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Abstract

In this paper, we develop a distributed control scheme for the perimeter traffic flow control
problem in urban road networks. The proposed scheme determines optimally distributed input
flows for a number of gates located at the periphery of a protected network area. A parsimo-
nious model is employed to describe the traffic dynamics of the protected network. To describe
traffic dynamics outside of the protected area, we augment the basic state-space model with
additional state variables for the queues at store-and-forward origin links at the periphery. We
aim to equalise the relative queues at origin links and maintain the vehicle accumulation in the
protected network around a desired point, while the system’s throughput is maximised. The
perimeter traffic flow control problem is formulated as a convex optimal control problem with
constrained control and state variables. Simulation results are carried for a protected area
of downtown San Francisco with fifteen gates of different geometric characteristics. Results
demonstrate the efficiency and equity properties of the proposed approach to better manage
excessive queues outside of the protected area and optimally distribute the input flows.

1 Introduction

Traffic congestion on urban road networks is deemed to inefficient road operations and exces-
sive traffic demand, which calls for drastic solutions. The performance of road infrastructure
is usually assessed by microscopic models at the link and/or junction level. In an attempt to
assess the performance of urban road networks at a macroscopic level, a parsimonious but
not accurate model is often used. It primarily shows the relationship between average net-
work flow and vehicle accumulation or density. A macroscopic model of steady-state urban
traffic was proposed by Godfrey (1969); Herman and Prigogine (1979), further developed by
Ardekani and Herman (1987); Daganzo (2007); Daganzo and Geroliminis (2008); Farhi et al.
(2011) and fitted to experimental data by Mahmassani et al. (1987); Geroliminis and Daganzo
(2008); Ampountolas and Kouvelas (2015) and others. This model is the so-called Macro-
scopic or Network Fundamental Diagram (MFD or NFD) of urban road networks; it presumes
(under certain regularity conditions) that traffic flows dynamics can be treated macroscopi-
cally as a single-region dynamic system with vehicle accumulation n (or density) as a state
variable. The main feature of the NFD (with a concave like-shape as in Fig. 1) is that for a
critical vehicle accumulation n̂ flow capacity is reached (maximum throughput). This property
can be utilised to introduce perimeter flow control policies to improve mobility in single-region
homogeneous (Daganzo, 2007; Keyvan-Ekbatani et al., 2012) or multi-region heterogeneous
networks (Geroliminis et al., 2013; Aboudolas and Geroliminis, 2013) and others. For an up-
dated review of this vast area of research the interested reader is referred to Haddad (2015).
A perimeter flow control policy “meters” the input flow to the system and hold vehicles outside
a protected area if necessary, so as to maximise the throughput.

Except of a few works such as Csikós et al. (2015), studies on the perimeter flow control
assume that a single input flow ordered by a perimeter control strategy should be equally
distributed to a number of candidate junctions at the periphery of the network, i.e., without
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Figure 1: Protected network with entrance link dynamics.

taking into account the different geometric characteristics of origin links. Such a distribution
policy applied independently to multiple gates of a protected network area would be efficient
in case of unconstrained origin link queues for vehicle storage (i.e., infinite storage capacity).
However, gated queues at origin links must be restricted to avoid interference with adjacent
street traffic outside of the protected network area and geometric characteristics of the different
gates must be taken into account in the optimisation. Thus, limited origin links storage capacity
and the requirement of equity for drivers using different gates to enter a protected area are the
main reasons towards distributed perimeter flow control.

In this work, we propose an integrated model for the distributed perimeter traffic flow control
problem in urban road networks. We employ the renowned network or macroscopic fundamen-
tal diagram of urban networks to describe the traffic dynamics of the protected network area.
To describe traffic dynamics outside of the protected area, we augment the basic state-space
model with additional state variables for the queues at store-and-forward origin links at the
periphery. The integrated model is then used to formulate a convenient convex or nonlinear
optimal control problem with constrained control and state variables for distributed perimeter
flow control. This scheme determines optimally distributed input flow values (or feasible en-
trance link green times) to avoid queues and delays at the perimeter of a protected area while
system’s output is maximised. We present preliminary results to demonstrate its efficiency
and equity properties to better manage excessive queues outside of the protected network
area and optimally distribute the input flows.

2 Perimeter Flow Modelling with Entrance Links Dynamics

Consider a protected network area with a number of controlled gates o ∈ O ={1, 2, . . .} located
at its periphery as shown in Fig. 1. The set O includes all the origin links whose outflow is
essentially entering into the protected network from a number of controlled gates/entrances
(e.g. signalised junctions or toll stations). In principle, the origin links at the periphery of the
protected network would have different geometric characteristics, i.e., length, number of lanes,
capacity, and saturation flows. The protected network traffic can be treated macroscopically
as a single-region dynamic system with vehicle accumulation n(t), t ≥ 0 as a single state
variable (Daganzo, 2007). To this end, assume there exists a well-defined function O(n(t))
(veh/h) that provides the estimated rate flow (output) at which vehicles complete trips per unit
time either because they finish their trip within the network or because they move outside of
the network. The output can be expressed as O(n(t)) = (l/L)Oc(n(t)), where L (m) is the
average trip length in the network, l (m) is the average link length, and Oc (veh/h) is the total
network circulating flow. In general, the circulating flow Oc can be estimated by the generalised
definition of flow if n(t) is observed in real-time.
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Let qo(t) (veh/h) be the outflow of gate o ∈ O at time t. Also, let qout(t) (veh/h) and dn(t)
(veh/h) be the total outflow and the uncontrolled traffic demand (disturbances) of the protected
network at time t, respectively. The dynamics of the system are governed by the following
nonlinear conservation equation

ṅ(t) =

|O|∑
o=1

qo(t)− qout(t) + dn(t), (1)

where qout(t) is in general a nonlinear function of vehicle accumulation n(t). Since the system
evolves slowly with time t, we may assume that outflow qout(t) ∝ Oc(n(t), and it may thus be
given in terms of the output O(n(t)). Note that qo(t), o ∈ O are the input variables of the con-
trolled gates/entrances, to be calculated by a distributed perimeter flow control strategy.

To describe traffic dynamics outside of the protected area, we augment the basic state-space
model (1) with additional state variables for the queues at store-and-forward entrance links at
the periphery. Each origin link `o receives traffic demand do and forward it into the protected
network, as shown in Fig. 1. The queuing model for the entrance link dynamics is described
by the following conservation equation

˙̀
o(t) = do(t)− qo(t), o ∈ O = {1, 2, . . .} (2)

where `o(t) (veh) and do(t) (veh/h) are the vehicle queue and traffic demand in origin link o at
time t, respectively. The integrated model (1)–(2) can be extended to consider a broader class
of state and control constraints as follows:

0 ≤ n(t) ≤ nmax

0 ≤ `o(t) ≤ `o,max, o ∈ O = {1, 2, . . .} (3)
qo,min ≤ qo(t) ≤ qo,max, o ∈ O = {1, 2, . . .}

where nmax is the maximum vehicle accumulation of the protected network; `o,max is the maxi-
mum permissible capacity of link o ∈ O; qo,min, qo,max are the minimum and maximum permis-
sible outflows, respectively; and, qo,min > 0 to avoid long queues and delays at the periphery of
the network. Link capacities and maximum vehicle accumulation depend on geometric charac-
teristics of the origin links (length, number of lanes) and the topology of the protected network,
respectively. Minimum and maximum permissible outflows can easily be determined given sat-
uration flows, minimum and maximum green times, and cycle times of a nominal traffic signal
plan (or corresponding toll ticket) at each controlled gate of the protected network.

The presented model can be viewed as a nonlinear process with input variables uT =[
q1 q2 · · · q|O|

]
, state variables xT =

[
n `1 `2 · · · `|O|

]
, and disturbances dT =[

dn d1 d2 · · · d|O|
]
. Then, the continuous-time nonlinear state system (1), (2) with con-

straints (3) for a protected network with controlled gates o ∈ O, may be rewritten in compact
vector form as

ẋ(t) = f [x(t),u(t),d(t), t] , t ≥ 0, x(0) = x0 (4)
0 ≤ x(t) ≤ xmax (5)
umin ≤ u(t) ≤ umax (6)

where f is a nonlinear vector function reflecting the right-hand side of (1)–(2); x0 is a known
initial state; and xmax, umin, umax are vectors of appropriate dimension reflecting the upper
and lower bounds of constraints (3).

Assuming a nonlinear representation of qout(t) , O(n(t)), the continuous-time nonlinear model
(4) may be linearised around some set point ŝT =

[
x̂ û d̂

]
, and directly translated into

discrete-time, using Euler first-order time discretisation with sample time T , as follows

∆x(k + 1) = A∆x(k) + B∆u(k) + C∆d(k) (7)
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where k = 0, 1, . . . , No − 1 is a discrete time index with optimisation horizon No; ∆(·) , (·)− ·̂
for all vectors; and A = ∂f/∂x|ŝ, B = ∂f/∂u|ŝ, C = ∂f/∂d|ŝ are the state, control, and dis-
turbance matrices, respectively. This discrete-time linear model is completely controllable and
reachable, and will be used as a basis for control design. The sample time interval T is liter-
ally selected to be a common multiple of cycle lengths of all controlled gates at the periphery
of the protected network, while T ∈ [3, 5] minutes is usually appropriate for constructing a
well-defined outflow function O(n(t)), given experimental data.

3 Distributed Perimeter Flow Control

A suitable control objective for a protected network area with origin links queue dynamics aims
at: (a) equalising the relative vehicle queues `o/`o,max, o ∈ O over time, and (b) maintaining
the vehicle accumulation in the protected network around a set (desired) point n̂ while the
system’s throughput is maximised. A quadratic criterion that considers this control objective
has the form

J =
1

2

No−1∑
k=0

(
‖∆x(k)‖2Q + ‖∆u(k)‖2R

)
(8)

where Q and R are positive semi-definite and positive definite diagonal weighting matrices,
respectively. The diagonal elements of Q are responsible for balancing the relative vehicle
accumulation of the protected network n/nmax and the relative vehicle queues `o/`o,max, o ∈ O.
Given that vehicle storage in the protected network is significantly higher than in the origin links,
a meticulous selection of diagonal elements is required. A practicable choice is to set Q =

diag(1/w, 1/`1,max, . . . , 1/`|O|,max), where the scale of w � nmax is of the order of
∑|O|

o=1 `o,max

to achieve equity. It becomes quite clear here that equity at origin links and efficiency of
the protected network area are partially competitive criteria, hence a perimeter flow control
strategy should be flexible enough to accommodate a particular trade-off (i.e. to give priority
to the protected network or the outside area, e.g. to manage better excessive queues) to
be decided by the responsible network authorities. Finally, the choice of the weighting matrix
R , rI, r > 0 can influence the magnitude of the control actions and thus r should be selected
via a trial-and-error process.

Rolling horizon control is a repetitive optimisation scheme, where at each time step an open-
loop optimal control problem with finite horizon No and predicted demands d(k) is optimised,
then only the first control move is applied to the plant and the procedure is carried out again.
Given the known initial state x(0) = x0, a static convex optimisation problem may be formulated
over No due to the discrete-time nature of the involved process. To see this, assume No = Np

and define the vectors

∆X =
[
∆x(1)T ∆x(2)T · · · ∆x(No)T

]T
∆U =

[
∆u(0)T ∆u(1)T · · · ∆u(No − 1)T

]T
∆D =

[
∆d(0)T ∆d(1)T · · · ∆d(Np − 1)T

]T
.

Assuming now availability of demand flow predictions at the origin links of the protected net-
work over a prediction horizon Np, i.e. ∆d(k) 6= 0, k = 0, 1, . . . , Np − 1, minimisation of the
performance criterion (8) subject to (7) leads to the analytical solution:

∆U = −H−1F
[
x(0) + G∆D

]
, (9)

where H = ΓTQΓ + R is the Hessian of the corresponding quadratic program (QP), F =
ΓTQΩ, and G = ΓTZ. The matrices Γ and Ω may be readily specified from the integration
of (7) starting from the initial point x(0), while Q, R, Z are weighting matrices (in function of
Q, R, and C) over the optimisation No (see e.g. Goodwin et al. (2005) for details). Given that
R � 0 in the cost criterion (8) the Hessian H is positive definite, and thus the QP is convex
and has a global optimum.
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Figure 2: Protected network and controlled gates of entrance.

Using the above notation, we can express the problem of minimising (8) subject to the equality
constraints (7) and inequality constraints (5)–(6) as follows:

min
U

1

2
UTHU + UT

[
x(0)−HÛ + G∆D

]
subject to: (10)
LU ≤W

where L and W are matrices reflecting the lower and upper bounds of the state and control
constraints (given state integration starting from the initial point x0) over the optimisation hori-
zon No (see e.g. Goodwin et al. (2005) for details). Once the open-loop QP problem (10) is
solved from the known initial x(0) and predicted disturbances d(k), k = 0, 1, . . . , Np − 1, the
rolling horizon scheme applies, at the current time k, only the first control move, formed by
the first m components of the optimal vector U∗(x0) in (10). This yields a control law of the
form

u(k) =M
[
x(k),d(κ)

]
, κ = k, k + 1, . . . , k +Np − 1 (11)

where x(k) = x0, k = 0, . . . , No−1 is the current state of the system andM is a linear mapping
from the state and disturbance spaces to control. Then the whole procedure is repeated at the
next time instant, with the optimisation horizon kept constant.

4 Case Study and Results

4.1 Case Study Description

Fig. 3 depicts the shape of Oc in function of n(t) for the 2.5 square mile area of Downtown San
Francisco, CA, including 110 junctions and 440 links (see Fig. 2). Fig. 3 confirms the existence
of a fundamental diagram like-shape for the study area, which shape is seen to depend on
the accumulation of vehicles. It can be seen that as the vehicle accumulation is increased
from zero, the network flow increases to a maximum (flow capacity) and then turns down and
decreases sharply to a low value possibly zero (in case of gridlock). Flow capacity (around
30 · 104 veh/h) is observed at a vehicle accumulation of about 6,000 veh. The shape of the
fundamental diagram (and its critical parameters) was reproduced under different demand and
OD scenarios with Dynamic Traffic Assignment activated to capture somewhat adaptive drivers
in a microsimulation study via AIMSUN (Aboudolas and Geroliminis, 2013). The shape of Oc

in Fig. 3 can be approximated by the following 3rd order polynomial:

Oc(n) = 4.128× 10−7n3 − 0.0136n2 + 113.264n (12)

where n ∈ [0, 13000]. To determine the output O from Oc an average trip length L = 1.75 km
and average link length l = 0.25 km were considered. The value of L is consistent with the
average trip length and the travel time across the test area of San Francisco.

5



MAT JUSOH & AMPOUNTOLAS: Perimeter Flow Control
January 2017  

Trinity College 
Dublin  

UTSG  

0

5

10

15

20

25

30

 0  2000  4000  6000  8000  10000  12000
**T

o
ta

l 
C

ir
c
u

la
ti
n

g
 N

e
tw

o
rk

 F
lo

w
 (

v
e

h
/h

) 
⋅
 1

0
e

+
4

Number of Vehicles (veh)

R1
R2

R3
R4

R5
R6

R7
R8

R9
R10

Figure 3: Network fundamental diagram of Downtown SF.

4.2 Controller Design

The desired vehicle accumulation for (7) is selected n̂ = 4000 veh, while ˆ̀
o = 0, ∀o ∈ O. Table 1

provides the different geometric characteristics of the fifteen (|O| = 15) entrance links and con-
trolled gates shown in Fig. 2 (illustrated with blue arrows). The third column provides the stor-
age capacity of each controlled link that is the vector xT

max =
[
nmax `1,max · · · `|O|,max

]
.

The last three columns of the table provide the vectors umin = qmin, û = q̂, and umax = qmax,
respectively. These values are calculated from the field applied signal plans presented in
columns 5 (So: saturation flow), 6 (C: cycle length) , 7 (go,min: minimum green time), 8 (ĝo:
nominal green time), and 9 (go,max: maximum green time), via gS/C. In this way, any input
flows ordered by the distributed perimeter flow control strategy are feasible traffic signal plans.
Note that traffic signals at controlled gates are all multiphase fixed-time operating on a com-
mon cycle length of 90 s for the west boundary of the area (gates o = 1, . . . , 11) and 60 s for
the rest (gates o = 12, . . . , 15).

For the solution of (9) or (11) it suffices to specify the state matrices A, B, and C, and weighting
matrices Q and R. All state matrices are constructed for the studied network on the basis of
the selected x̂T = [n̂ 0], û = q̂ and d̂ = 0, and sampling time T = 180 s. The matrix
Q = diag(1/w, 1/`1,max, . . . , 1/`|O|,max) is selected, wherew = 2000 veh was found appropriate
to achieve equity. The diagonal elements of R were set equal to r = 0.00001. The disturbance
vector d consists of the demands do, o = 1, . . . , 15, at every origin of the protected network and
disturbance dn of the fundamental diagram. Trapezoidal demands have been used for do(k),
o = 1, . . . , 15, k = 0, . . . , Np − 1 over a predicted horizon of No = Np = 40. To capture the
uncertainty of the (scaled) fundamental diagram, particularly when the network operating in
the congested regime (notice the noise for n > 6000 veh), dn is selected to vary gradually with
respect to n(k) in the range [−3000, 3000] veh/h for n > 6000 veh.

Table 1: Different characteristics of entrance links and controlled gates.

Gate Length Capacity No lanes Saturation Flow Cycle Length Min Green Nominal Green Max Green Min Flow Nominal Flow Max Flow

# (m) (veh) (veh/h) (s) (s) (s) (s) (veh/h) (veh/h) (veh/h)

1 235 128 3 5400 60 15 33 39 1350 2970 3510

2 299 109 2 3600 60 12 30 42 720 1800 2520

3 299 163 3 5400 60 15 27 39 1350 2430 3510

4 271 98 2 3600 60 12 35 42 720 2100 2520

5 261 95 2 3600 60 12 24 42 720 1440 2520

6 299 109 2 3600 60 12 30 42 720 1800 2520

7 298 109 2 3600 60 12 36 39 720 2160 2340

8 298 109 2 3600 60 12 37 42 720 2220 2520

9 296 269 5 10000 60 17 27 31 2833 4500 5167

10 296 269 5 8800 60 16 27 38 2347 3960 5573

11 299 109 2 3600 60 12 25 42 720 1500 2520

12 190 103 3 5400 90 13 42 43 780 2520 2580

13 81 44 3 5400 90 12 18 41 720 1080 2460

14 81 44 3 5400 90 12 20 41 720 1200 2460

15 341 186 3 5400 90 12 48 59 720 2880 3540
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4.3 Open-loop Control Results

Several tests were conducted in order to investigate the behaviour of the proposed distributed
control for different scenarios. The scenarios were created by assuming more or less high
initial queues `o(0) in the fifteen origin links of the protected network while the protected net-
work area operating in the congested regime, i.e. its state n(0) > 6000 veh. The optimisation
horizon for each scenario is 2 h (40 cycles).

Fig. 4 shows some obtained trajectories for a heavy scenario with `o(0) = 0.7`o,max, ∀o =
1, . . . , 15 and two initial states in the congested regime of the fundamental diagram n(0) = 7000
veh and n(0) = 12000 veh (extreme case). Tests were conducted with and without external
demand flows at origin links, denoted with “s+d” and “s-d”, respectively. It should be noted that
despite the same level of saturation (70%) is used for all origin links, the corresponding vehicle
queues observed vary due to different geometric characteristics. The main observations are
summarised in the following remarks:

• The proposed strategy manages to stabilise the vehicle accumulation of the protected
network around its desired point n̂ = 4000 veh for all initial points (even in the extreme
case) and cases with and without disturbances (see Fig. 4(c)).

• The proposed distributed control strategy manages to dissolve the initial origin link
queues in a balanced way (see Figs. 4(j–o)) and thus, the desired control objective
of queue balancing and equity for drivers using different gates to enter the protected
network area is achieved.

• The proposed strategy manages to stabilise all input flows to their desired values q̂
(corresponding to the nominal signal plan in Table 1) in the steady state, i.e., where
n = n̂ = 4000 and system’s throughput is maximised (see Figs. 4(d–i), notice the differ-
ent reference points q̂o in each subfigure).

• The input flows ordered by the distributed perimeter flow control strategy have different
trajectories and characteristics (see control trajectories in Figs. 4(d–i)). This confirms
that an equal distribution of ordered flows to corresponding junctions is not optimal, as
largely assumed or ignored in previous studies. As can be seen, the proposed strategy
determines optimally distributed input flows (or feasible entrance link green times) by
taking into account the individual geometric characteristics of the origin links as well as
minimum and maximum constraints.

• Excessive demand and high initial queues at origin links, coupled with the applied control,
causes congestion shortly after the beginning of the time horizon. At the same time the
protected network is operating in the congested regime (n(0) = 7000 veh or n(0) = 12000
veh). As can be seen, the distributed control strategy first restricts the high initial queues
at origin links to flow into the oversaturated protected network area and then, in order
to manage the developed long queues therein (in some cases reach the upper bounds),
it gradually increases the input flows. Note that for some gates (7, 8 and 9) bound
constraints are active for a certain time period.

Figs. 4(a, b) depict the state and control trajectories for the perimeter flow control problem
without origin link dynamics, i.e. for the single-input single output control problem with only
(1). For this problem n̂ = 6000 veh is considered. As can be seen, the strategy manages to
stabilise the vehicle accumulation of the protected network around its desired point n̂ = 6000
veh starting from a number of different initial points. The strategy restricts flow to enter the
protected network area whenever n > 6000, while increases the input flows for n < 6000. It is
evident that the single-region control strategy without queue dynamics outside of the protected
area needs more time and effort to stabilise the system at k = 60, compared to the proposed
distributed perimeter flow control, which stabilises all queues and protected network’s accu-
mulation at k = 40. This is attributed to the complete lack of information of the geometric
characteristics of the origin links that affects control decisions. On the other hand, the control
flexibility and efficiency of the proposed control while explicitly considering the queue dynamics
and constraints underlines the clear superiority of appropriate distributed flow control.
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Figure 4: (a, b) State and control trajectories without link dynamics; (c) State trajectories of
the protected network for different initial points with and without disturbance; (d–o) State and
control trajectories of six selected origin links (gates) for different initial points with and without
disturbance.
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5 Conclusions

In this paper, an integrated model for distributed perimeter flow control is presented. Com-
pared to previous works, the proposed scheme determines optimally distributed input flows for
a number of gates located at the periphery of a protected network area. Simulation results
for a protected area of downtown San Francisco with fifteen gates of different geometric char-
acteristics were presented. Results demonstrated the efficiency and equity properties of the
proposed approach to better manage excessive queues outside of the protected network area
and optimally distribute the input flows. It is expected that similar policies can also be utilised
for dynamic road pricing. Future research will focus on the efficiency versus equity properties
of perimeter flow control with queue dynamics and the integration of additional components for
dynamic road pricing.
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