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ABSTRACT 

This article aims to combine physico-chemical modelling to statistical analysis algorithms to 

provide alternative advanced approach for the optimisation of biomass pyrolysis and 

gasification processes. The goal was to develop an automated flexible approach for the 

analyses and optimisation of these processes. The approach can also be directly extended to 

other biomass conversion processes, and in general to all those processes for which a 

parameterised model is available. A flexible physico-chemical model of the process is 

initially built. Within this model, a hierarchy of sensitive model parameters and input 

variables are identified, which are then automatically adjusted to calibrate the model and 

optimise the process. Through the mathematical model of the process we can understand how 

species concentration and reactor conditions evolve in the system under study. The flexibility 

given by the ability to control any parameter of the model is critical in providing the capacity 

to effectively control both the efficiency of the process and its emissions. It allows users to 

design and operate feedstock-flexible pyrolysis and gasification processes, accurately control 

product characteristics, and limit or prevent the formation of unwanted by-products (e.g. tar 

in biomass gasification processes).  

 

INTRODUCTION 

An alternative and sustainable way of producing energy, fuels and chemicals with low, zero 

or negative emissions and meeting the total demand globally is crucial for providing the 

security of future supply long after the conventional fossil fuels run out. Biomass gasification 
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and pyrolysis can ensure this due to feedstock sustainability, inherent carbon neutrality and 

ability to potentially achieve negative emissions when coupled with carbon capture and 

sequestration (CCS) technologies [1].  

A large number of biomass feedstocks, including energy crops, wastes and wood pellets, can 

be transformed into energy, biofuels and other chemicals via two main conversion routes,  

thermochemical and biological. The thermochemical route is more flexible in terms of the 

feedstocks that can be used and, when compared to the biological route, its products are also 

more compatible with those of existing petroleum refining operations (transport fuels and 

feedstock chemicals) [2]. Thermochemical conversion processes include direct combustion, 

pyrolysis and gasification. As mentioned earlier, this article will focus on two of these 

processes, namely pyrolysis and gasification.  

During pyrolysis, the biomass is thermally degraded by heat in the absence of oxygen at 

lower temperatures compared to those used for direct combustion and gasification. From the 

degradation of the biomass, charcoal, bio-oil (or pyrolysis oil) and fuel gas are produced. 

Bio-oil can be used as fuel in boilers, diesel engines or gas turbines [3].  

Gasification occurs when partial oxidation of biomass at elevated temperatures is carried out. 

Oxidation reactions takes place in the biomass gasifier at temperatures between 700-1400°C. 

The primary product in this case is a mixture of gases, also known as syngas or producer gas, 

primarily composed of H2, CO, CO2 and CH4. Syngas can be converted into fuels, including 

H2, Fischer-Tropsch diesels and synthetic gasoline, as well as widely used chemicals such as 

methanol and urea [2]. 

To promote these processes, novel, cost-effective and more efficient technologies are 

required. One of the main challenges in biomass conversion processes like gasification and 

pyrolysis is to understand how operating conditions and feedstock composition affect the 

reactions within the process and, therefore, the product specifications [2]. Some of the main 

difficulties encountered when trying to model these correlations include the fact that biomass 

feedstock is often neither completely known nor homogeneous [4], the intrinsic reaction 

pathway of the pyrolysis reactions, central to the overall biomass thermal treatment process, 

are complex and not fully understood, and multiscale phenomena take place within the 

reactor [5].  

In optimally exploiting the flexibility and supply security offered by various biomass 

feedstocks and the intrinsic advantages in terms of the low CO2 footprint of biomass 

gasification and pyrolysis technologies, virtual engineering has a vital role to play as a key 
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enabler in accelerated cost-effective technology development and TRL progression [6] [7] [8] 

[9] [10]. The use of a flexible and reliable physico-chemical model, and the ability to speed 

up and automate its analysis, understanding, calibration and exploitation via integration with 

a statistical analysis toolkit, which is done by this work, will provide an effective and robust 

strategy to tackle and solve the drawbacks listed above. Through optimal design and detailed 

process control will allow us to achieve the feedstock flexibility, and product yield and 

quality, required to make biomass pyrolysis and gasification widely exploited processes. 

Considerable effort has been spent in formulating suitable models for the intrisically complex 

biomass pyrolysis and gasification processes and in identifying optimal design, operating and 

kinetic parameters for these models. Kinetic and process parameters have been identified 

either through experimental [11] [12] [13] or numerical [14] [15] methods. Much less has 

been done in the field of statistical analysis, automated calibration and optimisation of these 

models [16] [17].  

The availability of a large array of mathematical models is advantageous. Statistical analysis 

toolkits can be used to carry out rapid assessment of the model performances before any type 

of analysys or perameter estimation is implemented. A proprietary statistical analysis toolkit 

from CMCL Innovations, MoDS (Model Development Suite), is used here to perform global 

sensitivity analysis, error propagation studies, calibration and optimisation of available 

models for biomass pyrolysis and gasification processes, with MoDS able to seamlessly 

couple with these, as well as with virtually any other third party model or toolkit.  

A novel strategy that automates the estimation and optimisation of model parameters and 

reaction rates is presented. Two proprietary software from CMCL Innovations, namely 

kinetics and MoDS, together with a thermochemical model for downdraft gasifiers developed 

by the research group of Dr Manosh Paul at the University of Glasgow, have been used to 

produce the results presented in this paper. 

 

MODEL DESCRIPTION AND INTEGRATION WITH MoDS 

MoDS is a statistical analysis software that finds use in a number of applications, including 

parameter estimation [18] [19] [20] [21], optimal design of experiment, global sensitivity and 

uncertainty propagation analysis [22] [23], and process optimisation. MoDS uses a suite of 

numerical and statistical analysis algorithms to gain insight from other models, simulators or 

CAE (Computer Aided Engineering) toolkits, treating them as black boxes. Results from 

these analysis can be used by the software to identify trends and provide predictions based on 

the original model [24]. MoDS was used here to calibrate available models for biomass 
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gasification and pyrolysis against existing experimental data, and to optimise a biomass 

downdraft gasification process.  

Extensible Markup Language (XML) or comma delimited (CSV) files containing model 

parameters and control variables are automatically created by MODS and passed as inputs to 

the model, either through an API (Application Programming Interface) or as the input files to 

an executable generated from the model script. These files are generated iteratively by a 

sampling algorithms, such as Monte Carlo or Sobol [25] [26] [27] [28]. Results are produced 

generally in CSV format, and then read and analysed by MoDS, which uses the information 

gathered through this iterative process to perform, for example, global sensitivity analysis, 

optimal design of experiment, model calibration against experimental data or process 

optimisation. 

 

Biomass pyrolysis 

kinetics is a software used in the automotive/non-road, energy, and chemical processing 

industries to build, manage and implement chemical kinetic models. It comprises a library of 

chemical reactor (physico-chemical) models derived from first principles [29] [30]. Examples 

of applications of kinetics, and of the kinetics-based suite for IC (Internal Combustion) engine 

and fuel modelling kinetics & SRM Engine Suite, include the development of reduced 

chemical kinetic schemes for fuel oxidation and emission pathways [31] [32], and the 

modelling of organic [33] [34] and inorganic [35] nanoparticles synthesis. 

The analysis of chemical kinetics can become challenging as the number of interacting 

chemical species increases. A sensitivity analysis is required in this cases, with kinetics that 

can be used to perform local sensitivity analysis, as well as mechanism reduction on any of 

its models.  

The biomass pyrolysis kinetic mechanism used here was taken from Ranzi et al. [36]. It 

defines the biomass as a mixture of three key components: cellulose, hemicellulose and 

lignin. These components can be mixed in different proportions depending on the type of 

biomass (e.g. softwood, hardwood, etc.). The model provides a lumped kinetic scheme 

describing the devolatilisation of these components, and the decomposition of the solid into 

permanent gases, condensable vapours (tars) and solid residues (char). The detailed kinetic 

scheme is completed by the mechanism for the secondary reactions of the released gas-phase 

species. A constant pressure homogeneous batch reactor was used to simulate the biomass 

pyrolysis process in kinetics.  
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The coupling between the model developed in kinetics and MoDS is realised through a 

workflow. The MoDS-kinetics workflow was designed to provide a seamless handover 

between these two software. The reactor model setup and process conditions are defined in 

kinetics. These are automatically exported in MoDS, where advanced statistical analysis and 

calibration of the model is performed. A post-processing toolkit (CMCL Explorer) has been 

also integrated within the workflow and is used to represent the dynamic evolution of both 

model inputs and calibrated parameters, as well as results from the sensitivity analysis and 

error propagation studies performed on the model. A schematic of the workflow used for 

model calibration is presented in Figure 1.  

Any model parameter available to kinetics can be estimated using MoDS via the workflow. 

MoDS provides recommended calibration settings and can validate settings that the user 

customises. Experimental data can be read directly from comma delimited files. MoDS 

automatically interpolates profile data to compare model and experiments at different times 

or reactor lengths [37]. The optimisation algorithm choice and configuration can be tailored 

to fit the specific model and problem.  

  

 

Figure 1 MoDS-kinetics workflow for model calibration 

Biomass gasification 

The model used here is a four-zone (namely drying, pyrolysis, oxidation and reduction zones) 

integrated 1D kinetic model of a biomass downdraft gasifier, which allows to investigate the 

effect of, for example, moisture content and air-to-fuel ratio on the operating conditions and 

design specifications of each zone, as well as to predict composition and tar content of the 

producer gas. Individual chemical kinetic schemes are used for each zone of the gasifier to 

describe the main mechanisms of biomass drying, pyrolysis, oxidation and reduction [38] 

[39].  

The model is written in Matlab. A wrapper for the Matlab code was created to generate a 

model executable with input and output files, which was used by MoDS. The MoDS-Matlab 
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integrated toolkit was used to perform an initial analysis and calibration of the model, and 

subsequently to optimise the downdraft biomass gasification process with the aim of 

identifying design specifications and operating conditions for the gasifier leading to a 

reduction in tar and other undesired gaseous species, and to an increase in the heating value 

and yield of the syngas.   

 

RESULTS AND DISCUSSION 

Biomass pyrolysis 

Thermogravimetric (TG) data were taken from the heated wire mesh reactor studies of 

Milosavljevic and Suuberg [40], who studied cellulose pyrolysis at different heating rates. 

Simulations were conducted in kinetics using a constant pressure homogeneous batch reactor 

model with an imposed temperature profile. It was assumed that at the beginning of the 

process only cellulose was present (Ycell = 1.0). Figure 2 shows the simulation results when a 

heating rate of 5 K/min is used. It can be seen that a good agreement with the experimental 

data is obtained, when combining the detailed mechanism from Ranzi et al. [41] [42] and the 

model developed in kinetics. 

 

 

Figure 2 Non-isothermal thermogravimetric curves for the pyrolysis of cellulose in inert gas - model predictions (line) and 

experimental data (points) [40]. 
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With the aim of further improving the match with the experimental data, we identified key 

reactions by performing a mechanism reduction. Available mechanism reduction strategies in 

kinetics were used to produce a hierarchy of reduced models. One of the algorithms used is 

the Directed Relation Graph with Error Propagation (DRGEP) [43]. Each node in a DRGEP 

represents a species in the detailed mechanism, while the edges and their thickness represent 

the importance of these species relatively to initially selected target species, which are those 

species we want to keep in the mechanism. By using the DRGEP technique, we were able to 

identify, after combining the results from different possible scenario and by selecting an 

adequate error threshold, out of more than 20,000 reactions of the original mechanism [41] 

[42], 19 key reactions. By using the MoDS-kinetics workflow to calibrate the frequency 

factor of these 19 reactions we were able to further improve the match with the experimental 

data, as can be seen in Figure 3. The original and modified values of these 19 frequency 

factor are reported in Table 1.   

 

 

Figure 3 Non-isothermal thermogravimetric curves for the pyrolysis of cellulose in inert gas – original model (sim – kinet-

ics) versus calibrated model (sim – workflow) predictions (points represent experimental data [40]) 
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pyrolysis of a microcrystalline cellulose (Avicel pH-102) at different temperatures and at an 

average residence time in the reactor of 0.5 seconds. The moisture content was set to YH2O = 

2.9% [44]. The simulation time was set equal to the average experimental residence time. 

Obtained simulation data, when using the original model and the calibrated model with the 

frequency factors from Table 1, are presented in Figure 4. It can be seen that an improved 

agreement with the experimental data was achieved when using the calibrated model.  

 

 

Figure 4 Yield of Levoglucosan from the pyrolysis of microcrystalline cellulose (Avicel pH-102) – original model (sim – ki-

netics) versus calibrated model (sim – workflow) predictions (points represent experimental data [44]) 
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improved match is observed when using the modified 19 frequency factors of the calibrated 

model.  

 

Table 1 Key reactions from the mechanism of Ranzi et al. [41] [42] with original and calibrated frequency factors 

Reaction 
Original   
Frequency 
Factor 

Calibrated 
Frequency 
Factor 

Unit of 
measure 

CELLA →  5E-2*H2 + 0.93*H2O + 0.61*CO + 0.36*CO2 + 0.3*CH2O + 2E-
2*HCOOH + 0.15*CH3OH + 5E-2*C2H2O2 + 0.15*CH3CHO + 0.4*C2H4O2 + 
0.35*C2H5CHO + 5E-2*C3H6O2 + 0.25*C6H6O3 + 0.61*CSOLID + 0.2*H2(S) + 
5E-2CH4(S) 2.50E+06 7.91E+02 1/s 

CELLA →  C6H10O5 3.30E+00 1.04E+03 1/K/s 

CELL →  5*H2O + 6*CSOLID 6.00E+07 6.00E+08 1/s 

HCE1 →  0.4*H2O + 0.16*CO + 0.12*C2H2O2 + 0.2*C3H6O2 + 0.2*C5H4O2 + 
0.6*C5H8O4 + 8E-2*H2(S) 3.00E+00 3.00E+02 1/K/s 

HCE1→  0.4*H2O + 0.69*CO + 0.79*CO2 + 0.3*CH2O + 5E-2*HCOOH + 
0.875*CSOLID + 1E-2*CO2(S) + 1E-2*CO(S) + 0.9*COH2(S) + 0.35*H2(S) + 
0.625*CH4(S) + 0.375*C2H4(S) 1.80E-03 1.80E-06 1/K/s 

HCE2 →  CSOLID + 0.2*H2O + 0.275*CO + 0.275*CO2 + 0.4*CH2O + 2.5E-
2*HCOOH + 5E-2*C2H4O2 + 0.35*CH3COOH + 0.1*C2H5OH + 0.3*CO2(S) + 
0.725*COH2(S) + 0.25*CH4(S) + 0.3*CH3OH(S) + 0.225*C2H4(S) 5.00E+09 1.58E+10 1/s 

LIGC →  H2O + 0.32*CO + 0.3*CH2O + 0.41*C2H4 + 8E-2*C6H5OH + 
0.1*C9H10O2 + 5.735*CSOLID + 0.35*LIGCC + 0.7*COH2(S) + 0.495*CH4(S) 1.00E+11 1.00E+14 1/s 

LIGCC →  H2 + 0.7*H2O + 1.4*CO + 0.65*CH4 + 0.6*C2H4 + 0.35*C2H4O2 + 
0.2*C6H5OH + 0.3*C9H10O2 + 6.75*CSOLID + 0.4*CO(S) 1.00E+04 1.00E+06 1/s 

LIGOH →  H2O + 0.65*CO + 5E-2*CO2 + 5E-2*HCOOH + 0.1*CH4 + 
0.6*CH3OH + 0.1*C2H3CHO + 2.5E-2*C24H28O4 + 4.25*CSOLID + 0.9*LIG + 
0.6*CO(S) + 0.85*COH2(S) + 5E-2*H2(S) + 0.35*CH4(S) + 0.3*CH3OH(S) + 
0.2*C2H4(S) 1.00E+08 1.00E+07 1/s 

LIG →  0.3*CO + 0.3*CH3CHO + 0.3*C6H5OCH3 + 0.7*C11H12O4 + 0.3*CO(S) 4.00E+00 4.00E+01 1/K/s 

LIG →  6*CSOLID + 2*COH2(S) + 0.6*H2O + 0.4*CO + 0.4*CH2O + 0.2*CH4 + 
0.2*CO(S) + 0.4*CH4(S) + 0.4*CH3OH(S) + 0.5*C2H4(S) 8.30E-02 8.30E-06 1/K/s 

LIG →  C2H4 + 0.6*H2O + 2.6*CO + 0.4*CH2O + 1.1*CH4 + 0.4*CH3OH + 
4.5*CSOLID 1.00E+07 1.00E+03 1/s 

CO2(S) →  CO2 1.00E+06 3.16E+06 1/s 

CO(S) →  CO 5.00E+12 5.00E+14 1/s 

COH2(S)→  H2 + CO 1.50E+12 1.50E+14 1/s 

H2(S) →  H2 5.00E+11 5.00E+13 1/s 

CH4(S) →  CH4 5.00E+12 5.00E+15 1/s 

CH3OH(S) → CH3OH 2.00E+12 6.32E+14 1/s 

C2H4(S) →  C2H4 5.00E+12 5.00E+15 1/s 

 

 



  

10 

 

Figure 5 Non-isothermal thermogravimetric curves for the pyrolysis of softwood in nitrogen – original model (sim – kinet-

ics) versus calibrated model (sim – workflow) predictions (points represent experimental data [45]) 
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The results presented in Figure 6 and Figure 7 were produced using Neem, with a 20% 

moisture content, as feedstock [47]. A representative number of other samples were studied 

here, including bamboo, rubber wood, wood pellets, wheat straw and wood chips. The results 

from the studies carried out on all these samples were combined to identify the more sensitive 

inputs and uncertain outputs in the model.  

By looking at Figure 6, we can see how key outputs, like the fraction of hydrogen in the 

syngas and the tar content, are strongly influenced by the temperature of the drying zone, or 

how the diameter of the pyrolysis zone is predominantly affected by the power output of the 

gasification unit. These and other conclusions often cannot be directly inferred from the 

model without the help of advanced statistical analysis algorithms, which is the approach 

followed and promoted by this work.  

 

Figure 6 Global sensitivities of key outputs to input variables and model parameter for the biomass downdraft gasifier [38] 
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From Figure 7 we also see how, for example, any uncertainty in the characterisation of the 

biomass feedstock substantially affects some important outputs and design parameters of the 

gasifier. In particular, we can see how the carbon content of the feedstock has a strong 

influence on the throat diameter of the downdraft gasifier. The relatively large number of 

interconnected terms contributing significantly to the overall uncertainty of the outputs shows 

that many of the decision variable used by the model are strongly correlated.   

 

Figure 7 Contribution of selected decision variables to key outputs uncertainties for the biomass downdraft gasifier [38] 
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the calibrated model is presented in Figure 8. A general improvement in the match with the 

experimental results can be observed when using the calibrated model. Table 3 presents the 

full set of calibrated parameters used to generate the results shown in Figure 8. 

 

Table 2 Model parameter acronyms [38] 

Acronym Parameter 

C Carbon in feedstock 

H Hydrogen in feedstock 

O Oxygen in feedstock 

S Sulphur in feedstock 

ER Equivalence ratio 

h Moisture content 

T01 Initial temperature of feedstock 

HR1 Heating rate in drying zone 

Td  Drying temperature 

Ed, Ad  Kinetic parameter for drying process 

A1,2, 3, 4  Pre-exponential multipliers for reduction reactions  

E1, 2, 3, 4  Activation energy for reduction reactions 

T Reduction zone temperature 

Tar1, 2, 3  Multipliers for tar concentration in pyrolysis and oxidation models 

char Multipliers for char concentration in pyrolysis models 

PO Power Output 

 

The calibrated model was then used to optimise the process via MoDS. Major targets 

considered in this study were the minimization of undesired by-products (e.g. tar), the 

maximization of the syngas yield and heating value, and the production of specified 

composition for the syngas (e.g. specific CO/H2 ratio for implementation of the syngas as 

chemical feedstock, or maximization of the H2 ratio in the syngas for hydrogen separation 

and purification). Optimisation routines used in MoDS include the Hooke and Jeeves direct 

search solution method, the Metropolis-Hastings algorithm, the truncated Newton method 

and the COBYLA (Constrained Optimisation by Linear Approximation) algorithm.  

Results from a multi-objective optimisation aimed at minimizing the tar content, as well as 

the fraction of CO2 and CH4 (undesired, for example, in H2 refinery or Fischer-Tropsch 

processes), is presented in Figure 9. Initial and optimised process conditions and design 

specifications for the 20 kW downdraft gasifier are reported in Table 4. The optimisation 

routine (Hook and Jeeves method, for the particular example shown here) was able to 
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effectively identify a set of optimal conditions and design details leading to a considerable 

improvement of the syngas quality.  

 

 

Figure 8 Comparison of syngas composition as simulated by the original model of Salem and Paul [38] and its calibrated 

version (MoDS) versus experimental results for different feedstocks [48] [49] [47]. 
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Table 3 Calibrated model parameters (Arrhenius coefficients for the chemical kinetic mechanism) [38] 

Acronym Model parameter Unit 
Initial 
value 

Calibrated 
value 

Ed Activation energy - drying kJ/mol  88 90.75 

Ad Frequency factor - drying s-1 5.13E+05 5.24E+10 

A1 Frequency factor - reduction (R1) s-1 36.16 35.715 

A2 Frequency factor - reduction (R2) s-1 1.52E+04 1.51E+04 

A3 Frequency factor - reduction (R3) s-1 4.19E-03 4.24E-03 

A4 Frequency factor - reduction (R4) s-1 7.30E-02 7.42E-02 

E1 Activation energy - reduction (R1) kJ/mol 77.39 77.87 

E2 Activation energy - reduction (R2) kJ/mol 121.62 121.62 

E3 Activation energy - reduction (R3) kJ/mol 19.21 19.12 

E4 Activation energy - reduction (R4) kJ/mol 36.15 35.303 

 

 

Figure 9 Optimised process outputs (minimisation of tar content and undesired by-product (CO2 and CH4) fractions in the 

syngas) for a 20 kW biomass downdraft gasifier  
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Table 4 Initial and optimal values of operating conditions and design specifications for a 20 kW biomass downdraft gasifier 

Parameter Unit Initial Optimal 

Equivalence ratio - 0.3 0.44 

Power output kW 20 22.4 

Temperature of the drying zone K 400 470 

Heating rate in drying zone K/s 20 16.5 

Temperature of the pyrolysis zone K 873 873 

Temperature of the reduction zone K 1350 1139 

Height of the drying and pyrolysis zone cm 57.14 57.14 

Height of the oxidation zone cm 10.09 12.36 

Diameter of the pyrolysis zone cm 20.17 24.71 

Throat diameter cm 5.76 7.06 

Area of air injection cm2 2.35 3.52 

Air injection diameter cm 16.14 19.77 

 

 

CONCLUSIONS  

Rapid and cost-effective technology development, the design of flexible processes able to 

efficiently transform different types of biomass, including wastes, into a number of products 

(e.g. electricity, fuels and chemicals), while simultaneously reducing pollutant emissions and 

unwanted by-products, can be effectively achieved only through the implementation of 

integrated virtual engineering techniques. These requirements, coupled with the complexity 

and uncertainty of the chemistry for biomass pyrolysis and gasification, the variability and 

unpredictability of biomass feedstock characteristics, and the strong sensitivity to changes in 

the operating conditions of the process outputs, have proven challenging in the past and have 

led to a limited exploitation of biomass pyrolysis and gasification, critical technologies in 

achieving the sustainability of energy supply and industrial decarbonisation governments are 

currently aiming for worldwide. The implementation of automated calibration and 

optimisation techniques via direct integration of detailed physico-chemical models with 

statistical analysis toolkits (MoDS) was used in the current work in the attempt to 

simultaneously solve the multiple challenges listed above. Process insight was obtained 

through global sensitivity analysis and uncertainty propagation studies. By using flexible and 

non-computationally expensive mathematical models, we were able to achieve detailed 

system understanding, perform robust model tuning, and identify optimal design 

specifications and operating conditions for the technologies under study in a time frame 

compatible with those required by real industrial applications. The results obtained from this 
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study are encouraging and we believe will promote the implementation of similar strategies 

to a wider range of engineering problems. 
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