origin.

Reconstruction of motion compensated FLIM data
After computing the displacement estimates, the TTTR data are reconstructed into histogrammed

FLIM data taking the estimated sample motion into account. Each photon arrival is assigned to a

pixel coordinate x; y; zð Þ based on the frame, line and (if they exist) pixel markers in the dataset. The

photon is then reassigned to the coordinate x� Dx tð Þ; y� Dy tð Þ; z� Dz tð Þ
� �

using the final displace-

ment estimates for the current frame, where t is the macro time relative to the start of the frame. If a

correlation threshold has been set, photons arriving during frames where the correlation coefficient

is less than the threshold value will be discarded. The sample motion leads to an effective variable

integration time across the image. To correct for this, we calculate the integration time by integrat-

ing the dwell time in each pixel across the image. This integration time image is saved alongside the

data and used to correct the intensity merged FLIM images. This corrects for the variable integration

time without altering the photon statistics in the data used for analysis.

Loading intensity fluorescence imaging data
OME-TIFF data (Goldberg et al., 2005) is supported using the OME files C++ implementation

(https://github.com/ome/ome-files-cpp), a number of standard microscopy data formats are sup-

ported using libbioimage (https://bitbucket.org/dimin/bioimageconvert/). Imaris data are supported

using a custom reader implemented in C++ using the HDF5 library. Motion corrected data can be

saved to an OME-TIFF or Imaris file respectively.

Simulation of motion distorted time tagged FLIM data
Monte Carlo simulations of 2D TTTR data distorted by sample motion were performed using a sub-

set of a high SNR, motion-free intensity image Is of ex vivo pancreas (shown in Figure 1). The sample

motion was set to a sinusoidal motion such that

Dx tð Þ ¼ Acos �ð Þ sin 2pftð Þ

Dy tð Þ ¼ A sin �ð Þ sin 2pftð Þ

where A and f are the sample amplitude and frequency respectively while � is the angle of the

motion with respect to the scanner fast axis. A TTTR event stream was simulated according to Algo-

rithm 2.

Algorithm 2. Simulation of TTTR data

1. Start at pixel x; y ¼ 0 at macro time t ¼ 0.
2. Determine the sample intensity l at the current pixel, accounting for the sample motion

according to l ¼ a � IS xþ Dx tð Þ; yþ Dy tð Þ
� �

, where a is an intensity scaling factor controlling

the simulated count rate.
3. Determine the number of photons arriving at this pixel, N, drawn from a Poisson distribution

with mean l.
4. For each photon,

1. Determine the photon arrival time, drawn from the sum of value drawn from the sum of
values drawn from an exponential distribution with mean parameter t and a Gaussian dis-
tribution representing the instrument response characterized by � ¼ 1:0 ns and s ¼ 100 ps

2. Determine the macro arrival time by evenly spacing the N photons across the pixel time.
3. and add to the event stream.

5. Increment the macro time t by the pixel time
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6. Move to the next pixel
1. If moving to the next row

1. Insert a line end marker,
2. increment the macro time by the interline time,
3. insert a line start marker

2. If moving to the next frame
1. Insert a line end marker,
2. increment the macro time by the interface time,
3. insert a frame start marker,
4. insert a line end marker

7. Repeat for the specified number of frames.

All simulations shown in Figure 1 were performed using a frame size of 256 � 256 pixels. The pixel

time and interline time were set such that line rate was 1 kHz with a duty cycle of 0.33 and the inter-

frame time was set equal to the interline time, approximately matching the scan pattern of the Leica

SP8 scanner. The intensity was scaled to produce an average count rate of 1 MHz and 50 frames

were generated per image.

Animal experiments
Animals were kept in conventional animal facilities on a 12 hr day-night cycle and fed ad libitum. All

experiments were carried out in compliance with the Australian code for the care and use of animals

for scientific purposes and in compliance with Garvan Institute of Medical Research/St. Vincent’s

Hospital Animal Ethics Committee guidelines (ARA 13/17, 16/13, 15/29).

For in vivo Rac1 activity experiments, mice ubiquitously expressing the Raichu-1011X ECFP-SEYFP

Rac1 biosensor (Itoh et al., 2002), generated previously (Johnsson et al., 2014), were used.

Human experiments
Experiments conducted on healthy human subjects using the DermaInspect were performed with

informed consent and approval from the University of Queensland Human Research Ethics Commit-

tee (approval number 2007/197–2008001342). Experiments conducted on healthy human subjects

using the hand held multiphoton system were performed with informed consent and approval from

Imperial College London (approval number 14IC2364).

Cell culture
Primary KPC cancer cells isolated from Pdx1-Cre; LSL-KRasG12D/+; LSL-Trp53R172H/+ tumours

(Morton et al., 2010a) were engineered to express a Src-FRET biosensor (Wang et al., 2005) modi-

fied to replace ECFP with mTurquoise2 using a transposon system (Vennin et al., 2017;

Wilson et al., 2007). KPC cells were cultured in DMEM (Gibco) supplemented with 10% FBS and 1%

glutamine, penicillin/streptomycin in 5% CO2.

Small animal surgery and imaging
Implantation of and imaging through optical windows
The application of optical imaging windows in in vivo imaging and their implantation into the perito-

neal wall were described in detail previously (Ritsma et al., 2013). Prior to the surgery and up to a

mininum of 72 hr afterwards the mice were kept on 5 mg/kg of the analgesic Carprofen (Rimadyl) in

the drinking water. Mice were weaned of the analgesic 24 hr before imaging took place. Mice were

administered buprenorphine (0.2 mg/kg) s.c. immediately prior to and 6 hr post-surgery for further

pain control. The imaging window consists of a titanium window ring, onto which a glass coverslip

with a diameter of 12 mm was glued with cyanoacrylate one day prior to surgery. The incision site

was cleared of hair by shaving and depilation and disinfected with 0.5% chlorhexidine in 70% etha-

nol. An incision was made down the midline of the peritoneum for imaging of the small intestine or

to the left of the midline of the mouse for the imaging of the pancreas. After blunt dissection of the

skin surrounding the incision, a purse string suture (Mersilk, non-absorbable silk based) was placed

through the skin and muscle of the abdominal wall. To reduce peristaltic and respiration-associated

movement of the organs to be imaged in the peritoneum, a drop of cyanoacrylate was placed on

the inner ring of the abdominal imaging windows and the organ of interest immobilized at the edge.

Positioning was done using sterile cotton gauzes. The windows were then inserted into the incisions
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with the skin and the muscle layer placed into the lateral groove of the windows. Finally, the suture

was tightened and firmly tied off at the ends. The mice were allowed to recover from the surgery for

at least 72 hr, actively foraging, grooming and feeding within minutes after being removed from the

anaesthesia respirator. Mice were anesthetized with 3% isoflurane, supplemented with 100% oxygen

and were imaged under 1–2% isoflurane supplemented with 100% oxygen on a 37˚C heated stage.

Intrasplenic injection of cancer cells
Prior to intrasplenic injection, abdominal optical windows were implanted in BALB/c-Fox1nuAusb

mice on top of the liver, which were subsequently allowed to recover for 1 week. For intrasplenic

injection experiments, KPC cells expressing the Src biosensor (3 � 106 cells/50 mL HBSS) were

injected into the spleens of BALB/c-Fox1nuAusb mice (anesthetized with 3% isoflurane, O21 L/min,

vacuum was used constantly to remove excess of O2) as previously described (Soares et al., 2014).

Mice were subjected to three rounds of priming with 100 mg/kg Fasudil (HA-1077, Jomar Life

Research) in saline buffer (or vehicle control) every 12 hr and by oral gavage before intrasplenic injec-

tion, and two subsequent rounds of priming with Fasudil to mimic systemic ROCK inhibition during

metastatic spread of KPC cells (twice daily administration by oral gavage). The mice were imaged at

4, 8, 16 and 24 hr after injection and sacrificed after the final imaging time point. See Figure 5C for

treatment timeline.

Immunisation and antigen trafficking
Kaede OT2 T cells were enriched by negative depletion with biotinylated antibodies for anti-B220

clone RA3-6B2, anti-CD11b clone M1/70, anti-CD11c clone HL3, anti-CD8 clone 53–6.7, and tdto-

mato SWHEL B cells (Phan et al., 2003) were enriched by negative depletion with biotinylated anti-

bodies for anti-CD11b, anti-CD11c, anti-CD4 clone GK1.5, anti-CD43 clone S7 (all from BD

Bisociences) and MACs anti-biotin magnetic beads (Miltenyi). 2.5 � 105 B220+ HEL+ SWHEL tdTo-

mato B cells and V
a

2+ CD4+ Kaede OT2 cells were adoptively transferred into C57BL/6 recipients

and immunised the next day with 20 mg HEL-OVA in Sigma Adjuvant System (Sigma) injected subcu-

taneously in the lower flank and tail base. To label SCS macrophages, we injected CD169 clone Ser-

4 (UCSF Hybridoma Core) conjugated to Alexa Fluor 680 (Invitrogen), 12 hr before imaging. Mice

were imaged 7 days after immunisation.

Ex vivo tissue drug treatment
Sections of freshly excised and flushed duodenal tissue were treated with 1 mM (-)-Scopolamine-N-

butylbromide (scopolamine, Sigma-Aldrich, S7882) in PBS for 30 mins at 37˚C or 200 nM phorbol

myristate acetate (PMA, Sigma-Aldrich, P8139) for 15 mins.

Image acquisition
Small animal and ex vivo FLIM imaging
Multi-photon FLIM data were acquired using an inverted Leica DMI 6000 SP8 confocal microscope

using a 25 � 0.95 NA water immersion objective on an inverted stage. The sample was excited using

a Ti:Sapphire femto-second laser (Coherent Chameleon Ultra II) operating at 80 MHz and tuned to a

wavelength of 840 nm. A RLD HyD detector was used with a 483/32 nm bandpass emission filter for

FRET biosensor imaging. FLIM data were recorded in single channel mode using a Picoquant Pico-

Harp 300 in TTTR mode or using a Cronologic TimeTagger4-2G. For Src biosensor imaging, photon

counting was performed in three spectral channels, 435/40, 483/32 and 525/50 nm, using a Crono-

logic TimeTagger4-2G. Detailed acquisition parameters for all imaging experiments are given in

Supplementary file 1. Imaging was performed using a heated stage maintained at 37˚C.

Human skin imaging, DermaInspect
Depth resolved in vivo multiphoton tomography of human skin was performed with a DermaInspect

system (JenLab GmbH, Jena, Germany), illuminated with an ultrashort (85 femtosecond pulse width)

pulsed mode-locked 80 MHz Ti:Sapphire laser (MaiTai, Spectra Physics, Mountain View, USA), tuned

to excitation at 760 nm. Emission was collected in four spectral channels using cooled PMTs (PMC-

100 Becker and Hickl, Berlin, Germany) with the following spectral filters: 350–450 nm (Channel 1);

450–515 nm (Channel 2); 515–620 nm (Channel 3); 620–670 nm (Channel 4). A TCSPC system
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(SPC830, Becker and Hickl, Berlin, Germany) was used to perform FLIM measurements in FIFO

mode. A 40 � NA 1.30 Plan-Neofluar oil-immersion (Carl Zeiss, Germany) was used with an in vivo

adaptor designed to hold a coverslip against the skin. The space between the in vivo adaptor and

the objective lens was filled with index-matching oil. The first spectral channel, 350–450 nm, was

used for FLIM analysis.

Human skin imaging, handheld multiphoton
Autofluorescence images of human skin were acquired using a handheld multiphoton system as pre-

viously described (Sherlock et al., 2018). Briefly, the sample was excited using a Ti:Sapphire femto-

second laser (Spectra Physics Mai Tai HP) operating at 80MHz tuned to a wavelength of 760 nm cou-

pled to the imaging head through 4 m of NCF. The pulse FWHM at the output of the NCF was

approximately 150 fs (Sherlock et al., 2016). The sample was imaged using a 60 � 1.2 NA water

immersion microscope objective lens (Olympus UPLSAPO60XW). Emission light was separated using

a dichroic filter with centre wavelength 705 nm (Smock FF705-Di0) and relayed to a hybrid PMT

(Becker and Hickl HPM-100–40) using a fibre bundle. FLIM data were recorded using a Becker and

Hickl SPC-830 TCSPC card in FIFO (TTTR) mode. Multiphoton images were acquired with a line scan

rate of 256 Hz, allowing a 256 � 256 pixel images to be acquired in 1 s. The system incorporates a

hardware axial motion compensation system actively moving the objective using a piezo actuator (PI

P-725 PIFOC) in response to the sample axial displacement tracked employing an optical computed

tomography (OCT) system operating using a super luminescent diode with centre wavelength of 930

nm (Supremum 930-B-I-10-PM) (Sherlock et al., 2015). A volunteer’s dorsal forearm was imaged

with their arm lying on a flat rigid surface and with the scanner handheld such that the objective was

approximately vertical (Sherlock et al., 2018). Some of the weight of the scanner was taken by the

operator and some was taken by the scanner resting gently on the arm. To introduce axial motion,

the volunteer continuously opened and closed their fist with a period of approximately 0.9 s during

the acquisition which introduced a change in pressure between the skin and the front surface of the

scanner due to the change in the size of the muscle beneath.

Intravital lymph node imaging
Intravital two-photon microscopy was performed as previously described with some minor changes

(Chtanova et al., 2014). Briefly, mice were induced with 100 mg/kg ketamine, 5 mg/kg xylazine and

maintained on 1–2% isoflurane supplemented with 100% oxygen for anesthesia. Mice were kept

warm on a custom heated SmartStage (Biotherm) set to 37˚C. The inguinal lymph node was mobi-

lised along with the intact inguinal ligament in a skin flap and fixed on a base of thermal conductive

T-putty (Thermagon Inc.) with VetBond tissue glue (3M). The cortical surface of the lymph node was

exposed by microdisseting the skin and overlying fat and fascia layers. Imaging was performed on a

Zeiss 7MP two-photon microscope (Carl Zeiss) powered by a Chameleon Vision II ultrafast Ti:Sap-

phire laser (Coherent Scientific). Images were acquired with a W Plan-Apochromat 20 � 1.0 NA DIC

(UV)Vis-IR water immersion objective. Excitation wavelengths used were 870 nm, to detect KD green

and tdtomato red. Fluorescent images were acquired with a LBF 760 and BSMP 760 to enable

detection of far-red signals. Non-descanned detectors were SP 485 (blue; SHG), BP 500–550 (green;

KD), BP 565–610 (red; tdTomato) and BP 640–710 (far-red; Alexa Fluor 680).

Data analysis
Lifetime analysis of FLIM data
Raw and aligned FLIM data were analyzed in FLIMfit (Warren et al., 2013) using a maximum likeli-

hood estimator. A 3 � 3 smoothing kernel was applied to the data before analysis. Instrument

response functions (IRFs) were determined using a reference dye measurement as previously

described (Conway et al., 2017). The data were fitted to a single exponential model to determine

the average fluorescence lifetime.

Complex donor FRET analysis of Rac1 biosensor intestinal crypt data
The data were fitted to a FRET model accounting for the complex decay profile of the ECFP donor

as presented in (Warren et al., 2013). The complex decay of ECFP originates in the existence of

two major conformations of ECFP with different lifetimes (Demachy et al., 2005). In this model, we
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assume the ECFP Rac1 biosensor exists in two conformations, associated with high and low FRET

activity respectively. In each of these conformations, there is a mix of ECFP conformations, which do

not affect the overall biosensor conformation. In this model, the FRET efficiencies for the two ECFP

conformations are linked by

E1

1�E1

¼
t1

t2

�
E2

1�E2

(12)

and so the total decay for a given biosensor conformation is

F t;E1ð Þ ¼
X

2

i¼1

bi exp ti 1�Eið Þð Þ (13)

We can then fit our data to a model consisting of two biosensor conformations with a high FRET

activity EH
1
and low FRET activity EL

1
respectively

I t;EH
1
;EL

1

� �

¼ I � gHF t;EH
1

� �

þ 1�gHð ÞF t;EL
1

� �� �

(14)

where gH is the fraction of biosensor in the active conformation in a given pixel.

To determine the lifetimes of the two ECFP conformations, we made time resolved measure-

ments of KPC cells expressing ECFP alone. By fitting globally to a bi-exponential decay, we found

ECFP was best fit by two components t1 ¼ 1330 ps and t2 ¼ 3350 ps with fractional contribution of

the first component b1 ¼ 0:434. We fixed these values and fitted the measured Rac1 FRET data to

the model described in Equation 14 globally to obtain the values of the FRET efficiency for the

high- and low-activity conformations, EH
1
and EL

1
. We used these values to determine the fraction of

active biosensor in each pixel.

Phasor analysis of FLIM data
Phasor analysis of FLIM data was performed following (Digman et al., 2008). The s and g coordi-

nates of the phasor plot for the decay I tð Þ in each pixel were computed according to

g !ð Þ ¼

Pnt

i¼1
I tið Þcos 2pt

Tð Þ
Pnt

i¼1
I tið Þ

;

s !ð Þ ¼

Pnt
i¼1

I tið Þ sin 2pt
T

� �

Pnt
i¼1

I tið Þ
(15)

where T is the laser repetition period and nt the number of time points. For display and back gating,

the phasor values were smoothed using a 5 � 5 uniform kernel. To generate the phasor plot, the

phasor values for each pixel in an image were histogrammed into a 256 � 256 matrix with limits

0� g; s� 1. The histogram was weighted according to the intensity in each pixel.

Hyperspectral unmixing of lifetime data
Using phasor analysis as described above, regions associated with liver cells, blood, collagen and

the Src biosensor respectively were identified. For each region, the pixels were summed and a multi-

spectral ‘pattern’ was generated by fitting the summed data in each spectral channel to a 4-compo-

nent exponential model Pt;l A; tð Þ.

Pt;l A;tð Þ ¼ g t;lð Þ

X

4

i¼1

Al;i exp �
t

tl;i

� �

(16)

Where g t;lð Þ is the instrument response function, Al;i is the contribution of the ith lifetime compo-

nent tl;i in channel l. To identify the relative abundance of each component using these pre-deter-

mined patterns, non-negative least squares fitting was performed using each of the patterns for

each pixel using the LAPACK routine ‘nnls’ (Lawson and Hanson, 1995) to determine the solution

to the linear problem
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where yt¼i;l¼j is the intensity of the ith time point

and jth channel and gi � 0 is the abundance of

pattern P
ið Þ
t;l in the pixel.

Rac1-GTP immunohistochemistry
The tissue was fixed in 10% buffered formalin solution overnight and embedded in paraffin using the

swiss roll method (Bialkowska et al., 2016). Cut sections were de-paraffinised using xylene and

rehydrated in graded ethanol washes. Antigen retrieval was performed in citrate buffer (S1699,

pH = 6) for 30 min at 99˚C and allowed to cool to RT for another 30 min. Endogenous peroxidase

activity was subsequently quenched in 1.5% H2O2 before the application of 10% normal goat serum

(NGS) in protein block (Dako) for 1 hr at RT. Slides were incubated overnight at 4˚C with primary

antibody (active Rac1-GTP, 1:400, NewEast Biosciences) in 10% NGS in protein block prior to apply-

ing secondary HRP-coupled anti-mouse antibody (Envision). Detection was performed with diamino-

benzidine (DAB) for 5 min and slides counterstained with haematoxylin. Slides were digitalised at

20 � magnification using a slide scanner (AperioCS2, Leica Biosystems). Data were analysed using

QuPath (Bankhead et al., 2017). DAB and haematoxylin optical densities were computed for each

pixel using colour deconvolution and regions containing crypts were manually identified. Nuclei

within these regions were identified automatically using watershed cell detection based on the hae-

matoxylin counterstain. Cell regions were then segmented by dilating the nuclear detections by 5

mm. The average DAB optical density was computed for each cell. These values were then averaged

across each sample for n = 3 mice.

Software availability
Galene is provided as an open source package with a graphical user interface and is available for

download at https://galene.flimfit.org/ alongside user documentation, and is integrated directly into

the FLIMfit analysis software (Warren et al., 2013). This software may be directly applied to data

acquired on commercial microscope systems. The source code is available under the GPLv2 license

at https://github.com/flimfit/Galene (copy archived at https://github.com/elifesciences-publications/

Galene). The executables, manual and source code used in this manuscript are attached as Supple-

mentary files. A tutorial screencast documenting the use of Galene is shown in Video 6.
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Thévenaz P, Ruttimann UE, Unser M. 1998. A pyramid approach to subpixel registration based on intensity. IEEE
Transactions on Image Processing 7:27–41. DOI: https://doi.org/10.1109/83.650848, PMID: 18267377

Vennin C, Chin VT, Warren SC, Lucas MC, Herrmann D, Magenau A, Melenec P, Walters SN, Del Monte-Nieto G,
Conway JR, Nobis M, Allam AH, McCloy RA, Currey N, Pinese M, Boulghourjian A, Zaratzian A, Adam AA, Heu
C, Nagrial AM, et al. 2017. Transient tissue priming via ROCK inhibition uncouples pancreatic cancer
progression, sensitivity to chemotherapy, and metastasis. Science Translational Medicine 9:eaai8504.
DOI: https://doi.org/10.1126/scitranslmed.aai8504, PMID: 28381539

Vercauteren T, Perchant A, Malandain G, Pennec X, Ayache N. 2006. Robust mosaicing with correction of
motion distortions and tissue deformations for in vivo fibered microscopy. Medical Image Analysis 10:673–692.
DOI: https://doi.org/10.1016/j.media.2006.06.006, PMID: 16887375

Wang B, Kunze WA, Zhu Y, Huizinga JD. 2008. In situ recording from gut pacemaker cells. Pflügers Archiv -
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