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ABSTRACT 

Although directly relevant to metal mediated biological nitrification and the coordination 

chemistry of peroxide, the transition metal complexes of hydroxylamines and their 

functionalized variants remain mainly unexplored except vanadium(V) and molybdenum(VI).  

Reaction of the chelating hydroxylamine ligand 3,3′-(hydroxyazanediyl)dipropanamide 

(Hhydia) with[M
II
(CH3COO)2]

. 
xH2O (M = Co

II
, Zn

II
) in methyl alcohol solution yields the 

complexes [Co
II
( η

1
: η

1
-CH3COO)( η

1
-CH3COO)(Hhydia)], (1) and [Zn

II
(η

1
-

CH3COO)2(Hhydia)],(4), while reaction of Hhydia with trans-[Ni
II
Cl2(H2O)4]

. 
2H2O yields 

[Ni
II
(Hhydia)2]Cl2(3).  The X-ray structure analysis of 1 and 4 revealed that the Co

II
 and Zn

II 

atoms are bonded to a neutral tridentate O,N,O-Hhydia ligand and a chelate and a monodentate 

acetate groups in a severely distorted octahedral geometry for 1 and two monodentate acetate 

groups for 4 in a highly distorted trigonal bipyramidal geometry (τ = 0. 63).  The X-ray structure 

analysis of 3 revealed that the nickel atom in [Ni
II
(Hhydia)2]

2+
 is bonded to two neutral tridentate 

O,N,O-Hhydia ligands.  The twist angle, θ, in [Ni
II
(Hhydia)2]

2+
is 55. 1(2)

0
, that is, very close to 

an ideal octahedron.  The metal / Hhydia complexes were studied by UV-vis (cobalt and nickel 

compounds), NMR (zinc compounds), HR-MS spectroscopy.  The 
1
H and 

13
C NMR spectra of 

the methyl alcohol or acetonitrile solutions of Zn
II
-Hhydia complexes show the existence of both 

the 1:1 and 1:2 metal:ligand species being in dynamic equilibrium.  The exchange processes 

between the Zn
II
-Hhydia is through complete dissociation-association of the ligand from the 

complexes as it is evident from the 2D {
1
H} EXSY NMR spectroscopy.  UV-vis spectroscopy of 

the Co
II
-Hhydia in methyl alcohol also shows the existence of both the 1:1 and 1:2 metal:ligand 

species in contrast to 1:2 complex [Ni
II
(Hhydia)2]

2+ 
which is the only species found in solution.. 

The NMR and UV-vis observations are additionally supported by the HR-MS studies.   
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1.  Introduction 

Over the past few years, our group has studied chromium(III) [1], vanadium(V) [2], and 

molybdenum(VI) [2-5] compounds bearing chelating N,N′-disubstituted-(hydroxylamino) 

ligands, inspired by the naturally occurring non-oxidovanadium(V) compound in mushrooms of 

the genus Amanita, where the chelating N,N-disubstituted-(hydroxylamino) ligand N-hydroxy-

α,α′-iminodipropionate, hidpa
3−, (Scheme 1) binds very tightly to vanadium [6-12].  During the 

course of this research, it became clear that this kind of ligands give very thermodynamically 

stable complexes and a very rich chemistry [2-5].  Hydroxylamines have also attracted our 

attention because they are selective antibacterial agents [13], strong antioxidants [14, 15], drug 

metabolites [16], and effective metal detoxification [17-22].  In an effort to expand our 

investigation of  interaction of N,N′-disubstituted-(hydroxylamino) ligands with transition 

metal ions, we embarked upon exploring the chemistry of the 3,3′-

(hydroxyazanediyl)dipropanamide (Hhydia) ligand (Scheme 1) with the biologically relevant 

transition metal ions cobalt(II), nickel(II) and zinc(II).  Interestingly, the crystallographically 

characterized Co
II
, Ni

II
 and Zn

II
/hydroxylamine based complexes are very limited [23-28]. 

.  

 

Scheme 1.  The N,N′-disubstituted(hydroxylamino) ligands Hhydia, and H3hidpa.  
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The metal complexes of Co
II
, Ni

II
 and Zn

II
 with the ligand Hhydia, which incorporates the 

biological functionalities hydroxylamine and the amide (Scheme 1), might add valuable 

information into their chemistry.  Moreover, the organic molecule Hhydia is an antioxidant and 

prevents the oxidation of various organic materials even in the presence of oxygen or ozone [29].  

It is well-known that antioxidants inhibit oxidation of molecules that are vital for cellular 

processes and protect the cells from oxidative stress-mediated damage [30-32].  Oxidative stress 

is a critical component of diseases such as neuronal disease, sickle cell disease, heart 

malfunction, diabetes, etc. [33-37].  

Herein, it is reported the synthesis, structural and physicochemical characterization (UV-vis, HR-

MS spectroscopy, and NMR) of the cobalt(II), nickel(II) and zinc(II) complexes with the ligand 

Hhydia.   

2.  Experimental  

2. 1.  Materials 

All starting materials were available from commercial suppliers and were used without further 

purification.  All chemicals and solvents were purchased from Sigma–Aldrich.  The reactions 

and all manipulations of the samples were carried out under aerobic conditions. The ligand 3,3′-

(Hydroxyazanediyl)dipropanamide (Hhydia) was synthesized according to the literature [1].  

2. 2.  Preparations 

2. 2. 1.  Preparation of [(η
1
: η

1
-acetatο)(η

1
-acetatο)[3,3′-(hydroxyazanediyl)dipropanamide-

O,N,O]cobalt(II), [Co
II

( η
1
: η

1
-CH3COO)( η

1
-CH3COO)(Hhydia)]

. 
H2O, (1

. 
H2O). To a stirred 

methyl alcohol (5 ml) solution of [Co
II
(CH3COO)2]

. 
4H2O (142 mg, 0. 57 mmol, 1.0 equiv) was 

added solid Hhydia (100 mg, 0. 57 mmol, 1.0 equiv) in one portion.  Upon addition of the ligand 
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the pink color of the solution changed to purple.  The solution was stirred for an additional hour, 

after which its volume was reduced to 2 ml then diethyl ether (15 ml) was added to the solution 

dropwise and a purple solid was formed.  The solid was filtered, washed with 5 ml of diethyl 

ether and dried in vacuo.  Yield: (143 mg, 0.39 mmol 68% based on Hhydia). Anal. Calc. (%) for 

C10H21N3O8Co (Mr = 370. 14) C, 32. 41; H, 5. 71; N: 11. 35.  Found (%): C, 32. 39; H, 5. 67; N: 

11. 32.   IR (KBr, cm
-1

): 3350 (w), 3314 (w), 1656 (s), 1546 (s), 1402 (s), 1083 (w), 916 (w). μeff 

= 5. 0 μB at 298 K.  

Crystals of the cobalt(II) complex 1
. 
CH3OH suitable for X-ray diffraction analysis were obtained 

by layering diethyl ether into a concentrated methyl alcohol solution of 1
. 
H2O.  

2. 2. 2.  Preparation of [Co
II

(Hhydia)Cl2], 2.  A similar procedure was used as described for 1
. 

H2O.  Instead of [Co
II
(CH3COO)2]

. 
4H2O, CoCl2

. 
6H2O (136 mg, 0.57 mmol, 1.0equiv) was used.  

Complex 2 was obtained as a blue-purple solid (125 mg, 0.41mmol, 72%). Anal. Calc. (%) for 

C6H13Cl2N3O3Co (Mr = 304. 96) C, 23. 61; H, 4. 29; N: 13. 78.  Found (%): C, 23. 69; H, 4. 27; 

N: 13. 42.   IR (KBr, cm
-1

):3500 (w), 3260 (w), 1645 (s), 1575 (s), 893 (w). μeff = 5. 1 μB at 298 

K.  

2. 2. 3.  Preparation of Bis-[3,3′-(hydroxyazanediyl)dipropanamide-O,N,O]nickel(II) 

Chloride, [Ni
II

(Hhydia)2]Cl2·H2O, 3·H2O.   A similar procedure was used as described for 1
. 

CH3OH, except that i) instead of [Co
II
(CH3COO)2]

. 
4H2O, trans-[Ni

II
Cl2(H2O)4]

. 
2H2O (136 mg, 

0.57 mmol, 1.0equiv) and ii) Hhydia (200 mg, 1.14 mmol, 2.0equiv) were used.  Complex 3·H2O 

was obtained as a light blue solid (184 mg, 0.37mmol, 65%).  Anal. Calc. (%) for 

C12H28Cl2N6O7Ni (Mr= 497. 85) C, 28. 92; H, 5. 67; N: 16. 84.  Found (%):  C, 28. 65; H, 5. 35; 

N: 16. 69.   IR (KBr, cm
-1

): 3252 (w), 3093 (w), 1656 (s), 1595 (s), 897 (m). μeff = 3. 2μB at 298 

K.  
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Crystals of the nickel(II) complex 3
. 
1.5H2O suitable for X-ray diffraction analysis were obtained by 

layering diethyl ether into a concentrated acetonitrile solution of 3·H2O.  

2. 2. 4.  Preparation of Bis-(η
1
-acetatο)[3,3′-(hydroxyazanediyl)dipropanamide-

O,N,O]zinc(II), [Zn
II

(η
1
-CH3COO)2(Hhydia)], 4. To a stirred methyl alcohol solution (5 ml) of 

Zn
II
(CH3COO)2

. 
2H2O (125 mg, 0.57 mmol, 1.0equiv) was added solid Hhydia (100 mg, 0.57 

mmol, 1.0equiv) in one portion.  The color of the solution remained colorless and after 

approximately 15 min a white precipitate was formed.   The mixture was stirred for an additional 

hour; the white solid was filtered, washed with 5 ml of diethyl ether and dried in vacuo.  Yield: 

(170 mg, 0.47 mmol, 83%).  Anal.  Calc. (%) for C10H19N3O7Zn (Mr = 358. 57) C, 33. 47; H, 5. 

31; N: 11. 71.  Found (%): C, 33. 35; H, 5. 44; N: 11. 94.  IR (KBr, cm
-1

):3387, (w), 3186 (w), 

1645 (s), 1579 (s), 896 (w), 3390 (w), 3197 (w), 1656 (s), 1571 (s), 1402 (s), 900 (w).  

Crystals of the zinc(II) complex 4
. 
CH3OH suitable for X-ray diffraction analysis were obtained 

by layering diethyl ether into a concentrated methyl alcohol solution of 4.  

2. 2. 5.  Preparation of Zn(Hhydia)Cl2 (5).  A similar procedure was used as described for 4.   

Instead of Zn
II
(CH3COO)2

. 
2H2O, Zn

II
Cl2 (78 mg, 0.57 mmol, 1.0equiv) was used.  Complex 6 

was obtained as a white solid (136 mg, 0.44mmol, 77%). Anal.  Calc. (%) for C6H13Cl2N3O3Zn 

(Mr = 311. 42) C, 23. 12; H, 4. 21; N: 13. 49.  Found (%): C, 23. 58; H, 4. 10; N: 13. 48.  IR 

(KBr, cm
-1

): 3387, (w), 3186 (w), 1645 (s), 1579 (s), 896 (w).  

2. 3.  Crystal data collection and refinement 

Suitable single crystal was selected and mounted onto a rubber loop using Fomblin oil.  Single-

crystal X-ray diffraction data of 1
.
CH3OH, 3

.
1.5H2O and 4

.
CH3OH were recorded on a Bruker 

Apex CCD diffractometer (λ(MoKα) = 0.71073 Å) at 150 K equipped with a graphite 
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monochromator.  Structure solution and refinement were carried out with SHELXS-97 [38] and 

SHELXL-97 [14] usingtheWinGXsoftware package [39]. Data collection and reduction were 

performed using the Apex2 software package.  Corrections for incident and diffracted beam 

absorption effects were applied using empirical absorption corrections [40]. All non–hydrogen 

atoms (including those disordered) were refined anisotropically.  Solvent water molecule sites 

with partial occupancy were found and included in the refinement of the structure were generally 

refined with anisotropic thermal parameters.  The positions of hydrogen atoms were calculated 

based on stereochemical considerations and kept fixed isotropic during refinement.  Final unit 

cell data and refinement statistics for compounds 1
. 
CH3OH, 3

. 
1.5H2O and 4

. 
CH3OH are listed 

in Table 1.   

2. 4. NMR measurements 

All NMR samples were prepared by direct dissolution of the zinc(II) compound 4 in CD3CN-d3 

or MeOD-d4 at room temperature just prior to the NMR spectrometric determinations.  NMR 

spectra were recorded on a BrukerAvance III 500 MHz spectrometer.  A 30º-pulse width was 

applied for both the 
1
H and 

13
C NMR measurements, 1 s and 2 s relaxation delay, respectively.  

The standard NOESY pulse sequence (90°-t1-90°-tm-90°) was applied in the 2D {
1
H} EXSY-

NOESY measurements, and these spectra were acquired using 128 increments (with 16 scans 

each) covering 6 ppm in both dimensions and 0.30 and 0.35 s mixing times (tm).  2D {
1
H, 

13
C} 

HSQC spectra were obtained by using standard pulse sequences of Bruker Topspin 3.0 software.  

These spectra were acquired using, 2D {
1
H, 

13
C} HSQC 128 increments (with 16 scans each) 

covering 100 and 6 ppm at F1 and F2 dimensions respectively.  
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2. 5. ESI-MS measurements 

Electrospray ionization mass spectrometry was performed using a Bruker micrOTOF-Q 

quadrupole time-of-flight mass spectrometer.  Samples were dissolved in water and CH3OH 

introduced at a dry gas temperature of 180 °C.  The calibration solution used was Agilent ES 

tuning mix solution, enabling calibration between approximately 100m/z and 3000m/z.  This 

solution was diluted 60:1 with acetonitrile.  Samples were introduced into the MS via direct 

injection at 180 μL/h. The ion polarity for all MS scans recorded was positive, with the voltage 

of the capillary tip set at +4000 V, end plate offset at -500 V, funnel 1 RF at 400 Vpp and 

hexapole RF at 200 Vpp, ion energy 5.0 eV, collision energy at 10 eV, collision cell RF at 1000 

Vpp, transfer time at 120.0 μs, the pre-pulse storage time at 10.0 μs.  The collected data were 

analysed using the Bruker Daltonics v4.1 software whilst simulated isotope patterns were 

investigated using Bruker isotope pattern software.  

2. 6. Details of instrumentation 

Elemental analyses (carbon, hydrogen and nitrogen) were performed using a Perkin Elmer 240C 

elemental analyzer. Fourier-transform infrared (FTIR) spectra of the various compounds 

dispersed in KBr pellets were recorded in a transmittance configuration using a Bruker 

spectrometer (Alpha model). Electronic absorption spectra were measured as solutions in 

septum-sealed quartz cuvettes on a Jasco V570/UV/Vis/NIR spectrophotometer.  

3.  Results and discussion 

3. 1.  Synthesis 

The cobalt(II), nickel(II) and zinc(II) complexes with the ligand Hhydia were synthesized 

according to Scheme 2.  When the metal(II) source was the chloride salt, reaction of it with 
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Hhydia in a molar ratio 1:1 resulted in the isolation of compounds   2
. 
H2O, 3·H2O and 5, while 

in the case of the molar ratio of 1:2 [M
II
Cl2: Hhydia] complex 3·H2O, in much higher yield, and 

5 were isolated, but not the complexes [Co
II
(Hhydia)2]

2+
 and [Zn

II
(Hhydia)2]

2+
.  UV-vis, NMR 

and HR-MS measurements (vide infra) reveal that in methyl alcohol solution the complexes 

[Co
II
(Hhydia)2]

2+
 and [Zn

II
(Hhydia)2]

2+ 
are present, but are hydrolytically unstable; in marked 

contrast the [Ni
II
(Hhydia)2]

2+
 complex is the most thermodynamically stable species.  When the 

metal source was [M
II
(CH3COO)2] we succeeded the isolation of the compounds 1

. 
H2O and 4 

only irrespective of the molar ratio of [M
II
(CH3COO)2]:Hhydia. 

 Efforts to isolate complexes of Co
II 

/Ni
II 

/ Zn
II
 with the deprotonated hydroxylamine group of 

Hhydia by reacting the acetate salts of Co
II
, Ni

II
, and Zn

II
 in refluxing methyl alcohol were 

unsuccessful. The synthesis of copper(II) complexes with Hhydia failed because presumably 

there is a redox reaction between the copper(II) and the hydroxylamine group. 

 

Scheme 2.  Synthesis of the complexes 1
. 
H2O-5.  
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3. 2.  Description of the structures 

3. 2. 1. [Co
II
( η

1
: η

1
-CH3COO)( η

1
-CH3COO)(Hhydia)]

. 
H2O, 1

. 
H2O 

The molecular structure of the neutral cobalt(II) compound 1
. 
CH3OHis shown in Figure 1.  A 

selection of interatomic distances and bond angles relevant to the coordination sphere of 

cobalt(II) is listed in Table 2.  The cobalt(II) atom in 1 is bonded to a neutral tridentate (O,N,O) 

Hhydia ligand, to a symmetric chelating and a unidentate acetate groups.  The donor atoms 

surrounding the cobalt ion are disposed in a severely distorted octahedral geometry where the 

two carbonyl oxygen atoms occupy the axial positions and the hydroxylamine nitrogen atom and 

the three acetate oxygen atoms occupy the equatorial plane.  The Hhydia ligand forms two six-

membered fused chelate rings with the cobalt(II) center. The average Co
II−Oamide bond length 

[2.072(2) Å] is much longer (≈ 0.12Å) in comparison to the Cr
III−Oamide bond length in the only 

one reported metal complex of Hhydia, [Cr
III

(Hhydia)2]
3+

, while the (Co
II−Nhydroxylamine) bond 

length [2.147(2) Å] is slightly longer (≈ 0.03 Å) in comparison to [Cr
III

(Hhydia)2]
3+

.   The longer 

bond distances of Hhydia to cobalt(II) are presumably due to its lower oxidation state.  There is 

an intramolecular hydrogen bond in 1
. 

CH3OH between the hydrogen atom attached to the 

Ohydroxylamine and the free oxygen atom of the monodentate acetate group (Figure 1).  
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Figure 1.  ORTEP diagram of 1
. 
CH3OH with atomic numbering scheme and thermal ellipsoids 

at 50% probability level. The methylene and methyl hydrogen atoms and crystal lattice CH3OH 

molecules were omitted for clarity.  

3.2.2. [Zn
II
(η

1
-CH3COO)2(Hhydia)]

. 
CH3OH, 4

. 
CH3OH 

The molecular structure of the neutral zinc(II) compound 4
. 
CH3OHis shown in Figure 2.  A 

selection of interatomic distances and bond angles relevant to the coordination sphere of zinc(II) 

is listed in Table 2.  The zinc(II) atom in 4 is bonded to a neutral tridentate (O, N, O) Hhydia 

ligand, to two unidentate acetate ligands.  The donor atoms surrounding the zinc(II) ion are 

disposed in a severely distorted trigonal bipyramidal geometry, τ = 0.63[41], where the two 

carbonyl oxygen atoms occupy the axial positions and the hydroxylamine nitrogen atom and the 

two acetate oxygen atoms occupy the equatorial plane.  The Zn
II−Nhydroxylamine bond length 

[2.142(2) Å] is almost identical to the Co
II−Nhydroxylamine bond length [2.147(2) Å] in 1

. 
CH3OH, 

while the average d(Zn
II−Oamide) 2.099(2)Å is 0.027 Å longer in comparison to mean 

d(Co
II−Oamide)in 1

.
CH3OH.  

 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

12 
 

 

 

Figure 2.  ORTEP diagram of 4
. 
CH3OH with atomic numbering scheme and thermal ellipsoids 

at 50% probability level. The methylene and methyl hydrogen atoms and crystal lattice CH3OH 

molecules were omitted for clarity.  

3.2 3. [Ni
II
(Hhydia)2]Cl2·1.5H2O, 3·1.5H2O 

. The molecular structure of the cation [Ni
II
(Hhydia)2]

2+
 is shown in Figure 3.  A selection of 

interatomic distances and bond angles is listed in Table 3.  The nickel(II) atom in 

[Ni
II
(Hhydia)2]

2+
 is bonded to two neutral tridentate Hhydia ligands, and each of the two Hhydia 

ligands acts as a tridentate O, N, O donor (Figure 3).  The nickel(II) atom is an inversion center 

in the cation [Ni
II
(Hhydia)2]

2+
.   The donor atoms surrounding the nickel(II) atom are disposed in 

an octahedral geometry where four carbonyl oxygen atoms of two different ligand molecules 

occupy the equatorial plane, and the two trans-hydroxylamine nitrogen atoms occupy the axial 

positions.  The twist angle (θ) [42] in [Ni
II
(Hhydia)2]

2+
is 55.1(2)

0
, which is, very close to ideal 

octahedron. The four amide functionalities are planar within the limits of precision.  Each of the 

two Hhydia ligands forms two six-membered fused chelate rings and is meridionally ligated to 

the nickel(II) atom. The two planes defined by the three donor atoms (O, N, O) of each ligand are 

found to be perpendicular to one another with adihedral angle of 89.6(1)
0
. The d[Ni

II
-

Nhydroxylamine] = 2.093(2)Å  and mean d[Ni
II
-Oamide] = 2.030(2)Å are shorter by ≈ 0.05 Å in 
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comparison to corresponding bond lengths in 1
. 
CH3OH and 4

. 
CH3OH and this might explain its 

thermodynamic stability (vide infra).  

 

Figure 3.  ORTEP diagram of [Ni
II
(Hhydia)2]

2+
 with atomic numbering scheme and thermal 

ellipsoids at 50% probability level. The methylene hydrogen atoms, Cl−
 
counter ions, and crystal 

lattice H2O molecules were omitted for clarity.  

3.3. UV-vis spectroscopy 

In Table 4 are summarized the UV-vis spectral data of the complexes 1
. 
H2O, 2 and 3

. 
H2O.   In 

addition, the spectral changes of 1
. 
H2O, and 2 after the addition of Hhydia are also reported.  

Compounds 1
. 
H2O, and 2 in methyl alcohol gave one broad peak (Figure 4) which was assigned 

to the transitions 
4
T1g  

4
T1g(P) (531 nm) and 

4
A2g  

4
T1g (481 nm) in accordance with an 

octahedral high spin Co
II
(d

7
) system.   Addition of Hhydia to the methyl alcohol solutions of 1

. 

H2O, and 2 resulted to a blue shift of the peaks at 531 and 481 nm, to 509 and 475 nm 

respectively, which is consistent with the formation of [Co
II
(Hhydia)2]

2+
 complex, with a N2O4 

coordination  sphere, while the complex [Co
II
(Hhydia)(CH3OH)3]

2+
 has a NO5 coordination  

sphere. The intensity of the band assigned to the [Co
II
(Hhydia)2]

2+
 complex increases even after 

the addition of 4 equivalents of Hhydia (Figure 4) indicative of the complex’s hydrolytic 

instability. 
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Figure 4: UV-vis spectra of methyl alcohol solutions containing complex 2 (0.0394 M) and 

various concentrations of Hhydia.    

The UV-vis spectrum of the nickel(II) complex 3·H2O in methyl alcohol gave three peaks at 363, 

591 and 924 nm (Figure 5) as expected for an octahedral Ni
II
 (d

8
) system, and were assigned to 

transitions 
3
T2g(P)  

3
A2g, 

3
T2g  

3
A2g and  

3
T2g  

3
A2g respectively.  Addition of the ligand 

Hhydia to the methyl alcohol solution of 3
. 
H2O did not affect the features of the initial spectrum 

apart from a slight increase of the band’s which means that in solution the major Ni
II
 species is 

the [Ni
II
(Hhydia)2]

2+
. 

 

 

Figure 5.  UV-vis spectrum of complex 3
. 
H2O (0.0307 g/2mL) in CH3OH.  
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3. 4. NMR spectroscopy 

The 
1
H and 

13
C NMR spectra of the two Zn

II
 compounds 4 and 5 in CD3OD-d4 gave broad peaks, 

due to the fast exchange between the Zn
II
 - Hhydia species in the solution (Figure S1).  The 

13
C 

NMR spectrum of complex 4 in CD3OD-d4 showed a shift for the peaks of the carbonyl carbon 

atoms by 2.2 ppm shift to a weaker field in comparison to the free ligand, and is indicative of 

coordination of the carboxyl oxygen atoms of Hhydia (Table 5) to the Zn
II
.  The 

1
H NMR 

spectrum of 5 in CD3OD-d4 was very similar to that of 4, except that the spectrum of 4 has an 

additional sharp peak for the acetate moiety with a chemical shift at 1.99 ppm, which is very 

close to the peak of free acetate (1.96 ppm) which is clear that the CH3COO
-
 group in solution is 

not bound to the Zn
II
.  The 2D {

1
H,

13
C} grHMQC spectrum of complex 4 (Figure S2) in 

CD3OD-d4 gave three peaks for each carbon atom of Hhydia (see Scheme 3 for numbering), 

indicating the presence of three Hhydia species in the solution, i.e., the free Hhydia, and the 

zinc(II)/Hhydia complexes [Zn
II
(Hhydia)(CH3OH)2]

2+
 (6) and [Zn

II
(Hhydia)2]

2+ 
(7).  Addition of 

1 equivalent of ligand Hhydia to the CD3OD solution of 4 increases the intensity of the peaks 

associated with Hhydia and [Zn
II
(Hhydia)2]

2+
 and become broader, making difficult to be 

distinguished.  The 2D {
1
H} grEXSY spectrum of 4 in CD3OD-d4 (Figure 6) gave off diagonal 

peaks between the 
1
H NMR resonances of Hhydia, 6, and 7 and this fact reveals two 

intermolecular exchange processes between the couples Hhydia / 6 and 6 / 7 (Scheme 3).   The 

1
H NMR spectrum of 4 in CD3CN-d3 is similar to that in CD3OD, except the presence of two 

peaks due to the inequivalent amide protons, -C(=O)NHaHb.  The Ha shows an exchange with Hb 

in the 2D {
1
H} grEXSY spectrum (Figure S3) probably through the fast intermolecular exchange 

mechanism of the labile Zn
II
-Hhydia species shown in Scheme 3.  
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Figure 6.   2D {
1
H} grEXSY spectrum of compound 4 (C = 5.0 mM) in CD3OD, tm=300 ms.  

 

Scheme 3.  Exchange mechanism between the couples Hhydia / 6 and 6 / 7 

3. 5. ESI-MS 

Given the evidence of hydrolytic instability of the [M
II
(Hhydia)X2] complexes (M = Co

II
, Zn

II
 

and X = Cl
-
, CH3COO

-
) obtained from the UV-vis (for Co

II
) and NMR (for Zn

II
) spectroscopies, 

we embarked on an effort to investigate further the behaviour of the reported complexes in 

solution and monitor the in-situ conversion of 1:1 towards the formation of 1:2 complexes upon 

addition of one equivalent of ligandusing high resolution electrospray ionization mass 

spectrometry.   
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A real time comparative study was carried out using preformed [M
II
(Hhydia)X2] complexes 

dissolved in methyl alcohol solution.  The first observations show that the X group which 

completes the coordination sphere of the transition metal affects the hydrolytic stability of the 

complexes and their subsequent transformation to 1:2 complexes.  More specifically,the 

[M
II
(Hhydia)Cl2] type of complexes seem to retain their integrity duringthe course of the ESI-

MS studies as evidenced in Figure 7.  The observed distributionenvelopes were assigned to the 

singly charged species{[Zn
II
(Hhydia)Cl]}

+
, and {[Co

II
(Hhydia)Cl]}

+
centered at m/z ca.  273.99, 

and 268.99 respectively.  Upon addition of one equivalent of ligand Hhydia into the same 

solution of [M
II
(Hhydia)Cl2] complexes, we observed instantly the generation of 1:2 complexes 

as evidenced by a series of distribution envelopes for {[Zn
II
(Hhydia)(hydia)]}

+
, and 

{[Co
II
(Hhydia)(hydia)]}

+
 centered at m/z ca.  413.10 and 408.11 respectively.  It is worth noting 

that when the [M
II
(Hhydia)(CH3COO)2] complexes were used as starting point, an instant 

conversion to the 1:2 complexes took place upon addition of one equivalent of Hhydia.  There is 

a clear indication that the acetate groups can be replaced by Hhydia ligands much easier (see 

NMR discussion) and can not prevent their conversion to the 1:2 aducts.  It is worth noting that 

the deprotonation of the hydroxylamine proton took place in some species during the course of 

the ESI-MS studies. This type of phenomena such as change of the redox state of thetransition 

metal center and gain or loss of protons and/orsolvent molecules is a quite common effect that 

takes place during the ionization process and has beenobserved before [43-48]. 

Complex 3·H2O i. e. , [Ni
II
(Hhydia)2]Cl2·H2O gave three distribution envelopes which were 

assigned to the singly charged species [Ni
II
(Hhydia)Cl]

+
, [Ni

II
(Hhydia)(hydia)]

+
 and 

[Ni
II
(Hhydia)2Cl]

+
 centered at m/z ca.   267.99, 407.11, and 443.09 respectively.   Upon addition 
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of one equivalent of Hhydia to the solution of 3·H2O the distribution envelope corresponding to 

the 1:2 adduct found to be more pronounced (Figure 7 c/c’).  

 

Figure 7.  ESI-MS of [M
II
(Hhydia)X2] complexes (Where M: Co

II
, Zn

II
and X: Cl

–
) in methyl 

alcohol solution in the absence (A) and presence of one equivalent of Hhydia(A’) respectively.  

A: [[Zn
II
(Hhydia)Cl2]; B: [[Co

II
(Hhydia)Cl2] and C: [Ni

II
(Hhydia)2]Cl2.  

4.  Conclusion 

In conclusion, stable hydroxylamine complexes of transition metals cobalt(II), nickel(II), and 

zinc(II) were synthesized through chelation reactions.  The neutral N,N′-disubstituted-

(hydroxylamino) chelating ligand Hhydia binds to the three metals through the two carbonyl 

oxygen atoms and the hydroxylamine nitrogen atomforming two six-membered fused chelate 

rings with them.  The 
1
H and 

13
C NMR spectra of Zn

II
-Hhydia complexes in methyl alcohol 

reveal the existence of both the 1:1 and 1:2 metal:ligand species being in dynamic equilibrium.  
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UV-vis spectroscopy of the Co
II
-Hhydia complexes in methyl alcohol also shows the existence 

of both the 1:1 and 1:2 metal:ligand species in contrast to  1:2 complex [Ni
II
(Hhydia)2]

2+
which is 

the only species found in solution.  Moreover, the NMR and UV-vis observations are nicely 

supported by the X-Ray single crystal measurements. 

The X-ray structural analysis of the complexes 1, 3, and 4 provides evidence in solid state that 

the M
II−Oamide and M

II
-Nhydroxylamine binding are possible modes of interaction of Co

II
, Ni

II
, and 

Zn
II 

in biological systems.  Solution studies also support these binding modes.  
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Appendix A.  Supplementary data 

 

The crystallographic data for compounds 1
.
CH3OH, 3

.
1.5H2Oand 4

.
CH3OH with CCDC numbers 

1831952, 1831953, and 1831954 respectively, can be obtained free of charge from the 

Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ; fax: (+44) 

mailto:akeramid@ucy.ac.cy
http://orcid.org/0000-0002-0446-8220
mailto:tkampano@cc.uoi.gr
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1223- 336-033, deposit@ccdc. cam. ac. uk.  Supplementary data (Figures S1-S3) associated with 

this article can be found, in the online version, at…… 

 

Table 1.   

Crystal data and refinement details for complexes 1
. 
CH3OH, 3

. 
1.5H2O and 4

. 
CH3OH 

 

Complex 1
. 
CH3OH 3

. 
1.5H2O 4 

. 
CH3OH 

Formula C11H22CoN3O8 C24H41Cl4N12Ni2O16 C11H19N3O8Zn 

Formula Weight 383.25 1012.91 386.66 

Crystal System Monoclinic Monoclinic Monoclinic 

Space group P 21/n P 2/n P 21/n 

a(Å) 7.6607(5) 15.746(7) 7.5973(4) 

b(Å) 24.3439(14) 15.621(7) 24.2334 

c(Å) 9.3186(7) 18.730(8) 9.4716(6) 

a (
ο
) 90 90 90 

β (
ο
) 109.969(8) 105.839(6) 110.459(6) 

γ (
ο
) 90 90 90 

Dcalc[Mg/m
3
] 1.558 1.518 1.572 

μ [mm
-1

] 1.094 1.165 1.547 

F(000) 800 2084 800 

Total reflections 9544 46669 10141 

Unique reflections 3877 9149 3926 

Observed Data [I > 2 σ(Ι)] 3877 9149 3926 

No of parameters 210 638 224 

Rint 0.0357 0.1298 0.0366 

R1, wR2 (all data) 0.0444, 0.1109 0.1719, 0.2151 0.0472, 0.1175 

R1, wR2 [I > 2 σ(Ι)] 0.0586, 0.1209 0.0725, 0.1644 0.0452, 0.1163 

 

 

 

 

mailto:deposit@ccdc.cam.ac.uk


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

21 
 

 

Table 2.   

Selected bond lengths (Å) and angles (
o
) of complexes 1

. 
CH3OH and 4

. 
CH3OH.  

 

Complex 1
. 
CH3OH 4

. 
CH3OH 

N(2) - M
a
 2.147(2) 2.142(2) 

O(1) - M 2.0780(19) 2.081(2) 

O(3) - M 2.066(2) 2.1170(19) 

O(5) - M 2.198(2) - 

O(6) - M 2.170(2) 2.047(2) 

O(7) - M 2.010(2) 1.978(2) 

O(7) - M - O(3) 92.41(9) 88.60(9) 

O(7) - M - O(1) 87.79(9) 93.50(9) 

O(3) - M - O(1) 177.64(8) 177.82(9) 

O(7) - M - N(2) 109.25(9) 117.90(9) 

O(3) - M - N(2) 92.12(8) 88.08(8) 

O(1) - M - N(2) 90.04(8) 91.45(9) 

O(7) - M - O(6) 98.20(8) 101.35(8) 

O(3) - M - O(6) 91.69(8) 86.68(8) 

O(1) - M - O(6) 85.96(8) 92.32(8) 

N(2) - M - O(6) 152.08(8) 140.24(8) 

O(7) - M - O(5) 157.99(8) - 

O(3) - M - O(5) 89.91(8) - 

O(1) - M - O(5) 89.03(8) - 

N(2) - M - O(5) 92.51(8) - 

O(6) - M - O(5) 59.85(8) - 

a
M corresponds to Co(1) and Zn(1) for 1

. 
CH3OH and 4

. 
CH3OH respectively.  
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Table 3.   

Selected bond lengths (Å) and angles (
o
) of complex 3

. 
1.5H2O 

 

Complex 3
. 
1.5H2O 

N(2)/N(2)’–Ni(1) 2. 093(2) 

O(1)/O(1)’ – Ni(1) 2.028(2) 

O(3)/O(3)’ – Ni(1) 2.032(2) 

N(2) - Ni(1) - O(1) 92.3(9) 

N(2) - Ni(1) - O(1)’ 93.79(9) 

N(2) - Ni(1) - O(3) 87.6(8) 

N(2) - Ni(1) - O(3)’ 87.0(9) 

N(2) - Ni(1) - N(2)’ 180.0(2) 

O(1) - Ni(1) - O(3) 174.6(8) 

O(1) - Ni(1) - O(3)’ 87.5(8) 

O(1) - Ni(1) - O(1)’ 92.9(8) 

 

Table 4.   

UV-vis spectral data for 1
. 
H2O, 2, and 3

. 
H2O.  

Complex 10Dq
a
 (B)

a
 λ

b
 (ε)

c
  

1
. 
H2O 11000 (550) 531 (7.6) 

481 (7.2) 

 

1
. 
H2O +Hhydia

d
 11100 (654) 509 (8.3) 

475 (7.8) 

 

2 10900 (574) 530 (7.6) 

480 (8.0) 

 

2+ Hhydia
d
 11000 (610) 509 (8.3) 

475 (7.8) 

 

3
. 
H2O 10800 (750) 363 (15.4) 

591 (6.0) 

924 (11.6) 

 

 

a
In cm

-1
. 

b
 In nm.   

c
 In cm

-1
M

-1
.  

d
 Various quantities of Hhydia were added to the CH3OH solution of 1

. 

H2O and 2 (Figure 4).  
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Table 5. 

13
C (

1
H) chemical shifts (ppm) of Hhydia, 6, and 7 which are formed upon dissolution of 4 in CD3OD 

 Hhydia 6 7 

C1
a
 177.2 179.4 179.4 

C2
a
 28.4 (2.626) 31.4 (2.626) 32.7 (3.127) 

C3
a
 56.5 (2.829) 56.5 (3.014) 56.5 (3.581) 

a 
The

 
numbering is shown in Scheme 3.  
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