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Summary 15 

The ability to relate geographic differences in population trends to individual demographic 16 

processes is largely limited by the logistic and financial commitments associated with 17 

conducting long-term, population-specific studies. Consequently, many populations and 18 

species lack the empirical evidence of population change that is required to support 19 

evidence-based policy action. Lower intensity mark-recapture studies, such as those 20 

undertaken by citizen scientists, provide an opportunity to improve the spatial representation 21 

of survival estimates for birds. Colonial breeding makes seabirds particularly suited to this 22 

because, for many species, large numbers of breeding birds and chicks can be located 23 

relatively easily. We conducted a sensitivity analysis that evaluated the statistical power 24 

associated with using different mark-recapture survey designs to estimate a fixed “true” 25 

survival rate and detect sources of temporal variation and individual heterogeneity within the 26 

population. Isolating temporal variation with a good degree (90%) of certainty required the 27 

highest levels of survey effort. Based on the assessed survey designs, we recommend 28 

studies that have a ten-year trajectory and a recapture rate of 0.6, aim to mark at least 200 29 

new adults per year. The recommended number of marked individuals will decrease if it is 30 

possible to achieve higher rates of recapture. Lower rates of juvenile survival and delayed 31 

reproduction mean that seabird mark-recapture survey designs that target both chicks and 32 

adults offer only marginal improvements in resolving the survival rates of adults, when 33 

compared to designs targeting adults only. However, collecting juvenile mark-recapture data 34 

provides access to age-specific vital rates that are also valuable for assessing the population 35 

dynamics of seabirds. Implementing minimum effort guidelines potentially enables the 36 
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effective management of smaller mark-recapture studies, thus minimising the risk that 37 

studies fail to achieve the data conditions necessary for robust estimation of survival rates.  38 

 39 

Keywords 40 

Mark-recapture; Long-term monitoring; Sampling protocol; Survey design; Power analysis; 41 
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 43 

Introduction 44 

Intraspecific variation in population trends is widespread, however few species have been 45 

studied in sufficient detail to robustly examine how geographic differences relate to individual 46 

demographic processes, such as survival and fecundity (but see Dhondt 2001, Frederiksen 47 

et al. 2005, Saracco et al. 2012, Robinson et al. 2014). Relying on abundance (count) data 48 

to understand the complex and dynamic processes that generate population dynamics may 49 

obscure key processes (Weegman et al. 2016). Furthermore, populations and species not 50 

included in long-term monitoring programs are likely to lack the scientific evidence of decline 51 

required to support evidence-based policy actions. Consequently, there is a requirement to 52 

explore methodologies that expand spatial and taxonomic representation through data 53 

collection and statistical imputation. 54 

 55 

Mark-recapture surveys apply unique marks or tags to individuals in order to gather 56 

longitudinal data that can be used to estimate survival probabilities (Lebreton et al. 1992), 57 

and identify drivers of change, such as climate, anthropogenic pressures and conservation 58 

measures (Grosbois et al. 2008, Frederiksen et al. 2014, Chevallier et al. 2015). To 59 

implement these surveys typically requires large logistic and financial commitments that limit 60 

application to a small number of sites where professional researchers conduct intensive 61 

fieldwork (Clutton-Brock and Sheldon 2010). Consequently, the spatial representation of this 62 

vital rate is often limited, e.g. the four UK ‘key sites’ monitored as part of the Seabird 63 

Monitoring Program (Harris 1989; Fig. 1). In contrast, estimates of abundance and fecundity 64 

are more readily available because these metrics require less skilled effort to collect (e.g. 65 

Mavor et al. 2006).  66 

 67 

Lower intensity mark-recapture studies, such as those undertaken by citizen scientists, 68 

provide an opportunity to improve the spatial representation of survival estimates for birds 69 

(Horswill et al. 2016; Fig. 1). Seabirds are particularly suited to this technique because, as 70 

colonial species, large numbers of breeding birds and chicks can potentially be located 71 

relatively easily. As long-lived and late-maturing species, the population growth rate of 72 

seabirds is particularly sensitive to variation in adult survival rates (Croxall and Rothery 73 
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1991). Furthermore, inter-population differences in demographic parameters and population 74 

growth rates are reported (Frederiksen et al. 2005). Having population-specific demographic 75 

information provides a solid base for conducting scientifically robust and defensible 76 

population assessments. Thus, improved spatial representation of survival estimation has 77 

the potential to facilitate empirical demographic-based assessments in regions that are 78 

currently data limited. This is particularly pertinent for the large and expanding offshore 79 

renewables industry that is required to fully assess any negative effects to local seabird 80 

populations, but is limited to spatially restricted datasets and simplistic modelling approaches 81 

(Green et al. 2016, Horswill et al. 2017). 82 

 83 

Mark-recapture surveys have three key components that can be varied in order to set the 84 

level of resources required. These include 1) the size of the sample population, 2) the 85 

recapture (or resighting) rate, and 3) the survey duration (Yoccoz et al. 2001). It is critical 86 

that low-intensity mark-recapture surveys are carefully designed and achieve effort levels 87 

that support robust inference of survival and sources of variation (Yoccoz et al. 2001, 88 

Reynolds et al. 2011). For example, mark-recapture models make specific assumptions 89 

about intra-specific variation, or heterogeneity, in survival and recapture rates (Lebreton et 90 

al. 1992). Survey designs that do not allow these sources of variation to be identified risk 91 

goodness-of-fit problems during model development, resulting in biased estimates of 92 

survival. Sources of survival heterogeneity include senescence and the presence of transient 93 

individuals in the marked population (Pradel et al. 1997). Meanwhile, recapture 94 

heterogeneity is typically attributed to either trap-shyness, i.e. where individuals avoid 95 

recapture, or trap-happiness, i.e. where individuals are easier to locate at recapture. 96 

 97 

In this study, we conducted a sensitivity analysis to evaluate how different designs of mark-98 

recapture surveys may influence the estimation of a constant rate of survival, as well as the 99 

ability to detect temporal variation and individual heterogeneity within the population. The 100 

aim is to provide minimum guidelines of field effort that can be used to manage smaller 101 

projects that monitor survival rates, such as those reliant on citizen scientists. We examined 102 

this based on three strategies: (1) changing the number of adults and chicks marked at each 103 

sampling interval, from hereon we consider a sampling interval to be a year; (2) changing the 104 

amount of effort applied to re-encountering (recapture or resighting) marked individuals; and 105 

(3) changing the survey duration.  106 

 107 

108 
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Methods 109 

Survey design and simulating time-series of demographic rates 110 

Data were simulated in Program Mark (White and Burnham 1999). Survey designs followed 111 

a three-stage nested design that resulted in 150 different mark-recapture protocols. Levels of 112 

field effort were selected from a citizen science mark-recapture program on seabirds 113 

administered through the British Trust for Ornithology (BTO, the Re-trapping Adults for 114 

Survival scheme, RAS, Horswill et al. 2016). Mark-recapture techniques are widely 115 

applicable to species across the nine orders of seabird: Procellariiformes (albatrosses and 116 

petrels), Sphenisciformes (penguins); Gaviiformes (loons), Podicipediformes (grebes), 117 

Phaethontiformes (tropicbirds), Charadriiformes (gulls, skua, skimmers, terns, phalaropes 118 

and auks), Pelecaniformes (pelicans) and Suliformes (frigatebirds, cormorants, gannets and 119 

boobies). However, the RAS scheme is UK focused, and at the time of publication included 120 

seabird projects on European storm petrel (Hydrobates pelagicus), Manx shearwater 121 

(Puffinus puffinus), European shag (Phalacrocorax aristotelis), black-legged kittiwake (Rissa 122 

tridactyla), black-headed gull (Chroicocephalus ridibundus), lesser black-backed gull (Larus 123 

fuscus), Arctic tern (Sterna paradisaea), common guillemot (Uria aalge), razorbill (Alca 124 

torda) and Atlantic puffin (Fratercula arctica) (Horswill et al. 2016).  125 

 126 

The range of ringing efforts achieved by projects operating under the RAS scheme was from 127 

10 to 1061 individuals per year (mean= 176 individuals, SD=265), with under half (40%) of 128 

studies achieving the mean level of ringing effort. Recapture rates achieved under the 129 

scheme were between 0.05 and 0.66 (mean=0.29; SD=0.17). RAS exclusively targets adult 130 

birds; however, in this study we also examine survey designs that target both adults and 131 

chicks, which are considered easier to catch and mark. We employed identical marking 132 

schedules for both age classes. The ten scenarios of marking effort involved five adult only 133 

set-ups: 50, 100, 200, 500 and 1000 adults per year; as well as five adult and chick set-ups: 134 

50 adults plus 50 chicks, 100 adults plus 100 chicks, 200 adults plus 200 chicks, 500 adults 135 

plus 500 chicks, and finally 1000 adults plus 1000 chicks per year. The five scenarios of 136 

recapture (or resighting) rates were 0.05, 0.1, 0.2, 0.4 and 0.6, and the three project 137 

durations were 5, 10 and 20 years (see S1 for illustration of survey designs). The simulated 138 

“true” adult survival rate (ϕ) was the mean value observed in the UK RAS program on 139 

seabirds (ϕ=0.83; Horswill et al. 2016). The simulated “true” survival rate for fledglings was 140 

the mean value reported for 16 species of seabird from NW Europe with published values 141 

(ϕ=0.56; Horswill and Robinson 2015).   142 

 143 

144 
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Mark-recapture modelling to assess statistical power 145 

All models were constructed in Program Mark using a logit link function. Models were run for 146 

100 iterations. The statistical power associated with the 150 capture-mark-recapture survey 147 

designs was examined based on its ability to resolve the fixed “true” survival rate. Accuracy 148 

was assessed using the 95% confidence interval of the estimated “apparent” survival rate, 149 

and whether this occurred within 1 or 2% of the true value. Adult only models were fitted 150 

using the ‘live recaptures (Cormack-Jolly-Seber)’ framework, whilst adult and chick models 151 

were fitted using ‘multi-state recaptures only’ models in order to account for heterogeneous 152 

recapture rates associated with delayed reproduction. In the multi-state model, state 1 153 

included all birds marked as chicks that have not yet returned to the colony (the 154 

‘unobservable state’), and state 2 included birds tagged at age 1 or above, as well as birds 155 

tagged as chicks that have since returned to the colony and are assumed to be available for 156 

recapture on an annual basis (the ‘observable state’). In the models that included individuals 157 

marked as chicks, the maximum age that juveniles return to the colony following delayed 158 

reproduction was set to the mean age of maturity across 32 species of seabird from NW 159 

Europe (4 years, Horswill and Robinson 2015). The annual transition probabilities between 160 

the ‘unobservable’ to the ‘observable’ state for individuals aged between 1 and 4 years were 161 

taken from Horswill et al. (2014). The probability of birds older than 4 years returning for the 162 

first time was fixed to a value of one, and since birds entering the observable state are then 163 

assumed to be available for recapture on an annual basis, the reverse transition back into a 164 

deferred reproduction state was fixed to a value of zero (Spendelow et al. 2002). The 165 

recapture probability of birds in the unobservable state was also fixed to zero. 166 

  167 

The ability to detect a temporal change in true adult survival was examined using the 75 168 

mark-recapture survey designs that targeted adults only; i.e. five scenarios of marking, five 169 

scenarios of recapture and three survey durations. Although the 5-year time-series are 170 

unlikely to permit reliable detection of temporal variation, we included all 75 survey designs 171 

in this analysis in order to facilitate a complete comparison between the different aspects of 172 

mark-recapture survey design. Temporal change in true survival was incorporated by 173 

simulating a step decrease half way through the time series; i.e., survival decreased from 174 

0.83 to 0.78. This change was considered large enough to result in population-level 175 

consequences, especially in a long-lived species (e.g., seabirds) but small enough to hinder 176 

detection under survey designs with low levels of field effort. Detection of individual 177 

heterogeneity in true survival rates was also examined using the same 75 survey designs. 178 

We simulated transience into the data by increasing true survival from 0.73 during the year 179 

following first release, to 0.83 from the second year onwards. This change combines the 180 

average rate of adult dispersal for 17 species of seabird in NW Europe (0.15; Horswill and 181 
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Robinson 2015), with reports that transitory individuals on average make up 7% of the 182 

population (Audouin’s gull Larus audouinii, Tavecchia et al. 2007).  183 

 184 

We assessed the ability to detect sources of temporal variation and individual heterogeneity 185 

by constructing two models under each scenario of field effort. The “reference model” for 186 

detecting temporal change included an extra parameter that allowed the estimated apparent 187 

survival rate to decrease halfway through the time series, thus allowing two rates of apparent 188 

survival. The “reference model” for detecting individual heterogeneity associated with 189 

transients included an extra parameter that allowed the estimated apparent survival rate to 190 

increase after the first year following release; i.e. thus allowing two rates of apparent 191 

survival: one lower value including transients and one higher value without transients. The 192 

“constant model” assumed that survival rates did not change with time or cohort. The 193 

estimated values of survival from the reference model and the constant model were 194 

compared using a likelihood ratio test (LRT) to assess the difference in model deviances (df 195 

= 1; Burnham and Anderson 2002). The percentage of model iterations that identified the 196 

reference model as being significantly different from the constant model is presented, and 197 

we recommend using survey designs that identify differences in ≥90% of simulations. 198 

Thresholds of ≥95% will further improve accuracy, and survey designs meeting this criteria 199 

should also be considered for feasibility. For comparative purposes, we present the mean 200 

difference in the Akaike Information Criterion (ΔAIC) between the two models, the evidence 201 

ratio, and the model likelihood for the reference model relative to the constant model in the 202 

supplementary material (S2-S3). 203 

 204 

Results 205 

For a dataset of five years, the minimum levels of field effort necessary to estimate apparent 206 

adult survival within 2% of the true value included marking 500 new adults per year with a 207 

recapture rate of 0.4 (Fig. 2A). If adults and chicks were marked, this changed to 200 adults 208 

and 200 chicks per year with a recapture rate of 0.6 (Fig. 2D). To resolve apparent adult 209 

survival within 1% of the true value with a five year time series required marking efforts of 210 

1000 adults with recapture rates of 0.6 (Fig. 2A). If 1000 adults and 1000 chicks were 211 

marked and released each year, the required recapture rate was 0.4 (Fig. 2D). It was not 212 

possible to estimate fledging year survival rates within 1% or 2% of the true value with a 5-213 

year time series. It was also not possible to identify temporal variation with greater than 90% 214 

certainty across the tested scenarios of field effort (Fig. 4A; S2). In contrast, the minimum 215 

levels of field effort required to detect individual heterogeneity in survival rates combined a 216 

marking effort of 500 new individuals per year and a recapture rate of 0.6 (Fig. 4D; S3). 217 

 218 
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For a 10-year dataset, the minimum levels of marking effort required to estimate apparent 219 

adult survival rates within 2% of the true value involved marking 50 new adults per year with 220 

a recapture rate of 0.4, or alternatively, 100 adults per year with a recapture rate of 0.2 (Fig. 221 

2B). If adults and chicks were marked, this changed to 50 adults and 50 chicks per year with 222 

a recapture rate of 0.4; 100 adults and 100 chicks per year with a recapture rate of 0.2; or 223 

200 adults and 200 chicks per year with a recapture rate of 0.1 (Fig. 2E). To increase the 224 

accuracy to within 1% of the true value, marking efforts needed to be at least 100 new adults 225 

per year with recapture rates of 0.6 (Fig. 2B), or 100 new adults and 100 new chicks per 226 

year with recapture rates of 0.6 (Fig. 2D). Estimating a constant fledging year survival rate 227 

within 2% of the true mean required survey designs to include marking efforts of 500 adults 228 

and 500 chicks per year with a recapture rate of 0.2 (Fig 3A). It was also possible to resolve 229 

apparent fledgling survival within 1% of the true value by marking 1000 chicks per year with 230 

a recapture rate of 0.4 (Fig 3A). To detect the simulated level of temporal variation with 231 

greater than 90% certainty required a marking effort of at least 200 newly marked individuals 232 

per year with a recapture rate of 0.6 (Fig. 4B; S2). The necessary levels of field effort 233 

required to detect individual heterogeneity within the population were 100 new individuals 234 

per year with a recapture probability of 0.6 (Fig. 4E; S3). 235 

 236 

For a 20 year dataset, the minimum levels of field effort required to estimate apparent adult 237 

survival rates within 2% of the true value were 50 new adults per year with a recapture rate 238 

of 0.05 (Fig. 2C). For designs targeting adults and chicks, a marking effort of 50 new adults 239 

plus 50 new chicks per year with a recapture rate of 0.05 was required. To increase this 240 

accuracy to within 1% of the true mean, survey designs based on adults needed to mark 241 

either 50 adults with a recapture rate of 0.4; 100 adults with a recapture rate of 0.2; or 200 242 

adults with a recapture rate of 0.1 (Fig. 2C). For survey designs that involved marking both 243 

adults and chicks, this decreased to 50 adults plus 50 chicks with a recapture rate of 0.2; 244 

100 adults plus 100 chicks with a recapture rate of 0.1; or 200 adults plus 200 chicks with a 245 

recapture rate of 0.05 (Fig 2F). Estimating a constant fledging year survival rate within 2% of 246 

the true mean required minimum levels of field effort to include marking 100 chicks with a 247 

recapture rate of 0.4; or 200 chicks with a recapture rate of 0.2 (Fig 3B). It was also possible 248 

to resolve apparent fledgling survival within 1% of the true value by marking 500 chicks with 249 

a recapture rate of 0.4 (Fig 3B). To detect the simulated temporal variation with greater than 250 

90% certainty involved marking 200 individuals per year with a recapture rate of 0.1 (Fig. 3C; 251 

S2). Successful detection of heterogeneity was also possible by marking 50 new individuals 252 

per year with a recapture rate of 0.6 (Fig. 3F; S3). 253 

 254 
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Discussion 255 

A key challenge with studying the survival rates of natural populations is detectability (e.g. 256 

Boulinier et al., 1998; Kéry and Schmid, 2004). Few studies achieve complete detection and 257 

therefore multiple sampling occasions are required in order to minimise any associated 258 

biases (Lebreton et al. 1992). In agreement, our analyses demonstrated that the accuracy of 259 

survival estimation, and the ability to detect sources of variation were improved greatly when 260 

time series were extended (also see Lieury et al. 2017). Our study also demonstrated that in 261 

longer survey designs, the estimation of adult survival rates was only marginally improved by 262 

conducting mark-recapture field studies that target both adults and chicks, as opposed to 263 

adults only. Therefore, we conclude that substituting adults for chicks within a fixed marking 264 

quota of birds will decrease the ability to resolve adult survival rates. However, marking 265 

juveniles provides access to other demographic metrics that are also valuable for examining 266 

population dynamics, including age-specific survival rates and age of recruitment to the 267 

breeding population.  268 

 269 

Age of maturity and rates of natal dispersal can differ substantially between species of 270 

seabird (Horswill and Robinson 2015). Therefore, the efficacy of marking chicks to resolve 271 

age-specific survival rates will vary accordingly. Sample sizes of marked chicks will need to 272 

be larger for species that mature later in order to mitigate the influence of increased mortality 273 

before individuals recruit into the breeding population, e.g. northern fulmar Fulmarus glacialis 274 

(age of maturity = 9 years; Dunnet and Ollason 1978). Likewise, species that are more likely 275 

to breed at their natal colony, i.e. have low levels of natal dispersal, are much more suited to 276 

survival studies that incorporate the marking of chicks, e.g. great skuas Stercorarius skua 277 

(Klomp and Furness 1992) and European shags Phalacrocorax aristotelis (Aebischer 1995). 278 

In contrast, species with higher levels of natal dispersal may need larger sample sizes of 279 

marked chicks in order to resolve juvenile vital rates, e.g. northern fulmar (Dunnet et al. 280 

1979) and common gull Larus canus (Rattiste 2004),.  281 

 282 

Detecting sources of variation in true adult survival rates required higher levels of marking 283 

and recapture effort than the estimation of a constant survival rate, especially when time 284 

series were shorter; i.e. five or ten years. In addition, survey designs that successfully 285 

identified temporal variation were slightly more intensive than those required to detect 286 

individual heterogeneity. Consequently, we base our recommended minimum effort 287 

guidelines on designs that can detect temporal variation. Mark-recapture projects on species 288 

that capture adults using mist nets away from a breeding colony, as opposed to knowingly 289 

targeting breeding adults, may require higher levels of field effort, because it is not possible 290 

to discern breeding individuals from those that are transient or migratory. This is also likely to 291 
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be the case for species that exhibit higher levels of adult dispersal, such as common tern 292 

Sterna hirundo (Braasch et al. 2008, Breton et al. 2014). 293 

 294 

Delayed maturity in seabirds means that the ability to resolve true survival rates during the 295 

fledgling year will be limited in shorter time series, particularly for species with long 296 

maturation times. Furthermore, the survival rate of seabirds during the fledgling year is 297 

typically more variable than that of adults (Horswill and Robinson 2015). In this simulation, 298 

we set juvenile survival rates to be constant. Levels of field effort required to identify 299 

temporal variation in adult survival rates increased relative to those needed to resolve a 300 

constant rate robustly. Consequently, the minimum levels of field effort necessary to reliably 301 

estimate juvenile survival rates will almost certainly be higher than those reported in this 302 

study. 303 

 304 

The minimum level of recapture effort required to accurately estimate true survival rates and 305 

detect temporal variation largely depended on the respective ringing effort. Therefore, mark-306 

recapture studies should consider both aspects of the field study when setting or adjusting 307 

minimum effort guidelines. Furthermore, achieving reliable estimation with short time-series 308 

required more intensive survey designs, highlighting the importance of longevity when 309 

planning these studies. The addition of chicks is unlikely to improve the resolution of adult 310 

survival rates markedly, although for species with low natal dispersal and earlier ages of 311 

maturity, these data may allow the estimation of other vital rates, such as juvenile survival 312 

rates and age of maturity. We use the levels of field effort that allow the detection of 313 

temporal variation to set the minimum effort guidelines for resolving true rates of adult 314 

survival. Based on a 10 year dataset, these are 200 new individuals marked per year with a 315 

recapture rate of 0.6; 500 individuals marked per year with a recapture rate of 0.4; or 1000 316 

individuals marked per year with a recapture rate of 0.2 (Fig. 4B). Converting recapture 317 

probabilities into fieldwork hours will largely depend on the accessibility of the study species, 318 

the local environmental conditions, such as visibility, and the level of logistical and financial 319 

support available.  320 
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 425 

Fig. 1. Map of seabird mark-recapture studies conducted annually in the UK as part of the 426 

Seabird Monitoring Program Key Sites (triangles), and as part of a national citizen-science 427 

program implemented by the British Trust for Ornithology (cross-hairs) (Projection: British 428 

National Grid).429 
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 430 

Figure 2. The statistical power of different mark-recapture survey designs to resolve true 431 

adult survival rates. A-C) Scenarios with only adults marked and released each year, and D-432 

F) scenarios with both adults and chicks marked and released each year. Light grey polygon 433 

represents field conditions that achieved 95% of survival estimates within 2% of the true 434 

mean. Dark grey polygon demarked by black points represent field conditions that resulted in 435 

95% of survival estimates within 1% of the true mean. 436 

 437 

438 
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 439 

 440 

Figure 3. The statistical power of different mark-recapture survey designs to resolve true 441 

juvenile survival rates. Light grey polygon represents field conditions that achieved 95% of 442 

survival estimates within 2% of the true mean. Dark grey polygon demarked by black points 443 

represent field conditions that resulted in 95% of survival estimates within 1% of the true 444 

mean.445 
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 446 

 447 

Figure 4. The certainty of detecting temporal (A-C) variation in survival rates and individual heterogeneity associated with transience (D-F) 448 

based on different scenarios of field effort: A & D) 5 year time series; B & E) 10 year time series; and C & F) 20 year time series. Recapture 449 

scenarios as follows: black solid line=0.05, grey solid line=0.1, black dashed line=0.2, grey dashed line=0.4, black dot-dash line=0.6. Figure 450 

shows results from the likelihood ratio test and the horizontal dotted line indicates the 90% threshold for certainty. 451 


