

Young, N. E. et al. (2018) Deglaciation of coastal south-western Spitsbergen dated with in situ cosmogenic 10Be and 14C measurements. *Journal of Quaternary Science*, 33(7), pp. 763-776.

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

Young, N. E. et al. (2018) Deglaciation of coastal south-western Spitsbergen dated with in situ cosmogenic 10Be and 14C measurements. *Journal of Quaternary Science*, 33(7), pp. 763-776. (doi:10.1002/jqs.3058)

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

http://eprints.gla.ac.uk/163991/

Deposited on: 25 July 2018

| 1                                               | Deglaciation of coastal southwestern Spitsbergen dated with <i>in situ</i> cosmogenic <sup>10</sup> Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                               | and <sup>14</sup> C measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4<br>5<br>6                                     | Nicolás E. Young <sup>1*</sup> , Jennifer Lamp <sup>1</sup> , Toby Koffman <sup>1</sup> , Jason P. Briner <sup>2</sup> , Joerg Schaefer <sup>1</sup> , Endre F. Gjermundsen <sup>3,4</sup> ,<br>Henriette Linge <sup>5</sup> , Susan Zimmerman <sup>6</sup> , Thomas P. Guilderson <sup>6</sup> , Derek Fabel <sup>7</sup> , Anne Hormes <sup>3,8</sup>                                                                                                                                                                                                                                                                                                                                                  |
| 6<br>7<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | <sup>1</sup> Lamont-Doherty Earth Observatory, Columbia University, Palisades NY, USA<br><sup>2</sup> Department of Geology, University at Buffalo, Buffalo NY, USA<br><sup>3</sup> The University Centre of Svalbard, Longyearbyen, Norway<br><sup>4</sup> Department of Business and IT, University College of Southeast Norway, Bø, Norway<br><sup>5</sup> University of Bergen, Bergen, Norway<br><sup>6</sup> Lawrence Livermore National Laboratory, Center for Accelerator Mass Spectrometry, Livermore CA, USA<br><sup>7</sup> Scottish Universities Environmental Research Centre, East Kilbride, UK<br><sup>8</sup> Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden |
| 16<br>17<br>18                                  | *Corresponding author: Nicolás E. Young<br>Email: <u>nicolasy@ldeo.columbia.edu;</u> 845.365.8653<br>Keywords: Quaternary; ice sheets; Svalbard; cosmogenic nuclides, <i>in situ</i> <sup>14</sup> C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 19<br>20                                        | Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21                                              | The Svalbard-Barents ice sheet was predominantly a marine-based ice sheet and reconstructing the timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22                                              | and rate of its decay during the last deglaciation informs predictions of future decay of marine-based ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23                                              | sheets (e.g. West Antarctica). Records of ice-sheet change are now routinely built with cosmogenic surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 24                                              | exposure ages, but in some regions, this method is complicated by the presence of isotopic inheritance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 25                                              | yielding artificially old and erroneous exposure ages. We present forty-six <sup>10</sup> Be ages from bedrock (n = 42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 26                                              | and erratic boulders (n = 4) in southwestern Spitsbergen that, when paired with in situ $^{14}$ C measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 27                                              | (n = 5), constrain the timing of coastal deglaciation following the last glacial maximum. <sup>10</sup> Be and <i>in situ</i> <sup>14</sup> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 28                                              | measurements from bedrock along a ~400 m elevation transect reveal inheritance-skewed <sup>10</sup> Be ages,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 29                                              | whereas in situ $^{14}$ C measurements constrain 400 m of ice-sheet thinning and coastal deglaciation at 17.4 $\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 30                                              | 1.5 ka. Our in situ <sup>14</sup> C-dated transect, combined with three additional <sup>10</sup> Be-dated coastal sites, show that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 31                                              | the southwestern margin of the Svalbard-Barents ice sheet retreated out of Norwegian Sea between ~18-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 32                                              | 16 ka. In situ <sup>14</sup> C measurements provide key chronological information on ice-sheet response to the last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 33                                              | termination in cases where measurements of long-lived nuclides are compromised by isotopic inheritance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 34                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 35                                              | 1. Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 36                                              | Geological records that constrain the timing and magnitude of ice-sheet demise during the last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 37                                              | deglaciation provide important insights into the response of ice sheets to a warming climate. At its maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

38 extent during the last glacial cycle the Svalbard-Barents ice sheet (SBIS) was part of the broader Eurasian

39 ice sheet complex with a sea-level equivalent of ~24 m (Hughes et al., 2016). Resting at the northwestern 40 limit of the SBIS, the Svalbard archipelago is one of the few terrestrial locations within the primarily marine-41 based SBIS footprint. Accordingly, much of our current understanding of how the SBIS evolved through the 42 last glacial cycle is based on archives of ice-sheet change present on Svalbard (Fig. 1; Landvik et al., 1998; 43 Ingólfsson and Landvik, 2013; Hormes et al., 2013; Landvik et al., 2014; Eccleshall et al., 2016). Gauging 44 how the SBIS decayed at the end of the last glaciation can help identify mechanisms of global climate 45 change and inform ice sheet models used to explore the sensitivity of marine-based ice sheets to various 46 climatic and glaciological parameters (Stokes et al., 2015; Patton et al., 2016).

47 Cosmogenic nuclide measurements are often used to develop detailed chronologies of ice sheet 48 and glacier change (e.g. Balco, 2011; Granger et al., 2013; Ivy-Ochs and Briner, 2014). On Svalbard, there 49 have been a number of efforts to reconstruct SBIS behavior during the last glacial cycle using cosmogenic 50 nuclides with mixed success. One limitation is that much of Svalbard does not host the guartz-bearing rocks 51 required for <sup>10</sup>Be measurements, and accordingly the geographic scope of cosmogenic nuclide-based 52 measurements is relatively restricted. Nonetheless, the first <sup>10</sup>Be ages from Svalbard were used to propose 53 that ice-free regions in northwestern Svalbard existed during last glacial maximum (Landvik et al., 2003). 54 However, while <sup>10</sup>Be ages older than ~75 ka defined the maximum SBIS thickness in NW Svalbard, these 55 old <sup>10</sup>Be ages do not preclude the presence of widespread and systematic isotopic inheritance on the 56 landscape. Using the same approach, a number of <sup>10</sup>Be ages from western Svalbard and Nordaustlandet 57 help constrain the dimensions of the SBIS during the last glacial cycle (Hormes et al., 2011; 2013; Landvik 58 et al. 2013; Gjermundsen et al., 2013; Fig 1). Most recently, <sup>10</sup>Be and <sup>26</sup>Al measurements from high-59 elevation bedrock suggest that Svalbard's alpine landscape has survived repeated glaciations through the 60 Quaternary suggestive of a minimally erosive ice sheet (Gjermundsen et al., 2015). Although these studies place broad constraints on SBIS behavior through the last glacial cycle and longer, they also suffer from 61 62 somewhat geographically and chronologically scattered <sup>10</sup>Be ages, making it difficult to develop detailed 63 millennial-scale chronologies of ice-sheet change. Collectively, these studies highlight a landscape that is 64 challenging for developing cosmogenic-nuclide based chronologies of ice-sheet change, likely due to the 65 widespread presence of non-erosive cold-based ice and its variable imprint on the landscape (Landvik et 66 al., 2014).

67 Surface exposure dating in glacial landscapes relies on the assumption that cosmogenic nuclides 68 that accumulated on the landscape prior to the most recent episode of exposure have been removed by 69 ~2-3 m of subglacial erosion during the latest interval of ice cover. In settings dominated by warm-based 70 and erosive ice, this assumption is typically valid, but at high-latitude locations, minimally erosive 71 polythermal and cold-based ice can result in cosmogenic nuclide datasets that are influenced by isotopic 72 inheritance (e.g. Håkansson et al., 2008; Corbett et al., 2013; Balco et al., 2014; Young et al., 2016). Isotopic 73 inheritance occurs when ice is unable to erode through the ~2-3 m of rock required to reset the cosmogenic 74 clock between periods of surface exposure and the resulting nuclide concentration is an aggregate of 2 or 75 more distinct periods of exposure. Inheritance is also possible within landscapes where despite 2-3 m of 76 erosion during the latest interval of glaciation, deep subsurface nuclide accumulation in periods of 77 prolonged surface exposure between glaciations, results in excess nuclide inventories that pre-date the 78 most recent period of ice cover (Briner et al., 2016).

79 Whereas long-lived or stable nuclides such as <sup>10</sup>Be ( $t_{1/2} = 1.387$  Ma; Chmeleff et al., 2010) must be 80 removed from the landscape via sufficient subglacial erosion, in situ<sup>14</sup>C is unique because its relatively 81 short half-life ( $t_{1/2}$  = 5730 years) allows for previously accumulated in situ<sup>14</sup>C to decay away to undetectable 82 levels after ~30 ka of simple burial of a surface by ice without the aid of subglacial erosion. In situ <sup>14</sup>C 83 measurements are perhaps most powerful when paired with <sup>10</sup>Be to resolve complex exposure-burial 84 histories (e.g. Goehring et al., 2011), but in situ <sup>14</sup>C measurements are also particularly attractive in 85 environments characterized by minimally erosive ice that is not capable of resetting the cosmogenic clock 86 between periods of exposure. Measuring several nuclides in conjunction yields a more complete 87 guantitative understanding of ice-sheet fluctuations over multiple time-scales, but in situ <sup>14</sup>C measurements 88 are perhaps best suited to constrain the timing of the last deglaciation in settings where long-lived nuclides such as <sup>10</sup>Be run a much higher risk of carrying inheritance from prior exposure (e.g. Briner et al., 2014; 89 90 Johnson et al., 2017). Despite its potential, in situ<sup>14</sup>C is rarely utilized because of the difficulty of extracting 91 <sup>14</sup>C from the mineral guartz in geological samples (e.g. Lifton et al., 2001; Balco et al., 2016).

We present 46 <sup>10</sup>Be ages, 5 *in situ* <sup>14</sup>C ages and 5 <sup>26</sup>Al ages from 4 sites in southwestern
Spitsbergen to constrain the timing of coastal deglaciation following the last glacial maximum. A component
of our <sup>10</sup>Be ages are influenced by isotopic inheritance, but our population of <sup>10</sup>Be ages is sufficiently large

95 to constrain the timing of coastal deglaciation in southwestern Spitsbergen. Combined *in situ* <sup>10</sup>Be, <sup>14</sup>C, and 96 <sup>26</sup>Al in 5 bedrock samples along a ~400 m elevation transect reveal that <sup>10</sup>Be and <sup>26</sup>Al concentrations yield 97 an ambiguous timing of deglaciation and a complex long-term exposure history but corresponding *in situ* 98 <sup>14</sup>C measurements robustly constrain millennial-scale ice-sheet thinning.

99

# 100 2. Setting and Methods

101 Our study area is Hornsund (76.97°N, 15.70°E), located in southwestern Spitsbergen (Fig. 1 and 102 Fig. 2). Several independent glaciers feed into the primary Hornsund channel (Fig. 1 and Fig. 2) and, at 103 present, ~800 km<sup>2</sup> of Hornsund's ~1200-km<sup>2</sup> drainage basin is glaciated with glacier retreat during the 104 observational record averaging ~70 m/a (Blaszczyk et al., 2013). At the head of Hornsund, a tidewater 105 glacier is currently located ~13 km east of its late Holocene maximum extent, which is marked by a 106 prominent moraine that was emplaced at Treskelen just before  $1.9 \pm 0.3$  ka based on recent <sup>10</sup>Be ages (n= 107 4; Philipps et al., 2017). During the last glacial cycle, Hornsund hosted a SBIS outlet glacier that was part 108 of the western margin of the SBIS. The western SBIS is thought to have advanced out to the continental 109 shelf 3 times during the last glacial cycle during Marine Isotope Stage (MIS) 5d, MIS 5b, and MIS 2 with 110 retreat from the outer shelf underway as early as ~23-20 ka (Mangerud et al., 1998; Jessen et al., 2010; 111 Hormes et al., 2013; Eccleshall et al., 2016). A single minimum limiting radiocarbon age from near Hornsund 112 indicates that by ~12.1 cal ka BP ice was less extensive than it is today (Birkenmajer and Olsson, 1998; 113 Hormes et al., 2013). The long-term pattern of SBIS advance and retreat in western Svalbard is largely 114 based on the Kapp Ekholm sediment section located at the inner reaches of Isfjorden, which displays 115 alternating units of glacial till and marine sediments (Fig. 1). Because Kapp Ekholm is situated only ~14 km 116 from modern ice, the marine sediment units likely mark intervals when Svalbard glaciers were likely not 117 much larger than today (Mangerud et al., 1998; Eccleshall et al., 2016).

We collected 46 samples for <sup>10</sup>Be dating, 5 samples for <sup>26</sup>Al measurement and 5 samples for *in situ* <sup>14</sup>C measurements along the southwestern coast of Spitsbergen. Thirty-four <sup>10</sup>Be samples are from the Hornsund region and are divided into 4 distinct groups (Fig. 1 and Fig. 2): 1) a series of nunatak and bedrock ridges (n = 18), 2) an elevation transect at Torbjørnsenfjellet on the north side of Hornsund (n = 5; Fig 3A), 3) an elevation transect at Wurmbrandegga on the south side of Hornsund (n = 7; Fig. 3B), and 4) boulders perched on a bedrock ridge adjacent to, but beyond, the late Holocene ice extent at Treskelen (n = 4). We measured *in situ* <sup>14</sup>C and <sup>26</sup>Al in each bedrock sample from the Torbjørnsenfjellet elevation transect. We also collected 4 bedrock samples from surfaces immediately outboard of the late Holocene terminal moraine (<150 m) at Scottbreen (77.54°N, 14.36°E) located ~70 km northwest of Hornsund (Fig. 1). Lastly, we collected 4 ridgeline bedrock samples from Fløyfjellet (77.41°N, 14.09°E) located ~60 km northwest of Hornsund and 4 bedrock samples from summits near Torellbreen (77.31°N, 14.09°E) located between Fløyfjellet and Hornsund (Fig. 1).

Samples were collected in 2013 and 2014 with a hammer and chisel, and a Trimble GeoXT and 130 131 Tempest antenna GPS receiver with a vertical uncertainty of ±0.5 m was used to record sample location 132 and elevation. A handheld clinometer was used to measure topographic shielding by the surrounding 133 topography. Beryllium-10 samples were processed at the Buffalo Cosmogenic Laboratory (n = 29), Lamont-134 Doherty Earth Observatory (LDEO) Cosmogenic Nuclide Laboratory (n = 13; n = 5 <sup>26</sup>Al samples), and the 135 Scottish Universities Environmental Research Centre (SUERC; n = 4) following standard extraction 136 methods for <sup>10</sup>Be and <sup>26</sup>Al (Schaefer et al., 2009). In situ <sup>14</sup>C samples were processed at LDEO and 137 measured <sup>14</sup>C concentrations are blank-corrected using a long-term laboratory blank. (Goehring et al., 138 2014; see Table 2 and Table 3). Accelerator mass spectrometric measurements for LDEO and Buffalo 139 samples were made at Lawrence Livermore National Laboratory - Center for Accelerator Mass 140 Spectrometry, and the remaining samples were measured at SUERC (Table 1). Surface exposure ages 141 were calculated using the Arctic (<sup>10</sup>Be and <sup>26</sup>Al) and western Greenland (<sup>14</sup>C) production rate calibration 142 datasets (Young et al., 2013; 2014) and 'Lm' scaling (Lal, 1991; Stone, 2000) since the effects of changes 143 in the geomagnetic field are minimal at this high latitude. Ages are calculated using version 3 of the 144 CRONUS calculator code that implements an updated treatment of muon-based nuclide production (Balco 145 et al., 2008; Balco, 2017). We do not correct nuclide concentrations for snow-cover or erosion; samples are 146 primarily from windswept locations and many sampled surfaces displayed primary glacial features. In 147 addition, we make no correction for isostatic rebound because the effects of uplift on nuclide production are 148 likely offset atmospheric compression, albeit these effects are difficult to quantify (Staiger et al., 2007). 149 Individual exposure ages are presented and discussed with 1-sigma analytical uncertainties, and when

comparing our results to independently dated records of ice sheet or environmental change, the productionrate uncertainty is propagated through in quadrature.

152

## 153 3. Results

154 Four individual <sup>10</sup>Be ages at Scottbreen are  $18.8 \pm 0.5$ ,  $17.9 \pm 0.3$ ,  $16.3 \pm 0.3$  and  $17.8 \pm 0.4$  ka (all 155 bedrock). At Fløyfjellet, four individual <sup>10</sup>Be ages are  $16.2 \pm 0.4$ ,  $16.2 \pm 0.4$ ,  $15.9 \pm 0.4$  and  $15.3 \pm 0.4$  ka 156 (all bedrock), and at Torellbreen, four additional <sup>10</sup>Be ages are  $23.0 \pm 0.5$ ,  $17.3 \pm 0.5$ ,  $16.0 \pm 0.3$  and 14.3157  $\pm$  0.3 ka (all bedrock). At Hornsund, the coastal nunatak and ridgeline <sup>10</sup>Be ages span 5.6  $\pm$  0.1 to 36.5 ka 158  $\pm$  0.7 ka (n = 18; bedrock). The Wurmbrandegga elevation transect has <sup>10</sup>Be ages ranging between 10.9  $\pm$ 159 0.3 ka to 13.8  $\pm$  0.3 ka (n = 7; bedrock), and the Torbjørnsenfjellet elevation transect has <sup>10</sup>Be ages ranging 160 from 16.0  $\pm$  0.3 ka to 36.3  $\pm$  0.6 ka (n=5; bedrock). The up-fjord <sup>10</sup>Be ages from erratic boulders perched 161 on bedrock range from 12.6  $\pm$  0.4 to 15.4 ka  $\pm$  0.9 ka (n=4). Lastly, <sup>26</sup>Al and *in situ* <sup>14</sup>C ages at 162 Torbjørnsenfjellet range from 17.2  $\pm$  1.1 ka to 35.8  $\pm$  1.8 ka and 16.7  $\pm$  2.9 ka to 18.5  $\pm$  2.7 ka, respectively 163 (Tables 1 - 3). Measured  ${}^{26}\text{Al}/{}^{10}\text{Be}$  ratios range from 7.38  $\pm$  0.64 to 5.77  $\pm$  0.38.

164

#### **4. Multiple nuclides constrain the timing of deglaciation and erosion regimes**

### 166 Scottbreen, Fløyfjellet and Torellbreen

167 The mean of four <sup>10</sup>Be ages at Scottbreen is 17.7  $\pm$  1.2 ka (production rate uncertainty included) 168 and it is tempting to use this age constraint as the timing of local coastal deglaciation. However, these four 169 samples are all from bedrock that are in close proximity to one another (~300 m distance and 38 m 170 elevation) and are located immediately outside Scottbreen's historical maximum extent. Landscapes 171 positioned near glacial maxima that spend a large proportion of a glacial cycle ice free may be affected by 172 small, uniform amounts of isotopic inheritance that yield consistent, but slightly too old <sup>10</sup>Be ages (Briner et 173 al., 2016). Because the Scottbreen samples are from such close proximity to each other, it is possible these 174 <sup>10</sup>Be bedrock ages simply constrain a local <sup>10</sup>Be inventory that contains a small, and uniform, amount of 175 isotopic inheritance. In addition, the age 17.7 ± 1.2 ka would indicate that Scottbreen retreated within its 176 late Holocene maximum extent rather early following the last glacial maximum. Nonetheless, while small

amounts of inheritance may be influencing our Scottbreen <sup>10</sup>Be ages, we tentatively use 17.7  $\pm$  1.2 ka as the timing of local deglaciation. At Fløyfjellet, all <sup>10</sup>Be ages overlap at 1-sigma indicating that deglaciation occurred at 15.9  $\pm$  0.7 ka. The four <sup>10</sup>Be ages at Torellbreen are more scattered (Table 1), but the individual <sup>10</sup>Be ages of 14.3  $\pm$  0.3 ka, 16.0  $\pm$  0.3 ka, and 17.3  $\pm$  0.5 ka (mean = 15.9  $\pm$  1.6 ka) are consistent with the timing of deglaciation at Fløyfjellet and Scottbreen. Combined, <sup>10</sup>Be ages indicate that deglaciation at Scottbreen, Fløyfjellet, and Torellbreen occurred at 17.7  $\pm$  1.2 ka, 15.9  $\pm$  0.7 ka, and 15.9  $\pm$  1.5 ka (Fig. 1).

183 The consistency between the timing of deglaciation at Scottbreen (17.7  $\pm$  1.2 ka), Fløyfjellet (15.9 184  $\pm$  0.7 ka) and Torellbreen (15.9  $\pm$  1.5 ka), which all post-date the last glacial maximum, is suggestive of 185 <sup>10</sup>Be ages that are accurately recording the timing of deglaciation and are not influenced by inheritance. 186 Moreover, <sup>10</sup>Be ages at all three locations are solely from bedrock suggesting that a warm-based SBIS was 187 able to erode through the ~2 m of rock required to reset the cosmogenic clock along Spitsbergen's 188 southwestern coast. Ultimately, we cannot rule out that our <sup>10</sup>Be measurements from Scottbreen, Fløyfjellet 189 and Torellbreen are systematically influenced by deep subsurface nuclide accumulation during periods of 190 prolonged surface exposure and contain a small amount of isotopic inheritance (Briner et al., 2016). 191 However, similar <sup>10</sup>Be ages that are influenced by systematic deep subsurface nuclide accumulation would 192 likely require near-identical exposure histories and total erosion depths during periods of ice cover across 193 all three sites. We prefer the more likely scenario where the consistency in <sup>10</sup>Be ages at Scottbreen, 194 Fløyfjellet, and Torellbreen simply reflect the similar timing of deglaciation across these sites and the 195 erosional efficiency of a warm-based SBIS (Fig. 1).

196

# 197 Hornsund

Constraining the timing of initial deglaciation at Hornsund is more challenging. Here, we consider <sup>10</sup>Be ages within the context of their morphostratigraphic position. A series of ages from coastal nunataks and ridges range from  $5.6 \pm 0.1$  ka to  $36.5 \pm 0.7$  ka, show no clear trend with elevation as would be expected with glacier thinning, and adjacent samples from similar elevations often have drastically different ages (Fig. 2; black text/white boxes; Table 1). A number of coastal ages are older than 20 ka and there appears to be a mode of <sup>10</sup>Be ages centered at ~30-35 ka (Fig. 2). These ages could constrain an initial pulse of ice-sheet thinning or an episode of MIS 3 deglaciation followed by non-erosive MIS 2 burial. However, three <sup>10</sup>Be

205 ages of  $34.5 \pm 0.6$  ka,  $36.4 \pm 0.7$  ka and  $36.5 \pm 0.7$  ka are from ~110m asl whereas slightly inland there are 206  $^{10}$ Be ages of 18.7  $\pm$  0.3 ka and 17.3  $\pm$  0.6 from ~750 and 680 m asl. It is possible that these younger ages 207 inland were affected by post-deglaciation mass wasting events, but our ages of >30 ka that pre-date the 208 last deglaciation rest in a region where subglacial erosion during periods of ice cover was likely not as 209 intense as in the primary Hornsund channel (Fig. 2). The large spread in <sup>10</sup>Be ages and a <sup>10</sup>Be age-elevation 210 relationship that violates simple morphostratigraphy is likely due to a combination of isotopic inheritance in 211 low-erosion zones, combined with sampling bedrock surfaces where the original post-deglaciation surface 212 has not been preserved. Radiocarbon ages from marine sediments in a variety of settings indicate that the 213 ice sheet extended ~70 km west of Hornsund to the continental shelf edge until ~23 ka (Fig. 1). Moreover, 214 a recent synthesis of Eurasian ice sheet extent suggests that ice in the Barents sector was at its maximum 215 between ~23-20 ka making it unlikely that the Hornsund mouth deglaciated at or prior to ~23-21 ka as 216 suggested by a number of our <sup>10</sup>Be ages older than 23 ka (i.e. 35 ka mode in <sup>10</sup>Be ages; Fig. 1 and Fig. 2).

217

#### 218 Torbjørnsenfjellet

219 Beryllium-10 and *in situ*<sup>14</sup>C measurements from the Torbjørnsenfjellet elevation transect constrain 220 the timing of initial deglaciation of the Hornsund fjord mouth. In descending elevational order: the highest 221 elevation sample (TORB-1; 633 m asl) has a <sup>10</sup>Be age of 16.0  $\pm$  0.3 ka followed by <sup>10</sup>Be ages of 18.3  $\pm$  0.3 222 ka (TORB-2; 515 m), 36.3 ± 0.6 ka (TORB-4; 279 m), 25.8 ± 0.4 ka (TORB-3; 252 m), and 20.1 ± 0.3 ka 223 (TORB-5; 225 m). The oldest ages rest in the middle of the elevation transect and the youngest age is also 224 the highest elevation sample (Fig. 2). This <sup>10</sup>Be age-elevation distribution reveals that <sup>10</sup>Be ages are not 225 accurately recording the timing of glacier thinning and deglaciation because <sup>10</sup>Be ages do not get younger 226 with decreasing elevation nor are they statistically indistinguishable, the latter of which would suggest rapid 227 (within dating resolution) deglaciation of all sample sites. Corresponding in situ <sup>14</sup>C ages, however, display 228 a much different age-elevation relationship. Paired <sup>10</sup>Be and *in situ* <sup>14</sup>C ages for TORB-1 and TORB-2, our 229 highest elevation samples, statistically overlap at 1-sigma indicating these samples do not contain inherited 230 <sup>10</sup>Be (Fig. 3; Table 1). The mid-transect samples with <sup>10</sup>Be ages of  $36.3 \pm 0.6$  ka (TORB-4) and  $25.8 \pm 0.4$ 231 ka (TORB-3), have significantly younger <sup>14</sup>C ages of 16.9  $\pm$  3.1 ka and 17.3  $\pm$  3.2 ka indicating that they 232 contain a <sup>10</sup>Be inventory equating to  $19.4 \pm 3.2$  ka and  $8.5 \pm 3.2$  ka of excess <sup>10</sup>Be that accumulated during

233 a previous period(s) of surface exposure. The lowest elevation sample (TORB-5) has a  $^{10}$ Be age of 20.1  $\pm$ 234 0.3 ka and a <sup>14</sup>C age 16.7  $\pm$  2.9 ka. We note that the 1-sigma analytical uncertainties of our *in situ* <sup>14</sup>C 235 measurements range from 4-7%, but that these measurements equate to exposure ages with uncertainties 236 that range from ~15-23%. Exposure age uncertainties range from ~15-23% because our measured 237 concentrations intersect the <sup>14</sup>C production-time curve where small changes in <sup>14</sup>C concentration equate to 238 large changes in exposure age as one approaches surface saturation (nuclide production = decay; Table 239 2). Regardless, our *in situ* <sup>14</sup>C measurements are able to quantify inherited <sup>10</sup>Be in 3 of our 5 transect 240 samples and, moreover, in situ <sup>14</sup>C ages are statistically indistinguishable and average 17.4  $\pm$  0.7 ka (n = 241 5; Fig. 2; Fig.3; Table 2). When accounting for the uncertainty in the production-rate calibration dataset 242 (7.5%; Young et al, 2014), our <sup>14</sup>C measurements reveal glacier thinning across our sample sites at the 243 Hornsund mouth at 17.4  $\pm$  1.5 ka.

244 Whereas paired <sup>10</sup>Be–<sup>14</sup>C measurements at Torbjørnsenfjellet constrain the amount of isotopic 245 inheritance and timing of deglaciation to 17.4  $\pm$  1.5 ka, paired <sup>26</sup>Al – <sup>10</sup>Be measurements offer a long-term 246 perspective of surface exposure and burial of the Torbjørnsenfjellet ridgeline. TORB-1 and TORB-2, which 247 have statistically identical <sup>10</sup>Be and *in situ* <sup>14</sup>C ages, have <sup>26</sup>Al/<sup>10</sup>Be ratios consistent with constant exposure 248 (Fig. 4; Table 1). Our mid-transect samples (TORB-4 and TORB-3) contain inherited <sup>10</sup>Be and measured <sup>26</sup>Al/<sup>10</sup>Be ratios suggest some degree of prolonged burial (Fig. 4). Although the TORB-5 <sup>10</sup>Be and *in situ* <sup>14</sup>C 249 250 ages overlap at 2-sigma, suggestive of continuous exposure, the corresponding  $^{26}$ Al/ $^{10}$ Be ratio of 5.77  $\pm$ 251 0.38 is inconsistent with constant exposure. Because all of the transect in situ <sup>14</sup>C ages are statistically 252 identical and constrain the most recent period of exposure, we use the average in situ <sup>14</sup>C age to guantify 253 the exposure-burial history of the Torbjørnsenfjellet samples sites prior to the last ~17.4 ka. Rather, we 254 subtract 17.4 ka worth of exposure from each paired <sup>26</sup>AI – <sup>10</sup>Be measurement to quantify pre-17.4 ka 255 exposure and burial at each sample location (Fig. 4) This approach results in either completely depleting 256 the <sup>10</sup>Be inventory (TORB-1) or a corrected <sup>26</sup>Al/<sup>10</sup>Be ratio that overlaps zero (TORB-2), both further 257 suggestive of one period of constant exposure for these sites. At TORB-5, our approach results in 258 subtracting more <sup>26</sup>Al than what was measured, but points to the presence of a small amount of excess 259 <sup>10</sup>Be, equating to  $3.4 \pm 2.9$  kyr of exposure. The corrected ratios for our mid-transect samples reveal a

significant amount of pre-17.4 ka surface burial equating to ~54 – 570 kyr, albeit with large uncertainties
(Fig. 4).

262

#### 263 Wurmbrandegga and Treskelen

264 At the Wurmbrandegga elevation transect, which is located ~12 km up-fjord from Torbjørnsenfjellet 265 and therefore must have deglaciated at or after 17.4  $\pm$  1.5 ka, six of seven <sup>10</sup>Be ages are indistinguishable 266 and indicate that this portion of Hornsund deglaciated at 13.3  $\pm$  0.6 ka (Fig. 2; Fig. 3). Unlike the 267 Torbjørnsenfjellet transect, we find no evidence that the samples at Wurmbrandegga contain inherited <sup>10</sup>Be, 268 which is suggestive of a greater total erosion depth than the Torbjørnsenfjellet site during periods of ice 269 cover. Finally, our eastern-most <sup>10</sup>Be ages from perched boulders positioned ~13 km up-fjord from 270 Wurmbrandegga at Treskelen indicate that final deglaciation of the fjord occurred by  $13.0 \pm 0.7$  ka (n = 3) 271 after removal of an older outlier (15.4  $\pm$  0.9; Fig. 2). Combined, our <sup>10</sup>Be and *in situ* <sup>14</sup>C ages suggest that 272 the Hornsund mouth deglaciated at 17.4  $\pm$  1.5 ka, with ice remaining near the fjord mouth for several 273 thousand years before complete deglaciation between  $13.3 \pm 0.6$  ka and  $13.0 \pm 0.7$  ka (Fig. 2 and Fig. 5). 274 Alternatively, our ice-margin chronology allows for initial deglaciation of the Hornsund mouth at  $17.4 \pm 1.5$ 275 ka followed by continued fjord deglaciation, an ice-margin re-advance beyond the Wurmbrandegga transect 276 with inner fjord deglaciation between 13.3  $\pm$  0.6 ka and 13.0  $\pm$  0.7 ka. However, we are unaware of any 277 sediment packages within the fjord that are suggestive of a significant re-advance of the Hornsund glacier.

278

### 279 5. The Hornsund outlet glacier during the last glacial cycle

## 280 <sup>10</sup>Be and in situ <sup>14</sup>C ages versus traditional radiocarbon constraints

*In situ* <sup>14</sup>C ages indicate that the Hornsund outlet glacier thinned ~400 m at  $17.4 \pm 1.5$  ka, consistent with the timing of coastal deglaciation at Scottbreen ( $17.7 \pm 1.2$  ka), Fløyfjellet ( $15.7 \pm 0.7$  ka) and Torellbreen ( $15.9 \pm 1.6$  ka; Fig. 1). However, previously published records suggest that deglaciation of the western Svalbard coast occurred much later. A series of radiocarbon ages from marine sediments place the SBIS margin out on the shelf edge between ~23-20 ka with deglaciation of the SW Spitsbergen coast constrained to ~13.7-11.7 cal ka BP based on minimum-limiting radiocarbon ages from raised marine

287 sediments (Fig. 1 and Fig. 2; Landvik et al., 1998; Hormes et al., 2014). It is possible that all of our 288 deglaciation ages constrain initial ice-sheet thinning and unroofing of our sampling sites prior to deglaciation 289 of the coastal lowlands. However, with the exception of the Torellbreen site located north of Hornsund, all 290 of our deglaciation ages span relatively low elevations that should capture the timing of coastal deglaciation 291 (Table 1). Alternatively, there is a possible ~5 kyr offset in the timing of Hornsund deglaciation as defined 292 by our *in situ* <sup>14</sup>C ages versus the minimum-limiting radiocarbon of 12.1 cal ka BP. And, the deglaciation 293 age provided by the Wurmbrandegga elevation transect located only ~12 km up-fjord from the outer coast 294 is 13.3  $\pm$  0.6 ka; ~4 ka younger than the Hornsund mouth *in situ* <sup>14</sup>C age, but still older than the minimum-295 limiting 12.1 cal ka BP deglaciation age. One explanation is that the minimum-limiting 12.1 cal ka BP age 296 does not closely constrain the timing of deglaciation and that deglaciation occurred at either 17.4  $\pm$  1.5 ka 297 or just before 13.3  $\pm$  0.6 ka. Or, the Hornsund outlet glacier thinned to at least 225 m asl at 17.4  $\pm$  1.5 ka 298 (lowest sample in elevation transect) but occupied the fjord mouth for another several thousand years 299 before final deglaciation. A final possibility is that our in situ <sup>14</sup>C measurements contain inherited in situ <sup>14</sup>C 300 from a previous period of exposure that occurred prior to  $13.3 \pm 0.6$  ka or 12.1 cal ka BP.

301

# 302 Modeling <sup>10</sup>Be and in situ <sup>14</sup>C inventories

303 To assess our measured <sup>10</sup>Be and *in situ* <sup>14</sup>C inventories at Torbjørnsenfjellet, we use the Svalbard 304 glaciation curve over the last glacial cycle to model the possible <sup>10</sup>Be and *in situ* <sup>14</sup>C accumulation history 305 at our sample sites. The Svalbard glaciation curve (Fig. 5) suggests a dynamic SBIS advanced onto the 306 continental shelf several times over the last glacial cycle; between these glacial maxima, the SBIS retreated 307 back to an ice configuration similar to today (Mangerud et al., 1998; Eccleshall al., 2016; Fig. 1 and Fig. 5). 308 Notably, the SBIS occupied the shelf or shelf edge during MIS 6, MIS 5d, MIS 5b, MIS 2, with an additional, 309 although likely not as extensive, advance during MIS 4. Although this Svalbard glaciation history is largely 310 based on the Kapp Ekholm section at the head of Isfjorden (Fig. 1), a non-finite radiocarbon age of >40 ka 311 from shell fragments suggests that Hornsund may have deglaciated at least once prior to the most recent 312 episode of deglaciation (Landvik et al., 1998).

313 This template of SBIS advance and retreat provides a unique opportunity assess the likelihood of 314 our coastal Torbjørnsenfjellet bedrock sites yielding significant inherited <sup>10</sup>Be coupled with *in situ* <sup>14</sup>C

11

315 inventories that have minimal or no inheritance. We assume no prior nuclide inventory at our bedrock sites 316 at the termination of MIS 6 (Fig. 5). Next, we allow surface exposure and nuclide accumulation during MIS 317 5e, 5c, 5a and 3, burial and nuclide decay during MIS 5d, 5b, 4 and 2, and assume a 'true' deglaciation of 318 ~13.3 ka as defined by our nearby Wurmbrandegga <sup>10</sup>Be ages. We want to assess the maximum amount 319 of potential inherited nuclides at Torbjørnsenfjellet so we assume no bedrock erosion during periods of ice 320 cover; only nuclide decay via burial decreases the nuclide inventory. When modeling <sup>10</sup>Be and *in situ* <sup>14</sup>C 321 concentrations using these assumptions, our Torbjørnsenfjellet bedrock sites would have <sup>10</sup>Be and *in situ* 322 <sup>14</sup>C concentrations equating to exposure ages of ~81 ka and 14.6 ka, respectively (Fig. 5).

323 Our model suggests that using the Svalbard glaciation curve as a template for surface exposure 324 and burial results in <sup>10</sup>Be and *in situ* <sup>14</sup>C concentrations similar to what we measured – old <sup>10</sup>Be ages coupled 325 with younger in situ <sup>14</sup>C ages. In addition, our approach results in a small amount of inherited in situ <sup>14</sup>C at 326 our Torbjørnsenfjellet sample sites. Rather, the modeled duration of MIS 2 burial is not long enough to 327 completely remove the accumulated MIS 5e through MIS 3 inventory of in situ <sup>14</sup>C (Fig. 5). Because the 328 duration of MIS 2 burial results in a small amount of inherited in situ <sup>14</sup>C in our model experiment, we next 329 assume that our measured in situ <sup>14</sup>C concentrations are influenced by inheritance and then calculate the 330 timing of deglaciation needed to result in our measured in situ <sup>14</sup>C concentrations. With this approach, our 331 measured in situ <sup>14</sup>C concentrations are achieved if deglaciation occurs at ~15.6 ka, which is suggestive of 332 a 'true' deglaciation age that is ~2 ka younger than our measured in situ <sup>14</sup>C ages. However, our model set 333 up is tuned to allow for the maximum amount of inherited *in situ*<sup>14</sup>C because we assume no glacial erosion 334 during periods of ice cover, which is not supported by our measured <sup>10</sup>Be ages, which vary across the 335 transect and imply varying degrees of glacial erosion. The modeled exposure-burial histories result in <sup>10</sup>Be 336 concentrations that equate to ~81 - 85 ka, whereas our measured <sup>10</sup>Be ages from the Torbjørnsenfjellet 337 transect range from ~16 to ~36 ka (Fig. 3C). This disparity between the modeled and measured <sup>10</sup>Be ages 338 suggests that the Torbjørnsenfiellet sample sites either experienced some degree of glacial erosion that 339 has stripped away <sup>10</sup>Be (and in situ <sup>14</sup>C) from the bedrock sites and/or our sample sites experienced less 340 surface exposure during the last glacial cycle than what we modeled using the Svalbard glaciation curve.

The minor differences in our measured versus modeled <sup>10</sup>Be and *in situ* <sup>14</sup>C inventories is likely due to variable glacial erosion during periods of ice cover and/or uncertainty in the exact duration that our

12

343 bedrock sites experienced ice-cover and nuclide decay versus the exact duration of ice-free conditions and 344 nuclide accumulation. Despite these differences, our model captures the overall pattern of older <sup>10</sup>Be ages 345 influenced by isotopic inheritance coupled with in situ <sup>14</sup>C ages that are much younger. The maximum 346 inheritance scenario that does not account for glacial erosion results in *in situ*<sup>14</sup>C concentrations with only 347 a small degree of inheritance (~2 ka). Glacial erosion during periods of ice cover, as suggested by the 348 spread in <sup>10</sup>Be ages, would not only remove a portion of previously accumulated <sup>10</sup>Be, but also remove in 349 situ <sup>14</sup>C resulting in bedrock sample sites that do not contain previously accumulated <sup>14</sup>C prior to the most 350 recent period of exposure. Thus, it is unlikely that our *in situ* <sup>14</sup>C ages are influenced by inheritance and that 351 the 'true' age of deglaciation at the fjord mouth is  $17.4 \pm 1.5$  ka (Fig. 1; Fig. 3C).

352

## 353 6. Coastal deglaciation of western Spitsbergen

354 Our <sup>10</sup>Be and *in situ* <sup>14</sup>C ages indicate that the region of coastal southwestern Spitsbergen south of 355 Isfjorden deglaciated between ~18-16 ka (Fig. 1). This timing of coastal deglaciation in southwestern 356 Spitsbergen is broadly consistent with the timing of coastal deglaciation in northwestern Spitsbergen, which 357 is constrained to ~17.9 to 15.6 cal ka BP based on the oldest published coastal radiocarbon ages, and low-358 elevation <sup>10</sup>Be ages from the region (Fig. 1; Table 4). Although a number of older <sup>10</sup>Be ages from 359 northwestern Spitsbergen range from ~ 25.0 to 19.3 ka (Fig. 1), these ages are mainly from high-elevation 360 nunataks and likely record initial ice sheet thinning rather than coastal deglaciation. Two older <sup>10</sup>Be ages of 361 26.7  $\pm$  3.9 ka and 28.3  $\pm$  2.1 ka from erratics in Nordaustlandet may record the timing of early coastal 362 deglaciation considering their low elevations (165 and 123 m asl), but their anomalously old ages could 363 simply represent the presence of cold-based ice and <sup>10</sup>Be inheritance as suggested by the original authors 364 (Hormes et al., 2011; Fig. 1; Table 1). It appears that the timing of coastal deglaciation in northwestern and 365 southwestern Spitsbergen (between Hornsund and Scottbreen) is perhaps similar, but deglaciation through 366 Isfjorden trough occurred much later (Fig. 1; Fig. 5). A relatively dense transect of radiocarbon ages 367 extending from the outer shelf to near the modern ice margin in Isfjorden indicates that although the timing 368 of initial retreat from the shelf edge is similar to the timing of initial ice-margin retreat west of Hornsund (~23 369 ka), ice at Isfjorden remained near the shelf edge until as late as ~17.9 cal ka BP (Fig. 1). In addition, the 370 Isfjorden mouth did not deglaciate until ~14.3 cal ka BP, 1.5-3.5 kyr later than the timing of coastal

deglaciation in southwestern Spitsbergen (Fig. 1). A record of ice-rafted detritus (IRD) located immediately southwest of Hornsund reveals peaks in IRD at ~18.7 ka and ~16.3 ka, suggestive of increased calving and ice-margin retreat at these time (Fig. 5). This increase in IRD deposition is broadly correlative with the timing of coastal deglaciation as constrained by our <sup>10</sup>Be and *in situ* <sup>14</sup>C measurements (~18-16 ka); however, the resolution of our record, and in particular *in situ* <sup>14</sup>C-based age of deglaciation (17.4 ± 1.5 ka), prevent us from linking the timing of deglaciation to any one IRD peak (Fig. 5).

377 The timing of coastal deglaciation appears to have differed between Isfjorden and southwestern 378 Spitsbergen, but the relatively sparse number of radiocarbon constraints between the outer shelf and coast 379 at Hornsund prevents us from determining if ice in this sector stayed near the shelf edge for several 380 thousand years or gradually retreated between  $\sim$ 23 and 17.4  $\pm$  1.5 ka (Fig. 1 and Fig. 5). Existing age 381 constraints from Isfjorden and Hornsund allow us to place millennial- to centennial-scale retreat of the ice-382 margin into a long-term context (Fig. 5). At Hornsund, the SBIS retreated at a millennially averaged rate of 383 ~10 m/a between ~23 and 17.4 ka, and ~3 m/a between 17.4 and 13.3 ka. However, the 17.4  $\pm$  1.5 ka 384 constraint along the Hornsund transect at Torbjørnsenfiellet requires ~400 m of ice-sheet thinning in 385 addition to constraining the lateral retreat of the ice margin. Following deglaciation at Wurmbrandegga, the 386 ice margin retreated between ~13.3 and 13.0 ka at the rate of ~43 m /a (Fig. 5). At Isfjorden, initial ice-387 margin retreat occurred at ~3 m/a between 23.2 cal ka BP and 17.9 cal ka BP followed by a slightly faster 388 rate of retreat of ~13 m/a between ~17.9 and 14.5 cal ka BP. Afterwards, retreat rates increased significantly 389 between ~14.5 and 14.3 cal ka BP (~400 m/a), with another pulse of rapid deglaciation centered on ~12.3 390 cal ka BP (~120 m/a; Fig. 5). We note that these retreat rates should be considered minimum or net retreat 391 rates because our methods are limited in their ability to identify pulses of fast ice retreat and almost certainly 392 smooth over episodes of faster ice retreat.

393 It appears that initial retreat of the western margin of the SBIS occurred as early as ~23 ka, 394 synchronous with the initial rise in boreal summer insolation at ~24-23 ka and consistent with the onset of 395 initial retreat of the southern margin of the Laurentide ice sheet (e.g. Ullman et al., 2015), but pre-dating 396 any significant rise in eustatic sea level. However, SBIS retreat rates remained relatively slow until at least 397 17.9 ka and perhaps as late as ~14.5 ka as suggested by the Isfjorden recession chronology. Indeed, 398 whereas initial retreat was contemporaneous with rising summer insolation, elevated retreat rates were not achieved until several millennia later, contemporaneous with rising temperatures as recorded in Greenlandice cores at the onset of the Bølling-Allerød (Fig. 5).

401

### 402 **7. Conclusions**

403 Deglaciation of the southwestern Spitsbergen coast likely occurred between ~18 - 16 ka based on 404 new <sup>10</sup>Be and *in situ* <sup>14</sup>C measurements from four separate sites along ~60 km of southwestern Spitsbergen. 405 <sup>10</sup>Be measurements in bedrock along a ~400 m elevation transect display varying amounts of isotopic 406 inheritance and are unable to constrain the timing of deglaciation or ice-sheet thinning, but complimentary in situ  $^{14}\text{C}$  measurements are statistically identical and mark an episode of ice-sheet thinning at 17.4  $\pm$  1.5 407 408 ka. Following coastal deglaciation, the middle of Hornsund deglaciated by  $13.3 \pm 0.6$  ka with complete fjord 409 deglaciation by  $13.0 \pm 0.7$  ka. Our dataset indicates that the timing of coastal deglaciation in southwestern 410 Spitsbergen was significantly earlier than previous estimates based on a limited number of minimum-411 constraining radiocarbon ages. Previously published age constraints, coupled with our new <sup>10</sup>Be and *in situ* 412 <sup>14</sup>C ages suggest that the western coast of Spitsbergen between Hornsund and Scottbreen deglaciated 413 between ~18-16 ka, and that deglaciation of Isfjorden occurred much later with the fjord mouth deglaciating 414 at ~14.3 ka. Initial retreat of the western SBIS margin appears to have occurred at ~23 ka followed by 415 relatively variable and asynchronous retreat between the Isfjorden and Hornsund sectors of the SBIS, thus 416 highlighting the dynamic nature in which ice sheets recede. Lastly, in situ<sup>14</sup>C measurements offer the ability 417 to rectify ambiguous <sup>10</sup>Be-based datasets influenced by isotopic inheritance in order to extract key 418 chronological information.

419

#### 420 Acknowledgements

We are grateful for logistical support from the Polish Polar Station at Hornsund and two Arctic field grants to Endre Gjermundsen from the Svalbard Science Forum by the Norwegian Research Council. A portion of this work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contracts DE-AC52-07NA27344. Fieldwork would not have been possible without the help of Ellinor Falkgjerdet, Lina Gislefoss and Carl Petter Nielsen. This is LDEO contribution #XXXX and LLNL-JRNL-743296.

15

427

#### 428 Figure Captions

429 *Figure 1.* Spitsbergen with locations referred to in the text and the 21 ka ice limit from Hughes et al. (2015; 430 dashed line). KE – Kapp Ekholm, H – Hornsund, and IF – Isfjorden. Previously published radiocarbon (cal 431 ka BP) and <sup>10</sup>Be ages across Spitsbergen from previous studies constraining ice margin position are 432 presented in two groups: 1) Ages that mark the initial timing of retreat or thinning of the ice margin from the 433 LGM maximum extent (white ovals with black text), and 2) oldest coastal ages that constrain deglaciation 434 following the LGM maximum extent and deglaciation of the present coastline (black ovals/white text). 435 Location numbers are linked to Table 4; see Table 4 for sample details and references. Locations and <sup>10</sup>Be 436 ages marked with stars and boxes are from this study. Isfjorden and Hornsund transects from Figure 4 are 437 marked with black lines. Base and inset maps are from Jakobsson et al. (2012).

438

439 Figure 2. Ice margin constraints at Hornsund (Norwegian Polar Institute; toposvalbard.npolar.no/;

440 collected in 2011). Individual <sup>10</sup>Be ages from bedrock are shown in black text with white boxes; up-fjord

441 erratics on the Treskelen Peninsula are displayed in white text with black boxes. Only the mean in situ <sup>14</sup>C

442 and <sup>10</sup>Be age from the Torbjørnsenfjellet (n = 5) and Wurmbrandegga (n = 6) elevation transects are

shown (see Fig. 3). The minimum-limiting radiocarbon age just north of Hornsund is in green (U-2972;

444 12,100  $\pm$  320 cal ka BP; Birkenmajer and Olsson, 1998; Table 4.).

445

*Figure 3.* Elevation transects in the Hornsund region. A) Field photograph of Torbjørnsenfjellet with sample
 locations B) Field photograph of Wurmbrandegga with sample locations. C) Comparison of paired <sup>10</sup>Be and
 *in situ* <sup>14</sup>C ages at Torbjørnsenfjellet, and the <sup>10</sup>Be-dated Wurmbrandegga elevation transect located ~12
 km up-fjord from Torbjørnsenfjellet.

450

Figure 4. Measured  ${}^{26}Al/{}^{10}Be$  ratios against  ${}^{10}Be$  concentration at Torbjørnsenfjellet. Also plotted is the  ${}^{14}C$ corrected  ${}^{26}Al/{}^{10}Be$  ratio for samples TORB-3 and TORB-4 using the average  ${}^{14}C$  age of 17.4 ± 0.7 ka from the Torbjørnsenfjellet transect (i.e. the ratio at 17.4 ka). The corrected ratios for TORB-1 and TORB-2 result in values that overlap zero, which is suggestive of no previous sample exposure or burial. The corrected 455 ratio for TORB-5 also overlaps zero, which is due to subtracting more <sup>26</sup>Al than what was measured.

- 456 However, the corrected <sup>10</sup>Be concentration in TORB-5 suggests a small amount of previous exposure.
- 457

458 Figure 5. A) Svalbard glaciation curve (Mangerud et al., 1998; Eccleshall et al., 2016). The timing of glacier 459 advance has been tuned to coincide with the Marine Isotope Stage (MIS) that each advance is thought to 460 correlate to as discussed in Eccleshall et al. (2016). MIS definitions are from Lisiecki and Raymo (2005). 461 PIs-D: Phantomodden insterstadial D, G-E: Glaciation E, KEIs-F: Kapp Ekholm interstadial F, Ig-H: 462 Interglaciation H. Shown are the modeled proof-of-concept <sup>10</sup>Be and *in situ* <sup>14</sup>C concentrations at 252 m as 463 (TORB-3) assuming that our Torbjørnsenfjellet sample sites become exposed and buried following the 464 Svalbard glaciation curve and assuming a 'true' deglaciation age of 13.3 ka. The resulting in situ <sup>14</sup>C 465 concentration equates to an exposure age of ~14.6 ka B) Retreat chronologies for the Hornsund and Isfjorden sectors of the SBIS compared to the NGRIP  $\delta^{18}$ O record (North Greenland Ice Core Project 466 467 Members, 2004) and a record of ice-rafted detritus and  $\delta^{18}O$  (*N. pachyderma s.*) from core JM03-373PC2 468 located southwest of Hornsund (Rasmussen et al., 2007; Jessen et al., 2010; see location #2 on Fig. 1). 469 Numbers between data points are the calculated net (minimum) ice-margin retreat rates using the age 470 constraint midpoint. Symbols are larger than the uncertainties with the exception of the in situ <sup>14</sup>C-based 471 Tobjornsenfjellet data point. JM03-373PC2 age model has been re-calibrated using CALIB 7.1 and a 472 reservoir correction of 440 years (Stuiver et al., 2018; see Rasmussen et al., 2007 and Jessen et al., 2010 473 for details).

474

# 475 References

476

Balco G. 2011. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating
to glacier chronology, 1990-2010. *Quaternary Science Reviews* **30**: 3-27.

- 480 Balco G. 2017. Production rate calculations for cosmic-ray-muon-produced <sup>10</sup>Be and <sup>26</sup>Al benchmarked 481 against geological calibration data. *Quaternary Geochronology* **39**: 150-173.
- 482

Balco G, Stone J, Lifton N, Dunai TJ. 2008. A simple, internally consistent, and easily accessible means
of calculating surface exposure ages and erosion rates from Be-10 and Al-26 measurements. *Quaternary Geochronology* 3: 174–195.

Balco G, Stone JOH, Sliwinski MG, Todd C. 2014. Features of the glacial history of the Transantarctic
 Mountains inferred from cosmogenic <sup>26</sup>Al <sup>10</sup>Be and <sup>21</sup>Ne concentrations in bedrock surfaces. *Antarctic Science* 26: 708-723.

490

- Balco G, Todd C, Huybers K, Campbell S, Vermeulen M, Hegland M, Goehring BM, Hillebrand TR. 2016.
   Cosmogenic-nuclide exposure ages from the Pensacola Mountains adjacent to the Foundation ice stream.
- 493 Antarctica. American Journal of Science **316**: 542-577, doi: 10.2475/06.2016.02.
- 494
  495 Birkenmajer K, Olsson IU. 1998. Radiocarbon-dated late Pleistocene and early Holocene marine shells at
  496 Werenskioldbreen, south Spitsbergen. *Bulletin of the Polish Academy of Sciences, Earth Sciences* 46:
- 497 21-34. 498
- Blaszczyk M, Jania JA, Kolondra L. 2013. Fluctuations of tidewater glaciers in Hornsund Fjord (Southern
  Svalbard) since the beginning of the 20<sup>th</sup> century. *Polish Polar Research* 34: 327-352.
- Briner JP, Lifton NA, Miller GH, Refsnider K, Anderson R, Finkel RC. 2014. Using *in situ* cosmogenic <sup>10</sup>Be,
   <sup>14</sup>C, and <sup>26</sup>Al to decipher the history of polythermal ice sheets on Baffin Island, Arctic Canada. *Quaternary Geochronology* **19**: 4-13, doi:10.1016/j.quageo.2012.11.005.
- 505
  506 Briner JP, Goehring BM, Mangerud J, Svendsen JI. 2016. The deep accumulation of <sup>10</sup>Be at Utsira, southwestern Norway: Implications for cosmogenic nuclide exposure dating in peripheral ice sheet
  508 landscapes. *Geophysical Research Letters*: 43, doi:10.1002/2016GL070100.
- 509
- 510 Cadman V. 1996. Glacimarine Sedimentation and Environments during the Late Weichselian and
- 511 Holocene in the Bellsund Trough and Van Keulenfjorden. Thesis, *University of Cambridge*.
- 512 513 Chmeleff J, von Blanckenburg F, Kossert K, Jakob D. 2010. Determination of the <sup>10</sup>Be half-life by
- 514 multicollector icp-ms and liquid scintillation counting. *Nuclear Instruments and Methods in Physics*
- 515 Research Section B: Beam Interactions with Materials and Atoms **268**: 192-199.
- 516 Corbett L, Bierman PR, Graly JA, Neumann TA, Rood DH. 2013. Constraining landscape history and
   517 glacial erosivity using paired cosmogenic nuclides in Upernavik, northwest Greenland. *Geological Society* 518 of America Bulletin **125**: 1539-1553.
- Eccleshall SV, Hormes A, Hovland A, Preusser F. 2016. Constraining the chronology of Pleistocene
  glaciations on Svalbard: Kapp Ekholm re-visited. *Boreas* 45: 790-803.
- Elverhøi A, Anders ES, Dokken T, Hebblen D, Spielhagen R, Svendsen J, Sørflaten M, Rørnes A, Hald
  M, Forsberg CS. 1995. The growth and decay of the Late Weichselian ice sheet in western Svalbard and
  adjacent areas based on provenance studies of marine sediments. *Quaternary Research* 44: 303-316.
- Forwick M, Vorren T-O. 2007. Holocene mass-transport activity and climate in outer Isfjorden,
  Spitsbergen: marine and subsurface evidence. *The Holocene* **17**: 707-716.
- Gjermundsen EF, Briner JP, Akçar N, Salvigsen O, Kubik P, Gantert N, Hormes A. 2013. Late
  Weichselian local ice dome configuration and chronology in Northwestern Svalbard: early thinning, late
  retreat. *Quaternary Science Reviews* 72: 112-127.
- Gjermundsen EF, Briner JP, Akçar N, Foros J, Kubik PW, Salvigsen O, Hormes A. 2015. Minimal erosion
  of Arctic alpine topography during late Quaternary glaciation. *Nature Geoscience* 8: 789-782,
  doi:10.1038/ngeo2524.
- 536
- Goehring BM, Schaefer JM, Schluechter C, Lifton NA, Finkel RC, Timothy Jull AJ, Akçar N, Alley RB. 2011.
  The Rhone Glacier was smaller than today for most of the Holocene. *Geology* 39: 679-682,
  doi:10.1130/G32145.1.
- 541 Goehring BM, Schimmelpfennig I, Schaefer JM. 2014. Capabilities of the Lamont-Doherty Earth 542 Observatory in situ <sup>14</sup>C extraction laboratory updated. *Quaternary Geochronology* **19**: 194-197.
- 543

- 544 Granger DE, Lifton NA, Willenbring JK. 2013. A cosmic trip: 25 years of cosmogenic nuclides in geology. 545 *Geological Society of America Bulletin* **125**: 1379-1402.
- 546

Håkansson L, Alexanderson H, Hjort C, Möller P, Briner JP, Aldahan A, Possnert G. 2008. Late Pleistocene
 glacial history of Jameson Land, central East Greenland, derived from cosmogenic <sup>10</sup>Be and <sup>26</sup>Al exposure
 dating. *Boreas* 38: 244-260.

- Hogan KA, Dowdeswell JA, Noormets R, Evans J, O'Cofaigh C. 2010. Evidence for full-glacial flow and
  retreat of the Late Weichselian Ice Sheet from the waters around Kong Karls Land, eastern Svalbard. *Quaternary Science Reviews* 29: 3563-3582.
- Hormes A, Akçar N, Kubik PW. 2011. Cosmogenic radionuclide dating indicates ice-sheet configuration
  during MIS 2 on Nordaustlandet, Svlabard. *Boreas* 40: 636-649.
- Hormes A, Gjermundsen EF, Rasmussen TL. 2013. From mountain top to the deep sea Deglaciation in
  4D of the northwestern Barents Sea ice sheet. *Quaternary Science Reviews* **75**: 78-99.
- Hughes ALC, Gyllencreutz R, Lohne ØS, Mangerud J, Svendsen JI. 2015. The last Eurasian ice sheets –
  a chronological database and time-slice reconstruction, DATED-1. *Boreas* 45: 1-45, doi:
  10.1111/bor.12142.
- Ingólfsson O, Landvik JY. 2013. The Svalbard-Barents Sea ice-sheet Historical, current and future
   perspectives. *Quaternary Science Reviews* 64: 33-60.
- 568 Ivy-Ochs S, Briner JP. 2014. Dating disappearing ice with cosmogenic nuclides. *Elements* **10**: 351-356. 569
- Jakobsson M, Mayer LA, Coakley B, Dowdeswell JA, Forbes S, Fridman B, Hodnesdal H, Noormets R,
  Pedersen R, Rebesco M, Schenke HW, Zarayskaya Y, Accettella AD, Armstrong A, Anderson RM,
  Bienhoff P, Camerlenghi A, Church I, Edwards M, Gardner JV, Hall JK, Hell B, Hestvik OB, Kristoffersen
  Y, Marcussen C, Mohammad R, Mosher D, Nghiem SV, Pedrosa MT, Travaglini PG, Weatherall P. 2012.
  The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. *Geophysical Research Letters doi:* 10.1029/2012GL052219.
- Jessen SP, Rasmussen TL, Nielsen T, Solheim A. 2010. A new Late Weichselian and Holocene marine
  chronology for the western Svalbard slope 30,000 0 cal years BP. *Quaternary Science Reviews* 29: 13011312.
- Johnson JS, Smith JA, Schaefer JM, Young NE, Goehring BM, Hillenbrand C-D, Lamp JL, Finkel RC, Gohl K. 2017. The last glaciation of Bear Peninsula, central Amundsen Sea Embayment of Antarctica: Constraints on timing and duration revealed by in situ cosmogenic <sup>14</sup>C and <sup>10</sup>Be dating. *Quaternary Science Reviews* **178**: 77-88.
- 585
  586 Lal D. 1991. Cosmic ray labeling of erosion surfaces: *in situ* nuclide production rates and erosion models.
  587 *Earth and Planetary Science Letters* **104**: 424-429.
  588
- Koç N, Klitgaard-Kristensen D, Hasle K, Forsberg CK, Solheim A. 2002. Late glacial palaeoceanography
  of Hinlopen Strait, northern Svalbard. *Polar Research* 21: 307-314.
- Landvik JY, Bondevik S, Elverhøi A, Fjeldskaar W, Mangerud J, Salvigsen O, Siegert MJ, Svendsen JI,
  Vorren TO. 1998. The last glacial maximum of Svalabrd and the Barents Sea area: Ice sheet extent and
  configuration. *Quaternary Science Reviews* 17: 43-75.
- Landvik JY, Brook EJ, Gualtieri L, Raisbeck G, Salvigsen O, Yiou F. 2003. Northwest Svalbard during the
  last glaciation: ice-free areas existed. *Geology* 31: 905-908.
- 599 Landvik JY, Ingolfsson O, Mienert J, Lehman SJ, Solheim A, Elverhøi A, Ottesen D. 2005. Rethinking

- 600 Late Weichselian ice-sheet dynamics in coastal NW Svalbard. Boreas 34: 7-24.
- 601

Landvik JY, Brook EJ, Gualtieri L, Linge H, Raisbeck G, Salvigsen O, Yiou F. 2013. <sup>10</sup>Be exposure age
 constraints on the Late Weichselian ice-sheet geometry and dynamics in inter-ice-stream areas, western
 Svalbard. *Boreas* 42: 43-56.

- Landvik JY, Alexanderson H, Henriksen M, Ingólfsson O. 2014. Landscape imprints of changing glacial
  regimes during ice-sheet build-up and decay: a conceptual model from Svalbard. *Quaternary Science Reviews* 92: 258-268.
- Lifton NA, Timothy Jull AJ, Quade J. 2001. A new extraction technique and production rate estimate for in situ cosmogenic <sup>14</sup>C in quartz. *Geochimica et Cosmochimica Acta* 65: 1953-1969.
- Lisecki LE, Raymo ME. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ<sup>18</sup>O records.
   *Paleoceanography,* doi:10.1029/2004PA001071.
- Mangerud J, Svendsen JI. 1990. Deglaciation chronology inferred from marine sediments in a proglacial
  lake basin, western Spitsbergen. *Boreas* 19: 249-272.
- Mangerud J, Bondevik S, Gulliksen S, Hufthammer KA, Hoisaeter T. 2006. Marine <sup>14</sup>C reservoir ages for
   19th century whales and molluscs from the North Atlantic. *Quaternary Science Reviews* 25: 3228-3245.
- Nishiizumi K, Imamura M, Caffee MW, Southon JR, Finkel RC, McAninch J. 2007. Absolute calibration of
   <sup>10</sup>Be AMS standards. *Nuclear Instruments and Methods in Physics Research B* 258: 403-413.
- North Greenland Ice Core Project members. 2004. High-resolution record of Northern Hemisphere
  climate extending into the last interglacial period. *Nature* 431: 147-151.
- Patton H, Hubbard A, Andreassen K, Winsborrow M, Stroeven AP. 2016. The build-up, configuration, and
   dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing.
   *Quaternary Science Reviews* 153: 97-121.
- Phillips W, Briner JP, Gislefoss L, Linge H, Koffman T, Fabel D, Xu S, Hormes A. 2017. Late Holocene
  glacier activity at inner Hornsund and Scottbreen, southern Svalbard. *Journal of Quaternary Science* 32:
  501-515.
- Rasmussen TL, Thomsen E, Slubowska MA, Jessen S, Solheim A, Koç N. 2007. Paleoceanographic
   evolution of the SW Svalbard margin (76 degrees N) since 20,000 <sup>14</sup>C yr BP. *Quaternary Research* 67:
   100-114.
- 639
  640 Salvigsen O, Elgersma A. 1991. Radiocarbon Dated Raised Beaches in Northwestern Wedel Jarlsberg
  641 Land, Spitsbergen, Svalbard. *Wyprawy Geograficzne na Spitsbergen*: 9-16.
  642
- Schaefer JM, Denton GH, Kaplan M, Putnam A, Finkel RC, Barrell DJA, Andersen BG, Schwartz R,
  Mackintosh A, Chinn T, Schlüchter C. 2009. High-frequency Holocene glacier fluctuations in New Zealand
  differ from the Northern signature. *Science* 324: 622-625.
- 646
  647 Staiger J, Gosse J, Toracinta R, Oglesby B, Fastook J, Johnson JV. 2007. Atmospheric scaling of
  648 cosmogenic nuclide production: climate effect. *Journal of Geophysical Research* 112: B02205.
  649
- 650 Stokes CR, and 25 others. 2015. On the reconstruction of palaeo-ice sheets: Recent advances and future 651 challenges. *Quaternary Science Reviews* **125**: 15-49.
- 652
  653 Stone JO. 2000. Air pressure and cosmogenic isotope production. *Journal of Geophysical Research* 105:
  654 23,753-23,759.
- 655

- Stuiver M, Reimer PJ, Reimer RW. 2018. CALIB 7.1 [WWW program] at <u>http://calib.org</u>, accessed 2018-510.
- 658
  659 Svendsen JI, Mangerud J, Elverhøi A, Solheim A, Schüttenhelm RTE. 1992. The Late Weichselian glacial
  660 maximum on western Spitsbergen inferred from offshore sediment cores. *Marine Geology* **104**: 1-17.
- Svendsen JI, Elverhøi A. Mangerud J. 1996. The retreat of the Barents Sea Ice Sheet on the western
  Svalbard margin. *Boreas* 25: 244-256.
- Svendsen JI, and 29 others. 2004. Late Quaternary ice sheet history of northern Eurasia. *Quaternary Science Reviews* 23: 1229-1271.
- Ullman DJ, Carlson AE, LeGrande AN, Anslow FS, Moore AK, Caffee M, Syverson KM, Licciardi JM. 2015.
   Southern Laurentide ice-sheet retreat synchronous with rising boreal summer insolation. *Geology* 43: 23 doi:10.1130/G36179.1.
- Young NE, Briner JP, Axford Y, Csatho B, Babonis GS, Rood DH, Finkel RC. 2011. Response of a marineterminating Greenland outlet glacier to abrupt cooling 8200 and 9300 years ago. *Geophysical Research Letters* 38: L24701, doi:10.1029/2011GL049639.
- Young NE, Schaefer JM, Briner JP, Goehring BM. 2013. A <sup>10</sup>Be production-rate calibration for the Arctic.
   Journal of Quaternary Science 28: 515-526.
- 678

667

671

- Young NE, Schaefer JM, Goehring BM, Lifton N, Schimmelpfennig I, Briner JP. 2014. West Greenland and
   global in situ <sup>14</sup>C production-rate calibrations. *Journal of Quaternary Science* 29: 401-406.
- 681

Young NE, Briner JP, Maurer J, Schaefer JM. 2016. <sup>10</sup>Be measurements in bedrock constrain erosion
 beneath the Greenland Ice Sheet margin. *Geophysical Research Letters* 43: doi: 10.1002/2016GL070258.







9 12 15 18 21 24 27 33 36 Exposure age (ka)







| ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage10.4410.4410.44 <td< th=""><th>Table 1. Sample in</th><th>formation a</th><th>nd <sup>**</sup>Be and</th><th>Al data</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Table 1. Sample in | formation a    | nd <sup>**</sup> Be and | Al data           |                      |                   |                         |               |                                      |                           |                                                                                   |                                                                       |                                                                             |                                                             |                                   |                                                                |                                                             |                                   |                                    |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|-------------------------|-------------------|----------------------|-------------------|-------------------------|---------------|--------------------------------------|---------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------|------------------------------------|------------|
| Southweil         Southweil <t< th=""><th>Sample</th><th>Sample<br/>type</th><th>Latitude<br/>(DD)</th><th>Longitude<br/>(DD)</th><th>Elevation<br/>(m asl)</th><th>Thickness<br/>(cm)</th><th>Shielding<br/>correction</th><th>Quartz<br/>(g)</th><th><sup>9</sup>Be carrier<br/>added (g)</th><th>Carrier<br/>conc.<br/>(ppm)</th><th><sup>10</sup>Be/<sup>9</sup>Be ratio ±<br/>1σ (10<sup>-13</sup>)<sup>a</sup></th><th><sup>26</sup>Al/<sup>27</sup>Al ratio ±<br/>1σ (10<sup>-13</sup>)</th><th><sup>10</sup>Be<br/>conecentration<br/>(atoms g<sup>-1</sup>)<sup>c</sup></th><th><sup>10</sup>Be<br/>uncertainty<br/>(atoms g<sup>-1</sup>)</th><th><sup>10</sup>Be age -<br/>Lm (ka)</th><th><sup>26</sup>Al<br/>conecentration<br/>(atoms g<sup>-1</sup>)</th><th><sup>26</sup>Al<br/>uncertainty<br/>(atoms g<sup>-1</sup>)</th><th><sup>26</sup>Al age - Lm<br/>(ka)</th><th><sup>26</sup>Al/<sup>10</sup>Be</th><th>Laboratory</th></t<> | Sample             | Sample<br>type | Latitude<br>(DD)        | Longitude<br>(DD) | Elevation<br>(m asl) | Thickness<br>(cm) | Shielding<br>correction | Quartz<br>(g) | <sup>9</sup> Be carrier<br>added (g) | Carrier<br>conc.<br>(ppm) | <sup>10</sup> Be/ <sup>9</sup> Be ratio ±<br>1σ (10 <sup>-13</sup> ) <sup>a</sup> | <sup>26</sup> Al/ <sup>27</sup> Al ratio ±<br>1σ (10 <sup>-13</sup> ) | <sup>10</sup> Be<br>conecentration<br>(atoms g <sup>-1</sup> ) <sup>c</sup> | <sup>10</sup> Be<br>uncertainty<br>(atoms g <sup>-1</sup> ) | <sup>10</sup> Be age -<br>Lm (ka) | <sup>26</sup> Al<br>conecentration<br>(atoms g <sup>-1</sup> ) | <sup>26</sup> Al<br>uncertainty<br>(atoms g <sup>-1</sup> ) | <sup>26</sup> Al age - Lm<br>(ka) | <sup>26</sup> Al/ <sup>10</sup> Be | Laboratory |
| Sci-18       Method       7.53       1.4.4.2       1.0       0.997       30.990       0.907       2.72       2.4.648       0.985       1.6.1       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5       1.9.6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Scottbreen         |                |                         |                   |                      |                   |                         |               |                                      |                           |                                                                                   |                                                                       |                                                                             |                                                             |                                   |                                                                |                                                             |                                   |                                    |            |
| S0-14       Merol       7.53       1.4.47       10       2.0       9.99       30.39       6.00       7.50       1.50       5.07       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60       7.50       1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SCO-14-12          | bedrock        | 77.5538                 | 14.4423           | 142                  | 1.0               | 0.9955                  | 39.9946       | 0.6092                               | 372.5                     | 2.4648 ± 0.0638                                                                   |                                                                       | 92616                                                                       | 2421                                                        | 18.8 ± 0.5                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| S0-14bed77.301.4.881.00.097.801.6.9097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.097.001.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SCO-14-13          | bedrock        | 77.5557                 | 14.4447           | 119                  | 2.0               | 0.9973                  | 30.4387       | 0.6082                               | 372.5                     | 1.7251 ± 0.0325                                                                   |                                                                       | 85543                                                                       | 1629                                                        | 17.9 ± 0.3                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| Sorte is device       Type of the series       Type of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SCO-14-14          | bedrock        | 77.5563                 | 14.4438           | 104                  | 1.0               | 0.9982                  | 35.0566       | 0.6072                               | 372.5                     | 1.8143 ± 0.0343                                                                   |                                                                       | 77270                                                                       | 1488                                                        | 16.3 ± 0.3                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| matrix         matrix         matrix           10 - 540         matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SCO-14-15          | bedrock        | 77.5563                 | 14.4436           | 115                  | 2.0               | 0.9982                  | 20.1923       | 0.6106                               | 372.5                     | 1.1563 ± 0.0228                                                                   |                                                                       | 84618                                                                       | 1738                                                        | 17.8 ± 0.4                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| FR-14.01       medra       7.413       4.079.41       2.07       2.07       1.071       0.071.4       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014       9.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fløyfjellet        |                |                         |                   |                      |                   |                         |               |                                      |                           |                                                                                   |                                                                       |                                                                             |                                                             | 17.7 ± 1.0                        |                                                                |                                                             |                                   |                                    |            |
| FR-140       beeker       74.13       1.0889       2.2       2.0       0.999       1.0.440       beeker       74.13       1.0.889       1.25       2.0       0.999       1.0.440       beeker       74.13       1.0.899       1.5       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.1       1.0.0.1       1.0.1       1.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FLO-14-01          | bedrock        | 77.4124                 | 14.0924           | 265                  | 2.0               | 0.9968                  | 15.0139       | 0.1818                               | 1037                      | 1.0766 ± 0.0174                                                                   |                                                                       | 90104                                                                       | 1962                                                        | $16.2 \pm 0.4$                    |                                                                |                                                             |                                   |                                    | LDEO       |
| R.0.4.0       berkor, 7.413       1.0.887       2.3       2.0       0.988       1.6.89       0.181       10.7       0.877       0.202       2.82.44       2.92.5       1.5.8       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9       1.5.9 <td>FLO-14-02</td> <td>bedrock</td> <td>77.4123</td> <td>14.0880</td> <td>252</td> <td>2.0</td> <td>0.9996</td> <td>12.0044</td> <td>0.1816</td> <td>1037</td> <td>0.8357 ± 0.0157</td> <td></td> <td>87311</td> <td>2063</td> <td><math>15.9 \pm 0.4</math></td> <td></td> <td></td> <td></td> <td></td> <td>LDEO</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FLO-14-02          | bedrock        | 77.4123                 | 14.0880           | 252                  | 2.0               | 0.9996                  | 12.0044       | 0.1816                               | 1037                      | 0.8357 ± 0.0157                                                                   |                                                                       | 87311                                                                       | 2063                                                        | $15.9 \pm 0.4$                    |                                                                |                                                             |                                   |                                    | LDEO       |
| R-1-04       Metrick       7.414       1.4.067       2.9       2.0       0.995       1.5.72       0.181       10.77       1.6957       0.0095       1.5.104       1.5.104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FLO-14-03          | bedrock        | 77.4133                 | 14.0883           | 234                  | 2.0               | 0.9988                  | 14.9806       | 0.1815                               | 1037                      | 0.9870 ± 0.0227                                                                   |                                                                       | 82634                                                                       | 2392                                                        | 15.3 ± 0.4                        |                                                                |                                                             |                                   |                                    | LDEO       |
| Treatment         Subsci 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FLO-14-04          | bedrock        | 77.4141                 | 14.0867           | 229                  | 2.0               | 0.9985                  | 15.2578       | 0.1818                               | 1037                      | 1.0567 ± 0.0198                                                                   |                                                                       | 87026                                                                       | 2053                                                        | 16.2 ± 0.4<br>15.9 ± 0.4          |                                                                |                                                             |                                   |                                    | LDEO       |
| S-P-0.1       bedrox       77.260       15.158       0.0       9.004       1.0001       0.0072       1.0001       0.0072       1.0001       0.0072       1.0001       0.0072       1.0001       0.0072       1.0001       0.0072       1.0001       0.0072       1.0001       0.0072       1.0001       0.0072       1.0001       0.0072       1.0001       0.0072       1.0001       0.0072       1.0001       0.0072       1.0001       0.0001       1.0001       0.0001       1.0001       0.0001       1.0001       0.0001       1.0001       0.0001       1.0001       0.0001       1.0001       0.0001       1.0001       0.0001       1.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001       0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Torellbreen        |                |                         |                   |                      |                   |                         |               |                                      |                           |                                                                                   |                                                                       |                                                                             |                                                             |                                   |                                                                |                                                             |                                   |                                    |            |
| TOON1       bedrok       77,2097       14.4887       637       2.0       0.9974       13.479       0.6071       37.25       12.484       0.0021       12.28       2.00       0.614       2.00       0.9992       0.0021       0.0021       0.0014       0.9992       0.0021       0.0014       0.9992       0.0021       0.0014       12.31       12.11       0.0021       0.001       12.91       0.0014       12.92       0.001       12.91       0.0014       12.91       0.0014       12.91       0.0014       12.91       0.0014       12.91       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014       0.0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55-PLO-1           | bedrock        | 77.2604                 | 15.1582           | 812                  | 5.0               | 0.9469                  | 15.1596       | 0.6073                               | 372.5                     | 1.5003 ± 0.0420                                                                   |                                                                       | 149906                                                                      | 4185                                                        | 17.3 ± 0.5                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| Tro, Ortv2       Bedrok       77,397       14,887       677       2.0       0.999       20.832       0.664       37.5       1.718<10.027       10076       10.9103       11.3       10.9<13       11.3       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13       10.9<13 <td>70-ORV-1</td> <td>bedrock</td> <td>77.3097</td> <td>14.6887</td> <td>637</td> <td>2.0</td> <td>0.9774</td> <td>13.4797</td> <td>0.6071</td> <td>372.5</td> <td>1.6248 ± 0.0322</td> <td></td> <td>179656</td> <td>3614</td> <td><math>23.0 \pm 0.5</math></td> <td></td> <td></td> <td></td> <td></td> <td>Buffalo</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70-ORV-1           | bedrock        | 77.3097                 | 14.6887           | 637                  | 2.0               | 0.9774                  | 13.4797       | 0.6071                               | 372.5                     | 1.6248 ± 0.0322                                                                   |                                                                       | 179656                                                                      | 3614                                                        | $23.0 \pm 0.5$                    |                                                                |                                                             |                                   |                                    | Buffalo    |
| Tro. Ox 3       bedrox       77.000       16.77.5       587       2.0       0.992       2.07.72       0.500       71.1       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97       10.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70-ORV-2           | bedrock        | 77.3097                 | 14.6887           | 637                  | 2.0               | 0.9998                  | 20.0332       | 0.6064                               | 372.5                     | 1.7188 ± 0.0320                                                                   |                                                                       | 127826                                                                      | 2408                                                        | 16.0 ± 0.3                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| Internationalization         Description         Description <thdescription< t<="" td=""><td>70-ORV-3</td><td>bedrock</td><td>77.3099</td><td>14.6775</td><td>587</td><td>2.0</td><td>0.9992</td><td>20.0732</td><td>0.6054</td><td>372.5</td><td>1.4715 ± 0.0273</td><td></td><td>108796</td><td>2049</td><td>14.3 ± 0.3</td><td></td><td></td><td></td><td></td><td>Buffalo</td></thdescription<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70-ORV-3           | bedrock        | 77.3099                 | 14.6775           | 587                  | 2.0               | 0.9992                  | 20.0732       | 0.6054                               | 372.5                     | 1.4715 ± 0.0273                                                                   |                                                                       | 108796                                                                      | 2049                                                        | 14.3 ± 0.3                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| To-NORD-1       bedrok       77.0939       15.598       7.1       2.0       0.999       2.885       0.6005       37.2       2.282 to 0.574       16.890       7.1       8.7 to 3       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99       15.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hornsund nunataks  | /bedrock       |                         |                   |                      |                   |                         |               |                                      |                           |                                                                                   |                                                                       |                                                                             |                                                             | 10:0 1 1:0                        |                                                                |                                                             |                                   |                                    |            |
| 55-WAR-1       bedrok 77.089       15.702       68       5.0       0.9999       312.5       0.2472       0.044       72048       409       8.7 ± 0.5       USE       Buffalo         55-WAR-2       bedrok 77.089       15.702       66       4.5       0.9999       13.486       0.6073       372.5       1.266±10.0444       140025       5506       13.3 ± 0.6       Buffalo       Buffalo         66+31-1       bedrok 77.028       15.342       86       1.2       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000       1.0000 <td>70-NORD-1</td> <td>bedrock</td> <td>77.0939</td> <td>15.6894</td> <td>751</td> <td>2.0</td> <td>0.9999</td> <td>20.2885</td> <td>0.6065</td> <td>372.5</td> <td>2.2582 ± 0.0367</td> <td></td> <td>166380</td> <td>2734</td> <td>18.7 ± 0.3</td> <td></td> <td></td> <td></td> <td></td> <td>Buffalo</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70-NORD-1          | bedrock        | 77.0939                 | 15.6894           | 751                  | 2.0               | 0.9999                  | 20.2885       | 0.6065                               | 372.5                     | 2.2582 ± 0.0367                                                                   |                                                                       | 166380                                                                      | 2734                                                        | 18.7 ± 0.3                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| 55-MA-2.       bedrox       77.088       15.026       680       4.5       0.9996       12.4856       0.6123       27.2       12.661-0449       140255       5336       17.2       0.5       Buffaio       Buffaio         66-SU-1       bedrox       77.038       15.515       666       22.2       0.721       15.515       666       22.2       12.56       16.440       10.000       15.051       65.142       12.66       12.7       13.000       15.7       13.000       15.051       65.142       12.000       15.051       65.122       12.56       14.640       17.056       13.9       8.6.10.2       12.66       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.6       12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55-VAR-1           | bedrock        | 77.0890                 | 15.7062           | 698                  | 5.0               | 0.9999                  | 5.1862        | 0.6073                               | 372.5                     | 0.2472 ± 0.0144                                                                   |                                                                       | 72048                                                                       | 4209                                                        | 8.7 ± 0.5                         |                                                                |                                                             |                                   |                                    | Buffalo    |
| 66       65       10       bedrok       77.039       15.512       66       2.22       1.000       26.039       6.012       37.25       1.644.0       0.939.1       0.0130.1       307.01       1.888       5.21.2       Buffalo         05.51.72       1.2118       1.2118       1.20       2.8512       0.6112       37.25       1.7000       10.688       3.71.6       3.64.10.7       3.64.10.7       Buffalo       Buffalo         66       84.84.7.1       Buffalo       1.2118       1.00       0.581.7       0.666       37.25       1.3551.0       0.653.1       3.64.10.7       3.84.10.7       Buffalo       Buffalo         66       66.01.7       1.5118       0.9       0.81.0       0.0000       0.0000       0.0000       0.0000       0.0000       1.5552       0.552       1.0550       1.351.0       0.000       Buffalo         66       0.10.00       1.757       0.0000       2.710       0.0000       3.01.00       3.01.00       3.01.00       3.01.00       3.01.00       3.01.00       3.01.00       3.01.00       3.01.00       3.01.00       3.01.00       3.01.00       3.01.00       3.01.00       3.01.00       3.01.00       3.01.00       3.01.00       3.01.00       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55-VAR-2           | bedrock        | 77.0885                 | 15.7082           | 680                  | 4.5               | 0.9967                  | 13.4856       | 0.6076                               | 372.5                     | 1.2506 ± 0.0449                                                                   |                                                                       | 140255                                                                      | 5036                                                        | 17.3 ± 0.6                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| 65       51-72       bedrox       77.063       15.312       673       1.47       1.000       19.635       0.616       37.25       1.790       1.0001       1.752       1.700       1.0001       1.752       1.700       0.0031       971       1.89       9.2       2.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       9.2       1.800       1.800       9.2       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66-SLY-1           | bedrock        | 77.0939                 | 15.5151           | 656                  | 2.32              | 1.0000                  | 26.0395       | 0.6122                               | 372.5                     | 1.6440 ± 0.0290                                                                   |                                                                       | 95058                                                                       | 1855                                                        | 11.7 ± 0.2                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| Tob BAR-1       bedrox       77.054       15.442       688       2.0       1.000       27.871       0.666       27.97       0.656       27.97       0.656       27.97       0.656       27.97       0.656       27.97       0.656       27.97       0.656       27.97       0.656       27.97       0.656       27.97       0.656       27.97       0.656       27.97       0.656       27.97       0.656       27.97       0.656       27.97       0.656       27.97       0.656       27.97       0.656       0.77       0.72       0.656       0.72       0.23       0.057       0.53       0.538       0.56       0.79       0.52       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.237       0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65-SLY-2           | bedrock        | 77.0939                 | 15.5152           | 657                  | 1.47              | 1.0000                  | 19.6358       | 0.6106                               | 372.5                     | 0.9339 ± 0.0177                                                                   |                                                                       | 70586                                                                       | 1395                                                        | 8.6 ± 0.2                         |                                                                |                                                             |                                   |                                    | Buffalo    |
| 688-88.47.1       bedrox 77.064       15.218       110       2.43       1.0000       35.727       0.6006       37.25       4.5075       0.0881       17.339       3361       36.4       1.0.7       5.4       5.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70-BARA-1          | bedrock        | 77.1086                 | 15.3442           | 868                  | 2.0               | 1.0000                  | 27.8512       | 0.6112                               | 372.5                     | $1.7000 \pm 0.0301$                                                               |                                                                       | 90701                                                                       | 1689                                                        | 9.2 ± 0.2                         |                                                                |                                                             |                                   |                                    | Buffalo    |
| 66-8RATT-2       bedrok 77.0674       15.214       110       0.94       1.000       40.0999       0.5127       372.5       3.1365       1.003       3.007       3.45 ± 0.6       5.4 ± 0.6       Burflab         66-6U-1       bedrok 77.0674       15.211       1.000       2.0070       0.6123       372.5       3.1365 ± 0.0559       1.03339       3.47       3.6 ± 0.0       3.007       3.44 ± 0.3       Burflab       Burflab         66-6U-1       bedrok 77.0515       15.1845       5.48       1.27       1.000       2.0070       0.6123       372.5       2.0564       1.0968       2.03       4.4 ± 0.3       Burflab       Burflab         67-14m-1       bedrok 77.0514       15.1845       2.28       1.47       1.0000       2.012       3.0053       1.3315       4.000       3.27 ± 0.7       Burflab       Burflab         67-14m-1       bedrok 77.0416       15.2404       5.100       1.0000       1.0000       1.017       0.0688       3.725       1.2839       0.3378       2.3315       4.000       3.27 ± 0.7       1.28 ± 0.3       1.000       1.0000       1.0117       1.0121       1.0001       1.0117       1.0121       1.0001       1.011       1.0101       1.0101       1.0100       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 68-BRATT-1         | bedrock        | 77.0674                 | 15.2118           | 110                  | 2.43              | 1.0000                  | 35.7727       | 0.6066                               | 372.5                     | 4.0805 ± 0.0793                                                                   |                                                                       | 170651                                                                      | 3361                                                        | 36.4 ± 0.7                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| bebrak 1/-3       bedrak 7/0.0/4       bedrak 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66-BRATT-2         | bedrock        | 77.0674                 | 15.2114           | 110                  | 0.94              | 1.0000                  | 40.0399       | 0.6127                               | 372.5                     | 4.5705 ± 0.0881                                                                   |                                                                       | 173339                                                                      | 3347                                                        | 36.5 ± 0.7                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| bedrok       7/05/2       15.349.5       548       1.2/7       1.0000       2/07/0       0.0126       2.3/10.5       10.548       1.2/8       1.0000       372.5       2.305.6       0.0522       1.0940       3.245       2.9.9       1.0.5       5.3.18.9       1.0.000       3.27.5       2.005.6       0.0522       1.0942       2.044       1.0.00       3.27.5       0.0521       1.000       3.27.5       0.0521       1.000       3.27.5       0.0521       1.000       3.27.6       0.0522       1.001       3.27.6       0.0521       1.001       3.27.6       0.0521       1.001       3.27.6       0.0521       1.001       3.27.6       0.0521       1.001       3.27.6       0.0521       1.001       3.27.6       0.0521       1.001       3.27.6       0.0521       1.001       3.27.6       0.0521       1.001       3.27.6       0.0521       1.001       3.27.6       0.0521       1.001       3.27.6       0.0521       1.001       3.27.6       0.0521       1.001       3.27.6       0.0521       1.001       3.27.6       0.0521       1.001       3.27.6       0.0521       1.001       3.27.6       0.0521       1.001       3.27.6       0.0521       1.001       3.27.6       0.32.7       0.0521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66-BRATT-3         | bedrock        | //.06/4                 | 15.2115           | 109                  | 1.26              | 1.0000                  | 29.0404       | 0.6116                               | 372.5                     | 3.1365 ± 0.0559                                                                   |                                                                       | 163393                                                                      | 3007                                                        | 34.5 ± 0.6                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| bedrok 7/0353       15.18.88       380       1./.8       1.0000       40.0109       0.8.014       21.52       2.3006 21.0.52       1.0942       2.024       1.044 14.10.3       USA       Buffalo         67-601.12       bedrok 7/0.515       15.18.85       526       1.1/4       1.0000       30.1245       0.6068       32.72       2.9335       0.049       1.31504       2.262       1.70 + 1.3       Buffalo         67-601.12       bedrok 7/046       15.2406       600       2.0       1.0000       1.02435       0.6068       32.72       1.9335       1865       1.26 + 1.3       1.000       1.0000       1.04488       0.8041       1.027       1.0111       7.8335       1865       1.26 + 1.3       1.0000       1.0100       1.0100       1.0100       1.0100       1.0100       1.0111       7.8355       1.056       1.76 + 1.0       1.0000       1.0100       1.0000       1.0100       1.0100       1.0100       3.276.0       1.76 + 1.0       1.0000       1.0100       1.0100       3.010       1.010       3.010       1.0100       3.010       1.0100       3.010       1.0100       3.010       1.0100       1.0100       3.010       1.0100       1.0100       3.0116       1.0100       3.010       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 66-GUL-1           | bedrock        | 77.0522                 | 15.1845           | 548                  | 1.27              | 1.0000                  | 27.0770       | 0.6123                               | 372.5                     | 3.2105 ± 0.0546                                                                   |                                                                       | 1/9608                                                                      | 3156                                                        | 24.3 ± 0.4                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| bedroit       7/0315       15.1852       324       1.47       1.0000       23.479       0.0092       32.52       2.033       1.0200       3495       29.925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66-GUL-2           | Dedrock        | 77.0535                 | 15.1838           | 580                  | 1.78              | 1.0000                  | 40.1016       | 0.6104                               | 372.5                     | 2.9056 ± 0.0522                                                                   |                                                                       | 109342                                                                      | 2034                                                        | 14.4 ± 0.3                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| bedrok 7/.0440       15.2400       B00       2.0       10000       30.149       2.833       10039       131304       2.20       1.020.3       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72       1.0305       32.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67-GUL-3           | bedrock        | 77.0515                 | 15.1852           | 526                  | 1.47              | 1.0000                  | 23.4779       | 0.6092                               | 372.5                     | 3.3705 ± 0.0541                                                                   |                                                                       | 215620                                                                      | 3495                                                        | 29.9 ± 0.5                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| Local Product       Product<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 69-IAUN-2          | bedrock        | 77.0440                 | 15.2400           | 510                  | 2.0               | 1.0000                  | 12 4105       | 0.6104                               | 372.3                     | 2.0395 ± 0.0449                                                                   |                                                                       | 221215                                                                      | 2282                                                        | 22.7+0.7                          |                                                                |                                                             |                                   |                                    | Buffalo    |
| FAN:14-02       bediox       F7.025       12.027       329       3.0       0.9900       15.240       0.102       1027       12724       200       172.84.0       1027       172.84.0       1000       172.84.0       1000       172.84.0       1000       1027       12551.0       0022       1128       127.84       200       172.84.0       1000       172.84.0       1000       172.84.0       1000       172.84.0       1000       172.84.0       1000       172.84.0       1000       172.84.0       1000       172.84.0       1000       172.84.0       1000       172.84.0       1000       172.84.0       1000       172.84.0       1000       172.84.0       1000       1000       10000       10000       10000       10000       10000       10000       10000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       10000       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EAN-14-01          | bedrock        | 77.0401                 | 15 7024           | 200                  | 2.0               | 1.0000                  | 10.9459       | 0.1904                               | 1027                      | 0.6977 ± 0.0171                                                                   |                                                                       | 79025                                                                       | 1965                                                        | 176+02                            |                                                                |                                                             |                                   |                                    | LDEO       |
| FAN:14-03       bedrock       77.0097       15.7015       330       3.0       0.9990       14.2322       0.1814       137       0.4088 ± 0.005       3489       898       5.6 ± 0.1       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       10000       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FAN-14-01          | bedrock        | 77 0145                 | 15 7017           | 397                  | 3.0               | 0.9970                  | 15 1240       | 0.1804                               | 1037                      | 1 3551 + 0.0272                                                                   |                                                                       | 112784                                                                      | 2976                                                        | 179+05                            |                                                                |                                                             |                                   |                                    | LDEO       |
| ARD-01       bedrok       77.0068       15.4910       61       2.89       0.9965       20.373       0.1829       1037       1.0092 ± 0.0193       62610       1779       14.1±0.3       LDEO         Torbjørsenfjøller       14708.1       bedrok       77.0055       15.2679       633       1.87       0.1829       1034       1.7062 ± 0.0235       43.81 ± 0.336       12.496       1.60 ± 0.3       21.682       70.06       17.6 ± 1.5       7.38 ± 0.64       LDEO         1470R8.1       bedrock       77.0255       15.2679       633       1.87       0.9781       1.76.092       0.3824       10.04       1.7067 ± 0.0276       3.8344 ± 0.1548       126381       2068       18.3 ± 0.3       910442       46629       19.6 ± 1.0       7.20 ± 0.39       LDEO         1470R4.3       bedrock       77.027       15.243       2.29       0.9936       3.6143       0.1819       10.24       2.4264.0394       41.0213       21.53       2.56.04       86472       31.816       0.5019       3.58.11.8       6.61.033       6.5099       3.68.14       1.0518       1.06972       17.9       1.18 ± 0.2       1.0601       1.77 ± 1.0       1.0601       1.77 ± 1.0       1.0601       1.0602       1.0607       1.0601       1.0607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FAN-14-02          | bedrock        | 77.0097                 | 15 7015           | 380                  | 3.0               | 0.9990                  | 14 6232       | 0.1820                               | 1037                      | 0.4088 + 0.0095                                                                   |                                                                       | 34889                                                                       | 898                                                         | 56+01                             |                                                                |                                                             |                                   |                                    | LDEO       |
| Torbjørsenfjøler         Number og som                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ARD-01             | bedrock        | 77.0068                 | 15.4910           | 61                   | 2.89              | 0.9965                  | 20.3730       | 0.1829                               | 1037                      | 1.0092 ± 0.0193                                                                   |                                                                       | 62610                                                                       | 1479                                                        | 14.1 ± 0.3                        |                                                                |                                                             |                                   |                                    | LDEO       |
| March         Bedrock         77.0255         15.2679         633         1.87         0.9773         17.589         0.4824         1.024         1.7664 ± 0.0256         43881 ± 0.3316         12.2686         2031         16.6 ± 0.3         92162         790.6         17.6 ± 1.5         7.38 ± 0.64         LDEO           1410R8.1         bedrock         77.0253         15.2601         515         3.04         0.9781         16.7093         0.1819         1024         1.7002 ± 0.0276         3.834 ± 0.1548         126381         2068         18.3 ± 0.3         910442         46629         19.6 ± 1.0         7.20 ± 0.39         LDEO           1410R8.4         bedrock         77.0271         15.3243         2.79         1.53         0.9910         14.824         0.1819         10.02         2.4246 ± 0.0394         4.1403 ± 0.0466         203055         3.331         6.3 ± 0.         3.381 ± 0.0336         6.0473         3.51 ± 0.054         1.0927         3.58 ± 1.0         6.0419         3.881 ± 0.0356         1.06729         3.313         6.3 ± 0.03         1.024         2.4246 ± 0.0394         4.1403 ± 0.0664         1.3392.00         6.019         3.5 ± 1.0         6.00 ± 0.3         1.021 ± 1.0         7.7 ± 0.38         1.072 ± 1.0 5.7 ± 0.38 ± 1.0         0.01000         2.7 482 </td <td>Torhiarsenfiellet</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Torhiarsenfiellet  |                |                         |                   |                      |                   |                         |               |                                      |                           |                                                                                   |                                                                       |                                                                             |                                                             |                                   |                                                                |                                                             |                                   |                                    |            |
| IntrolBs-2       bedrock       77.0253       15.2001       515       3.04       0.9781       16.703       0.1819       10.24       1.7027+0.027.6       38.344       1.518       126.381       2068       18.3+0.3       910.42       466.39       19.6+1.0       7.20+0.39       IECO         IntrolBs-3       bedrock       77.0271       15.2241       252       2.6       0.951       1.3284       10.4       1.5038       7.0210       3.334       1.04       4.5139       2.02       3.333       3.63.4.6       1.332950       65019       3.5.8.1.8       6607.2       3.94.1       0.167.2       1.79       3.94.1.0       1.020       2.0065       3.313       3.63.4.6       1.332950       65019       3.5.8.1.8       6.60 + 0.3.4       IDFO       IDFO <td>14TORB-1</td> <td>bedrock</td> <td>77.0265</td> <td>15.2679</td> <td>633</td> <td>1.87</td> <td>0.9773</td> <td>17.5809</td> <td>0.1824</td> <td>1024</td> <td>1.7664 + 0.0285</td> <td>4.3881 + 0.3316</td> <td>124966</td> <td>2031</td> <td>16.0 + 0.3</td> <td>921682</td> <td>79016</td> <td>17.6 + 1.5</td> <td>7.38 + 0.64</td> <td>I DEO</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14TORB-1           | bedrock        | 77.0265                 | 15.2679           | 633                  | 1.87              | 0.9773                  | 17.5809       | 0.1824                               | 1024                      | 1.7664 + 0.0285                                                                   | 4.3881 + 0.3316                                                       | 124966                                                                      | 2031                                                        | 16.0 + 0.3                        | 921682                                                         | 79016                                                       | 17.6 + 1.5                        | 7.38 + 0.64                        | I DEO      |
| Intromesa       bedrock       77.0271       15.2312       252       2.45       0.9951       31.2097       0.1828       1024       3.5131±0.053       7.2934±0.2429       10213       2153       25.8±0.4       8640/2       31816       23.7±0.9       6.18±0.25       LDEO         14TORB-4       bedrock       77.0273       15.2343       229       1.03       0.9910       14.8254       0.1819       1024       2.4246±0.0394       1.40634       10612       133280       6.50.6       1332920       5.31.6       6.5192       3.5.8±1.8       6.60±0.34       LDEO         Wurmbrandegge       U       U       2.4246±0.0394       0.4103       2.572       0.282±0.0360       85508       3646       13.2±0.6       13.2±0.8       10.7±11       5.77±0.38       UEDO         WBE-14-01       bedrock       7.69349       15.7808       412       2.0       1.0000       25.7852       0.6087       37.25       0.882±0.0360       85508       3646       13.2±0.6       13.2±0.8       WBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14TORB-2           | bedrock        | 77.0263                 | 15,2601           | 515                  | 3.04              | 0.9781                  | 16,7093       | 0.1819                               | 1024                      | 1.7027 + 0.0276                                                                   | 3.8344 + 0.1548                                                       | 126381                                                                      | 2068                                                        | 183+03                            | 910442                                                         | 46629                                                       | 19.6 + 1.0                        | 7.20 + 0.39                        | LDEO       |
| H1008-4       bedrok       77.0273       15.2343       279       153       0.9910       14.234       0.1819       10.24       2.42/46 ± 0.0394       4.1403 ± 0.1666       20.3055       3313       36.34 ± 0.6       1339280       65019       35.8 ± 1.8       6.60 ± 0.34       LDEO         WIRE 1400       bedrock       76.9340       157805       4170       0.9936       36.0443       0.1819       10.24       2.42/46 ± 0.0394       4.1403 ± 0.1666       10.6472       1789       20.110.3       614729       35.84 ± 1.8       6.60 ± 0.34       LDEO         WIRE 1400       bedrock       76.9340       157805       412       2.0       1.0000       25.185       0.6075       372.5       0.832 ± 0.0160       812.9       1732       12.7 ± 0.3       157.46       10.601       10.601       10.601       14.601       Burfalo       Bur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14TORB-3           | bedrock        | 77.0271                 | 15.2312           | 252                  | 2.45              | 0.9951                  | 31.2907       | 0.1828                               | 1024                      | 3.5131 ± 0.0538                                                                   | 7.9293 ± 0.2429                                                       | 140213                                                                      | 2153                                                        | 25.8 ± 0.4                        | 866472                                                         | 31816                                                       | 23.7 ± 0.9                        | 6.18 ± 0.25                        | LDEO       |
| 14TOR8-5       bedrok       7.0276       15.2281       2.52       0.09       9.993       6.0433       0.121       1024       3.0806 ± 0.0516       6.3974 ± 0.3634       106472       1789       20.1±0.3       6.14729       3949       17.2±1.1       5.77±0.38       LDEO         Wurmbrandegge       W       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H       H <th< td=""><td>14TORB-4</td><td>bedrock</td><td>77.0273</td><td>15.2343</td><td>279</td><td>1.53</td><td>0.9910</td><td>14.8254</td><td>0.1819</td><td>1024</td><td>2.4246 ± 0.0394</td><td>4.1403 ± 0.1666</td><td>203065</td><td>3313</td><td>36.3 ± 0.6</td><td>1339280</td><td>65019</td><td>35.8 ± 1.8</td><td>6.60 ± 0.34</td><td>LDEO</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14TORB-4           | bedrock        | 77.0273                 | 15.2343           | 279                  | 1.53              | 0.9910                  | 14.8254       | 0.1819                               | 1024                      | 2.4246 ± 0.0394                                                                   | 4.1403 ± 0.1666                                                       | 203065                                                                      | 3313                                                        | 36.3 ± 0.6                        | 1339280                                                        | 65019                                                       | 35.8 ± 1.8                        | 6.60 ± 0.34                        | LDEO       |
| Wurmbrandegge         W           WBE 14-01         bedrock         76.9350         15.7805         412         2.0         1.0000         25.7482         0.6075         372.5         0.832.1         0.0360         85508         312.2         1.02         Buffalo           WBE 14-01         bedrock         76.9357         15.7708         406         2.0         1.0000         25.1815         0.6075         372.5         0.8342 ± 0.0160         812.29         1732         1.27 ± 0.3         Buffalo           WBE 14-04         bedrock         76.9370         15.7748         2.00         0.9880         2.7382         1.0640         95715         1.1418         10.99 ± 0.3         Buffalo           WBE 14-06         bedrock         76.9392         15.7718         1.81         2.0         0.9888         30.6514         0.0105         372.5         1.370 ± 0.0144         65812         1.316         1.33 ± 0.3         Buffalo           WBE 14-06         bedrock         76.9414         15.7608         78         2.0         0.9888         15.0890         0.6071         372.5         1.376 ± 0.0276         65812         1.316         1.33 ± 0.3         Buffalo           WBE 14-06         bedrock         76.9414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14TORB-5           | bedrock        | 77.0276                 | 15.2281           | 225                  | 2.09              | 0.9936                  | 36.0443       | 0.1821                               | 1024                      | 3.0806 ± 0.0516                                                                   | 6.3974 ± 0.3634                                                       | 106472                                                                      | 1789                                                        | $20.1\pm0.3$                      | 614729                                                         | 39491                                                       | 17.2 ± 1.1                        | $5.77\pm0.38$                      | LDEO       |
| WB: 14-00<br>WB: 14-00<br>WB: 14-00<br>WB: 14-00<br>bedroxt         76.9370<br>76.9377         15.7748<br>15.7748         20.0<br>2.0         10000<br>2.5185         0.6807<br>0.6608         372.5         0.882.2         0.0500         812.9<br>812.9         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7         12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Wurmbrandeaaa      |                |                         |                   |                      |                   |                         |               |                                      |                           |                                                                                   |                                                                       |                                                                             |                                                             |                                   |                                                                |                                                             |                                   |                                    |            |
| WBE 14-02         bedrock         76.9350         15.7805         406         2.0         1.0000         25.185         0.6075         37.25         0.8842 ± 0.0160         81.29         1732         12.7 ± 0.3         Buffalo           WBE 14-03         bedrock         76.9350         15.7748         260         2.0         0.9880         23.7882         0.6060         37.25         1.844 ± 0.0160         81.29         1.732         1.27 ± 0.3         Buffalo           WBE 14-03         bedrock         76.9390         15.7748         2.48         2.0         0.9727         1.6345 ± 0.0230         59715         1.418         10.9 ± 0.3         Buffalo           WBE 14-05         bedrock         76.9392         15.7718         1.81         2.0         0.9883         15.0693         0.6013         37.25         1.370 ± 0.014         69812         1.316         1.38 ± 0.3         Buffalo           WBE 14-00         bedrock         76.9414         15.7680         7.8         2.0         0.9884         15.0692         0.6071         37.25         1.337 ± 0.0228         66066         1234         1.34 ± 0.3         Buffalo           WBE 14-00         bedrock         76.9414         15.7680         7.8         2.0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WBE-14-01          | bedrock        | 76.9349                 | 15.7808           | 412                  | 2.0               | 1.0000                  | 25.7482       | 0.6087                               | 372.5                     | 0.8823 ± 0.0360                                                                   |                                                                       | 85508                                                                       | 3646                                                        | 13.2 ± 0.6                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| WBE-14-03         bedrock         76.9377         15.7748         260         0.0         99.898         15.75         10.458         10.91         10.91         Burflaio           WBE-14-04         bedrock         76.9372         15.7748         20         0.9980         23.782         10.6080         37.25         10.454         0.023         13.8         10.2         0.99         0.99         0.009         30.009         0.6063         37.25         12.418         10.210         13.8         10.3         Burflaio         Burflaio           WBE-14-06         bedrock         76.9392         15.718         18         2.0         0.9883         15.6680         0.6105         37.25         13.84         10.21         13.8         13.8         0.3         Burflaio           WBE-14-05         bedrock         76.9404         15.7702         13.3         2.0         0.9884         15.0627         13.64         0.0276         65557         1419         13.74         0.3         Burflaio           WBE-14-01         bedrock         76.9404         15.7760         78         0.6971         0.2257         13.64         0.0276         66981         13.4         0.3         0.3         Burflaio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WBE-14-02          | bedrock        | 76.9350                 | 15.7805           | 406                  | 2.0               | 1.0000                  | 25.1815       | 0.6075                               | 372.5                     | 0.8342 ± 0.0160                                                                   |                                                                       | 81229                                                                       | 1732                                                        | 12.7 ± 0.3                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| WBE-14-04<br>WBE-14-05         berlock         76.9320<br>February         15.7745<br>From Variable         248<br>Partial         2.0         0.9727<br>Partial         0.063<br>Partial         37.25<br>Partial         12.14 Partial         0.0522<br>Partial         13.48         13.2 P.0.3         Buffalo         Buffalo           WBE-14-05         bedrox         76.9392         15.7718         18         2.0         0.9883         30.6524         0.0194         69812         1316         13.8 P.0.3         Buffalo           WBE-14-07         bedrox         76.9414         15.7680         7.8         2.0         0.9884         15.0692         0.0194         60912         1316         13.8 P.0.3         Buffalo           WBE-14-07         bedrox         76.9414         15.7680         7.8         2.0         0.9884         15.0692         0.6017         37.5         1.2637 P.0.0236         60666         1234         13.4 P.0.3         Buffalo           Tresketer         T         T         remain         77.0227         15.057         156         3.4         0.9217         0.12670         1664         0.957 ± 0.0236         64813         24.62         13.6 ± 0.5         0.9884         5.0897         0.02167         12.8 ± 0.5         0.9812         13.6 ± 0.5 <t< td=""><td>WBE-14-03</td><td>bedrock</td><td>76.9377</td><td>15.7748</td><td>260</td><td>2.0</td><td>0.9880</td><td>23.7882</td><td>0.6080</td><td>372.5</td><td>1.0545 ± 0.0230</td><td></td><td>59715</td><td>1418</td><td>10.9 ± 0.3</td><td></td><td></td><td></td><td></td><td>Buffalo</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WBE-14-03          | bedrock        | 76.9377                 | 15.7748           | 260                  | 2.0               | 0.9880                  | 23.7882       | 0.6080                               | 372.5                     | 1.0545 ± 0.0230                                                                   |                                                                       | 59715                                                                       | 1418                                                        | 10.9 ± 0.3                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| WBE 14-05         bedrox         76.9392         15.7718         181         2.0         0.9883         10.6103         17.75         137.0         133.4         0.3         Buffalo           WBE 14-06         bedrox         76.9414         15.7600         78         2.0         0.9883         15.0890         0.6071         372.5         1.370.4         65812         131.6         13.8 ± 0.3         Buffalo           WBE 14-07         bedrox         76.9414         15.7680         78         2.0         0.9884         15.0589         0.6071         372.5         1.376 ± 0.0276         6585         1234         13.4 ± 0.3         Buffalo           Treskelen         r         r         r         r         r         r         0.9884         15.0689         0.6071         372.5         1.2637 ± 0.0236         64813         2.462         13.6 ± 0.5         SUERC           TR-01         errati         77.0227         16.2057         156         2.4         0.9217         1264         0.9511         62.423         2650         12.8 ± 0.5         SUERC           TR-04         errati         77.0161         16.2162         111         1.9         0.9981         16.560         0.0379         52.0377<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WBE-14-04          | bedrock        | 76.9380                 | 15.7745           | 248                  | 2.0               | 0.9727                  | 30.3079       | 0.6063                               | 372.5                     | 1.2143 ± 0.0212                                                                   |                                                                       | 70532                                                                       | 1348                                                        | 13.2 ± 0.3                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| WBE 14-06         bedrock         76.9404         15.7702         133         2.0         0.9885         15.0869         0.6031         372.5         1.3564 ± 0.0276         65557         1419         13.7 ± 0.3         Buffalo           Trestein           TR-02         erratic         77.0227         15.057         156         3.4         0.9922         2.8390         0.1260         1664         0.957±0.0326         64813         2462         13.6±0.5         SUERC           TR-02         erratic         77.0227         15.6         3.4         0.9922         2.8390         0.1260         1664         0.957±0.0326         64813         2462         13.6±0.5         SUERC           TR-04         erratic         77.0227         15.6         3.4         0.9922         2.8390         0.12600         1664         1.305±0.0511         62423         2650         12.8±0.5         SUERC           TR-04         erratic         77.0161         16.2162         111         1.9         0.9981         16.5260         0.12810         1664         1.035±0.0477         7274         4247         15.4±0.9         SUERC           TR-05         erratic         77.0161         16.2162         111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WBE-14-05          | bedrock        | 76.9392                 | 15.7718           | 181                  | 2.0               | 0.9883                  | 30.6524       | 0.6105                               | 372.5                     | 1.1370 ± 0.0194                                                                   |                                                                       | 69812                                                                       | 1316                                                        | $13.8 \pm 0.3$                    |                                                                |                                                             |                                   |                                    | Buffalo    |
| WBE-14-07         bedrok         76.9414         15.7680         78         2.0         0.9884         15.0632         0.6071         372.5         1.2637 ± 0.0238         66666         1234         13.4 ± 0.3         Buffalo           Treskelen           TR-01         erratic         77.0227         16.2057         156         0.9619         0.2170         12640         0.957 ± 0.0326         6686         1234         13.4 ± 0.3         SUFCO           TR-02         erratic         77.0227         16.2057         156         3.4         0.9922         2.8390         0.1260         1664         0.957 ± 0.0326         66481         2462         12.6 ± 0.5         SUFCO         SUFCO           TR-04         erratic         77.0160         16.2162         11         1.9         0.9981         16.260         0.1280         1641         1.3057 ± 0.0377         7274         4247         15.4 ± 0.9         SUFCO           TR-05         erratic         77.0161         16.2162         110         1.9         0.9981         16.526         0.0349         5953         21.7         12.6 ± 0.047         594.0         504.0         504.0         504.0         504.0         504.0         504.0         504.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WBE-14-06          | bedrock        | 76.9404                 | 15.7702           | 133                  | 2.0               | 0.9885                  | 15.0869       | 0.6043                               | 372.5                     | 1.3564 ± 0.0276                                                                   |                                                                       | 65557                                                                       | 1419                                                        | 13.7 ± 0.3                        |                                                                |                                                             |                                   |                                    | Buffalo    |
| Trestelen         Trestelen         SUBSCOND         Trestelen         SUBSCOND         Trestelen         SUBSCOND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WBE-14-07          | bedrock        | 76.9414                 | 15.7680           | 78                   | 2.0               | 0.9884                  | 15.0632       | 0.6071                               | 372.5                     | 1.2637 ± 0.0238                                                                   |                                                                       | 60686                                                                       | 1234                                                        | $13.4\pm0.3$                      |                                                                |                                                             |                                   |                                    | Buffalo    |
| TR-01         erratic         77.0227         16.2057         156         2.6         0.9619         20.2170         0.12670         1664         0.957 ± 0.0326         64813         2462         13.6 ± 0.5         SUERC           TR-02         erratic         77.0227         16.2055         156         3.4         0.9922         28.339         0.12660         1664         1.3057 ± 0.0511         62423         2650         12.8 ± 0.5         SUERC           TR-04         erratic         77.0160         16.2162         111         1.9         0.9981         16.5260         0.12810         1664         0.8705 ± 0.0477         72734         4247         15.4 ± 0.9         SUERC           TR-05         erratic         77.0161         16.2160         110         1.4         0.979         25.5210         0.1707 ± 0.0349         59853         2117         12.6 ± 0.4         SUERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Treskelen          |                |                         |                   |                      |                   |                         |               |                                      |                           |                                                                                   |                                                                       |                                                                             |                                                             |                                   |                                                                |                                                             |                                   |                                    |            |
| TR-02         erratic         77.0227         16.2055         156         3.4         0.9922         28.3390         0.12660         1664         1.3057±0.0511         62423         2650         12.8±0.5         SUERC           TR-04         erratic         77.0161         16.2162         111         1.9         0.9981         16.5260         0.12810         1664         0.8705±0.0477         7274         4247         15.4±0.9         SUERC           TR-05         erratic         77.0161         16.2160         110         1.4         0.9792         25.5210         0.12710         1664         1.076+0.0349         59853         21.17         12.6±0.4         SUERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TR-01              | erratic        | 77.0227                 | 16.2057           | 156                  | 2.6               | 0.9619                  | 20.2170       | 0.12670                              | 1664                      | 0.957 ± 0.0326                                                                    |                                                                       | 64813                                                                       | 2462                                                        | 13.6 ± 0.5                        |                                                                |                                                             |                                   |                                    | SUERC      |
| TR-04         erratic         77.0160         16.2162         111         1.9         0.9981         16.5260         0.12810         1664         0.8705 ± 0.0477         72734         4247         15.4 ± 0.9         SUERC           TR-05         erratic         77.0161         16.2160         110         1.4         0.9979         25.5210         0.12710         1664         1.1076 ± 0.0349         59853         2117         12.6 ± 0.4         SUERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TR-02              | erratic        | 77.0227                 | 16.2055           | 156                  | 3.4               | 0.9922                  | 28.8390       | 0.12660                              | 1664                      | 1.3057 ± 0.0511                                                                   |                                                                       | 62423                                                                       | 2650                                                        | 12.8 ± 0.5                        |                                                                |                                                             |                                   |                                    | SUERC      |
| TR-05 erratic 77.0161 16.2160 110 1.4 0.9979 25.5210 0.12710 1664 1.1076 ±0.0349 59853 2117 12.6 ± 0.4 SUERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TR-04              | erratic        | 77.0160                 | 16.2162           | 111                  | 1.9               | 0.9981                  | 16.5260       | 0.12810                              | 1664                      | 0.8705 ± 0.0477                                                                   |                                                                       | 72734                                                                       | 4247                                                        | $15.4 \pm 0.9$                    |                                                                |                                                             |                                   |                                    | SUERC      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TR-05              | erratic        | 77.0161                 | 16.2160           | 110                  | 1.4               | 0.9979                  | 25.5210       | 0.12710                              | 1664                      | 1.1076 ± 0.0349                                                                   |                                                                       | 59853                                                                       | 2117                                                        | $12.6 \pm 0.4$                    |                                                                |                                                             |                                   |                                    | SUERC      |

Table 1. Sample information and <sup>10</sup>Be and <sup>26</sup>Al data

 Image
 Test (VALUE)
 Test (VALUE)

| Sample   | Date<br>extracted | Quartz (g) | V <sub>CO2</sub> (cc STP) | V <sub>dilute</sub> (cc STP) | CAMS # |
|----------|-------------------|------------|---------------------------|------------------------------|--------|
| 14TORB-1 | ########          | 5.1234     | 0.2576 ± 0.0030           | 1.5901 ± 0.0184              | 170000 |
| 14TORB-2 | ########          | 3.4877     | 0.4839 ± 0.0056           | 1.8295 ± 0.0211              | 173883 |
| 14TORB-3 | ########          | 5.0427     | 0.7704 ± 0.0089           | 1.4295 ± 0.0165              | 170152 |
| 14TORB-4 | ########          | 5.0307     | 0.3336 ± 0.0038           | 1.6875 ± 0.0194              | 173884 |
| 14TORB-5 | ########          | 5.1089     | 0.5360 ± 0.0062           | 0.9921 ± 0.0115              | 173356 |

 Table 2. In situ
 <sup>14</sup>C extraction details

All samples are blank corrected using a LDEO long-term value of  $112.55 \pm 36.83 \times 10^{3}$  <sup>14</sup>(

| F <sub>m</sub> measured | <sup>14</sup> C blank-correted<br>(atoms g <sup>-1</sup> ) | <sup>14</sup> C age - Lm (ka) | <sup>14</sup> C age - LSD (ka) |
|-------------------------|------------------------------------------------------------|-------------------------------|--------------------------------|
| 0.0259 ± 0.0002         | 208248 ± 8111                                              | 18.5 ± 2.7                    | 19.1 ± 2.9                     |
| 0.0153 ± 0.0002         | 183882 ± 12146                                             | 17.6 ± 4.0                    | 18.0 ± 4.3                     |
| 0.0214 ± 0.0002         | 146890 ± 7942                                              | 17.3 ± 3.2                    | 17.3 ± 3.2                     |
| $0.0186 \pm 0.0001$     | 149829 ± 8358                                              | 16.9 ± 3.1                    | 16.9 ± 3.1                     |
| 0.0298 ± 0.0003         | 141823 ± 7643                                              | 16.7 ± 2.9                    | 16.6 ± 2.9                     |

Catoms (n=23)

Table 3a. In situ <sup>14</sup>C blank data

| Sample         | V <sub>CO2</sub> (cc STP) | V <sub>dilute</sub> (cc STP) | CAMS # | F <sub>m</sub> measured | <sup>14</sup> C (10 <sup>3</sup> atoms) |  |
|----------------|---------------------------|------------------------------|--------|-------------------------|-----------------------------------------|--|
| Blank 11-20-14 | 0.01643 ± 0.00019         | 1.446 ± 0.017                | 168812 | $0.0048 \pm 0.0001$     | 107.03 ± 13.60                          |  |
| Blank 1-15-15  | 0.01295 ± 0.00015         | 1.391 ± 0.016                | 168813 | $0.0048 \pm 0.0001$     | 100.87 ± 13.18                          |  |
| Blank 3-10-15  | 0.01202 ± 0.00014         | 1.351 ± 0.015                | 169702 | $0.0061 \pm 0.0001$     | 153.24 ± 12.92                          |  |
| Blank 4-17-15  | 0.01346 ± 0.00016         | 1.424 ± 0.016                | 170151 | 0.0045 ± 0.0001         | 89.66 ± 13.48                           |  |
| Blank 9-16-15  | 0.01318 ± 0.00015         | 1.373 ± 0.016                | 172629 | 0.0063 ± 0.0001         | 164.18 ± 13.17                          |  |
| Blank 3-2-16   | 0.01401 ± 0.00016         | 1.403 ± 0.016                | 173886 | $0.0040 \pm 0.0001$     | 67.01 ± 13.22                           |  |

We report all blank measurements completed since November 2014. The previous LDEO long-term blank was  $118.09 \pm 39.28 \times 10^{3.14}$ C atoms and included blanks up to Septmeber 2013 (Young et al., 2014). The updated LDEO long-term blank value that includes the above measurements is  $112.55 \pm 36.83 \times 10^{3.14}$ C atoms (n=23).

Table 3b. LDEO CRONUS-A in situ <sup>14</sup>C data

| Sample           | Quartz (g) | V <sub>CO2</sub> (cc STP) | V <sub>dilute</sub> (cc STP) | CAMS # | F <sub>m</sub> measured | <sup>14</sup> C (10 <sup>3</sup> atoms g <sup>-1</sup> ) |
|------------------|------------|---------------------------|------------------------------|--------|-------------------------|----------------------------------------------------------|
| CRONUS-A-3-24-15 | 4.8795     | 0.1122 ± 0.0013           | 1.470 ± 0.017                | 169935 | 0.0826 ± 0.0003         | 735.89 ± 12.27                                           |
| CRONUS-A-4-16-16 | 3.6393     | 0.0553 ± 0.0006           | 1.439 ± 0.017                | 173885 | 0.0618 ± 0.0004         | 706.23 ± 14.53                                           |
| CRONUS-A-5-19-16 | 3.6502     | 0.0512 ± 0.0006           | 1.423 ± 0.016                | 174602 | 0.0624 ± 0.0002         | 696.69 ± 13.78                                           |
|                  |            |                           |                              |        |                         |                                                          |

CRONUS-A measurements since October 2013. Values are consistent with a previosuly reported long-term CRONUS-A value of 655.17 ± 30.87 x 10<sup>3</sup> <sup>14</sup>C atoms g<sup>-1</sup> (Young et al., 2014). We note, however, that beginning with the CRONUS-A-3-24-15 extraction, we started working with a new aliquot of the CRONUS-A quartz standard.

#### Table 4: Summary of deglacial radiocarbon ages

| Location<br>(Fig. 1) | Latitude | Longitude | <sup>14</sup> C years | 1-sigma<br>uncertainty | cal yr BP        | Setting (Site; Lab ID; material; desciption)                                                | Reference                                      |
|----------------------|----------|-----------|-----------------------|------------------------|------------------|---------------------------------------------------------------------------------------------|------------------------------------------------|
| 1                    | 76       | 16        | 16750                 | 110                    | $19610 \pm 170$  | JM02-460PC; AAR-8764; N. pachyderma ; Hemipelagic deposits above till                       | Rasmussen et al., 2007                         |
| 2                    | 76.4     | 13.1      | 19310                 | 140                    | 22660 ± 170      | JM03-373PC2; AAR-8773; N. pachyderma ; Hemipelagic deposits above debris flow               | Rasmussen et al., 2007                         |
| 3                    | 76.333   | 12.600    | 19630                 | 150                    | 23040 ± 230      | JM03-374PC; AAR-8766; N. pachyderma ; Hemipelagic deposits above debris flow                | Jessen et al., 2010                            |
| 4                    | 77.220   | 12.625    | 16880                 | 80                     | 19750 ± 170      | NP90-46; Beta-71988; E. excavatum ; Marine sediment above diamicton                         | Cadman, 1996                                   |
| 5                    | 77.617   | 9.936     | 16035                 | 130                    | 18780 ± 135      | NP90-36; Tua-845; N. pachyderma; Above till, glaciomarine with IRD of Svalbard origin       | Elverhøi et al., 1995                          |
| 6                    | 77.817   | 9.093     | 19815                 | 120                    | 23240 ± 190      | NP90-39; Tua-557; N. pachyderma ; above till, glaciomarine with IRD of Svalbard origin      | Elverhøi et al., 1995                          |
| 7*                   | 78.7588  | 10.7463   | NA                    | NA                     | 20290 ± 2120     | JL00-31 Leefjellet; Beryllium-10 exposure age                                               | Landvik et al., 2013                           |
| 8*                   | 79.2388  | 11.8139   | NA                    | NA                     | $25010 \pm 1010$ | Langskipet; Beryllium-10 exposure age; 611 m a.s.l.                                         | Gjermundsen et al., 2013                       |
| 9*                   | 79.4640  | 11.3937   | NA                    | NA                     | 21840 ± 950      | Kaf-1; Beryllium-10 exposure age; 836 m a.s.l.                                              | Gjermundsen et al., 2013                       |
| 10*                  | 79.6013  | 11.7866   | NA                    | NA                     | 19340 ± 1260     | Average of Ovo-3 & Ovo-4; Beryllium-10 exposure ages; 687 m and 730 m a.s.l.                | Gjermundsen et al., 2013                       |
| 11*                  | 79.7216  | 10.9483   | NA                    | NA                     | 17860 ± 2040     | Average of 99-01 & 99-05 Danskøya; Beryllium-10 exposure ages; 77 m and 74 m a.s.l.         | Landvik et al., 2003; Gjermundsen et al., 2013 |
| 12*                  | 79.7375  | 13.6142   | NA                    | NA                     | 21670 ± 1310     | R4; Beryllium-10 exposure age; 85 m a.s.l.                                                  | Gjermundsen et al., 2013                       |
| 13*                  | 80.2088  | 22.4817   | NA                    | NA                     | 26730 ± 3910     | Bluffen-2; Beryllium-10 exposure age; 165 m a.s.l.                                          | Hormes et al., 2011                            |
| 14*                  | 80.2073  | 22.5102   | NA                    | NA                     | 28270 ± 2140     | Bluffen-3; Beryllium-10 exposure age; 123 m a.s.l.                                          | Hormes et al., 2011                            |
| 15                   | 79.095   | 25.095    | 18640                 | 100                    | 21990 ± 170      | GC06; NA; Bulk sediments; Mud above diamict                                                 | Hogan et al., 2010                             |
| 16                   | 76.7     | 16.4      | 10660                 | 220                    | 11730 ± 400      | Werenskioldbreen; U-2831; Mya truncata (reworked); glacier margin near medial moraine       | Birkenmajer and Olsson, 1998                   |
| 17                   | 77.08    | 15.18     | 10790                 | 160                    | 12100 ± 320      | Werenskioldbreen; U-2972; Mya truncata (reworked); esker in glacier forefield               | Birkenmajer and Olsson, 1998                   |
| 18                   | 77.55    | 14.03     | 12350                 | 145                    | 13690 ± 170      | Wedel Jarlsberg/Dyrstadalen; Ua-1081; shell fragment; beach gravels at 50.5 m a.s.l.        | Salvigsen and Elgersma, 1991                   |
| 19                   | 78.188   | 9.943     | 15255                 | 180                    | 17930 ± 230      | NP90-21; Tua-359; N. pachyderma; Marine sediment above diamicton                            | Elverhøi et al., 1995                          |
| 20                   | 78.022   | 11.857    | 12835                 | 100                    | 14360 ± 250      | NP-90-25; Tua-553; unidentified Mollusc; Glaciomarine mud over massive till                 | Svendsen et al., 1996                          |
| 21                   | 78.047   | 12.988    | 12985                 | 145                    | 14630 ± 330      | 88-02; Tua-42; Nucula tenuis; mud with dropstones on firm diamicton                         | Svendsen et al., 1992                          |
| 22                   | 78.071   | 13.759    | 12740                 | 190                    | 14260 ± 360      | Linnevatnet; Ua-732, Shells; Marine sediment above diamicton                                | Mangerud and Svendsen, 1990                    |
| 23                   | 78.293   | 14.803    | 10975                 | 60                     | 12390 ± 150      | JM98-818-PC; Tua-5191; Foraminifera; Glacimarine sediments on glaciomarine diamicton        | Forwick and Vorren, 2009                       |
| 24                   | 78.277   | 15.260    | 10835                 | 140                    | 12180 ± 180      | NP87-144; Ua-757; Mollusc unidentified                                                      | Elverhøi et al., 1995                          |
| 25                   | 78.380   | 15.479    | 11025                 | 90                     | 12430 ± 150      | 90-03 PC; Tua-442; Foraminifera; Laminated glacimarine mud on top of till                   | Elverhøi et al., 1995                          |
| 26                   | 78.565   | 16.428    | 10085                 | 115                    | 10980 ± 160      | NP90-01-PC; Tua-186; Bryzoyoa; Marine mud on top of laminated deglaciated mud               | Svendsen et al., 1996                          |
| 27                   | 78.552   | 16.540    | 10240                 | 60                     | 11130 ± 80       | Kapp Ekholm V-H8; Ua-35635; Hiatella arctica ; Marine sands on LGM melt-out/subglacial till | Hormes et al., 2013                            |
| 28*                  | 78.8400  | 10.6023   | NA                    | NA                     | 16470 ± 1900     | JL-00-10; Beryllium-10 exposure age; 325 m a.s.l.                                           | Landvik et al., 2003                           |
| 29                   | 79.022   | 11.104    | 13960                 | 120                    | 16180 ± 190      | NP90-9-PC3; WHG-941; Mixed benthic formas; Laminated marine mud over glacial till           | Landvik et al., 2013                           |
| 30*                  | 79.1914  | 12.0009   | NA                    | NA                     | 16930 ± 1120     | Flakstor; Beryllium-10 exposure age; 217 m a.s.l.                                           | Gjermundsen et al., 2013                       |
| 31*                  | 79.7447  | 13.0695   | NA                    | NA                     | 15570 ± 790      | R10; Beryllium-10 exposure age; 84 m a.s.l.                                                 | Gjermundsen et al., 2013                       |
| 32*                  | 80.0367  | 18.7056   | NA                    | NA                     | 16810 ± 1220     | Flora-2; Beryllium-10 exposure age; 220 m a.s.l.                                            | Hormes et al., 2011                            |
| 33                   | 80.355   | 16.299    | 14165                 | 135                    | 16470 ± 230      | NP94-51SC2; mixed benthic foraminiferae; outer shelf                                        | Koç et al., 2002                               |

All radiocarbon ages were calibrated with Calib 7.1 and the MARINE13 database (Stuiver et al., 2017), and use a  $\Delta R$  value of 107 ± 52 years (Mangerud et al., 2006; Hornes et al., 2013). Calibrated ages and their uncertainties have been rounded to the nearest decade. Note that locations marked with an asterisk report <sup>10</sup>Be ages and are reported as years of exposure, not years BP, and have been re-calcualted using the v3 of the CRONUS calculator (see main text).