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Abstract 

Objective 

The decline of estimated glomerular filtration rate (eGFR) in patients with type 2 diabetes 

is variable and early interventions would likely be cost effective. We elucidated the 

contribution of 17 plasma biomarkers to the prediction of eGFR loss on top of clinical risk 

factors. 

Research Design and Methods 

We studied participants in PROVALID, a prospective multinational cohort study of patients 

with type 2 diabetes and a follow up of more than 24 months (n = 2560; baseline median 

eGFR 84 mL/min/1.73m2, UACR 8.1 mg/g). The 17 biomarkers were measured at baseline 

in 481 samples using Luminex technology and ELISA. The prediction of eGFR decline was 

evaluated by linear mixed modeling. 

Results 

In univariable analyses nine of the 17 markers showed significant differences in median 

concentration between the two groups. A linear mixed model for eGFR obtained by variable 

selection exhibited an adjusted R2 of 62%. A panel of twelve biomarkers was selected by 

the procedure and accounted for 34% of the total explained variability, of which 32% were 

due to five markers. Each biomarker’s individual contribution to the prediction of eGFR 

decline on top of clinical predictors was generally low. When included into the model, 

baseline eGFR exhibited the largest explained variability of eGFR decline (R2 of 79%) and 

the contribution of each biomarker dropped below 1%. 

Conclusions 
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In this longitudinal study of patients with type 2 diabetes and maintained eGFR at baseline, 

12 of the 17 candidate biomarkers were associated with eGFR decline, but their predictive 

power was low. 

 

Keywords: diabetes, progression, biomarkers, chronic kidney disease, omics, 
systems biology, prognosis 
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Introduction 

The incidence of patients with type 2 diabetes is increasing worldwide and diabetic 

kidney disease (DKD) is a major cause of premature disability and death. Interventions 

in later stage chronic kidney disease (CKD) can only limit the damage and thus it is 

necessary to risk-stratify incident patients according to their projected disease course 

(1; 2). Unfortunately, the prediction of an individual’s loss of estimated glomerular 

filtration rate (eGFR) based on clinical and demographic parameters is poor (3). Thus, 

research in the last decade focused on the discovery of molecular markers for the 

refinement of individual CKD progression (4).  

Several candidate markers have been discovered that showed statistical associations 

with eGFR decline or progression of proteinuria (5). However, kidney disease in type 

2 diabetic patients is driven by a heterogeneous set of pathophysiological processes 

(6). Consequently, it is unlikely that a sole marker can capture all these different 

pathophysiological processes that lead to CKD progression. Thus investigators 

focused on parsimonious multi-marker panels. Such a molecular selection was derived 

and experimentally tested in the EU FP-7 project SysKid (Systems Biology toward 

Novel Chronic Kidney Disease Diagnosis and Treatment) (7). The biomarker panel 

added explained variability to a ‘clinical variable only’ model but has not yet been 

thoroughly validated in an independent cohort. In addition, several other prognostic 

biomarkers for kidney disease progression in patients with diabetes have been 

identified but were never validated as a combined marker panel in a specifically 

designed prospective cohort.  
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The aim of our study was to integrate high evidence biomarker candidates in a 

parsimonious panel of prognostic markers and to test their ability to predict eGFR loss 

when combined with commonly available clinical risk factors.  

The BEAt-DKD consortium (Biomarker Enterprise to Attack DKD; 

http://www.imi.europa.eu/projects-results/project-factsheets/beat-dkd) was founded to 

identify targetable mechanisms and pathways underlying initiation and progression of 

DKD, as well as to identify and validate biomarkers of disease progression and 

treatment responses. One of its first tasks is the validation of the best available 

biomarker candidates in a prospective cohort of patients with type 2 diabetes and early 

stage kidney disease. 

 

Research Design and Methods 

Biomarker Selection  

Biomarkers for the present study were selected from biomarker candidates generated 

by the SYSKID and SUMMIT consortia (8; 9). We integrated diverse sources of 

information relevant to the relationship with DKD including evidence from literature (4);  

transcriptomic analyses from microdissected renal tissue ascertained from subjects 

with DKD (www.nephroseq.org); whole blood methylation profiles from type 1 diabetic 

patients with and without DKD; and genetic association data. Priority biomarkers from 

this integration were assessed for availability of Luminex and ELISA assays and 

combined to maximize the number of markers that could be measured in a single 

sample aliquot. A listing of candidates from which the current 17 markers were selected 

is provided in supplement table 1. 

http://www.imi.europa.eu/projects-results/project-factsheets/beat-dkd
http://www.nephroseq.org/
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Study Cohort and Selection of Study Participants   

The study cohort was derived from PROVALID, a prospective multinational cohort 

study of patients with type 2 diabetes and incident or early CKD (10-12). A flow chart 

of patient selection is provided in supplement figure 1. In total 4065 subjects were 

recruited in five countries. From those, 2560 subjects from Austria, Hungary and 

Scotland were available for this study. After excluding subjects with less than 720 days 

of follow up (FU), patients were grouped by CKD stage and broken up into quintiles 

based on their individual eGFR slopes (supplement table 2). PROVALID recruited 

subjects at the primary healthcare level and thus the number of patients in stages G4 

and G5 is low. For the remaining stages (G1 to G3b), samples in the fourth quintile 

(eGFR slope [-0.79, 1.39] ml/min/year) and first quintile (eGFR slope [-24.9, -5.2] 

ml/min/year) were deemed to be stable and fast progressors, respectively. Within the 

first quintile, stage G3 was underrepresented compared to the stable group and was 

therefore supplemented from the second quintile [-5.2, -2.58]. This selection yielded 

258 patients in the stable group (median eGFR slope 0.1 mL/min/year) and 223 

patients in the fast progressors group (median eGFR slope -6.75 mL/min/year). The 

two groups were closely matched for age, gender, BMI, blood pressure and baseline 

eGFR. Demographics of the study population and medication details are provided in 

table 1 and supplement table 3, respectively.   

Outcome of Interest 

The outcome of interest was renal function decline over time, which was determined 

annually by eGFR, estimated according to the CKD-EPI equation (13). 
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Clinical Risk Factors 

The following baseline clinical risk factors served as candidate predictors: age, gender, 

serum cholesterol, UACR, HbA1C, MAP and BMI. eGFR at baseline was either part of 

the dependent variable or included as predictor. Since anemia does not present a 

problem in early stage CKD, hemoglobin levels were omitted from the models.  

Biomarker Selection and Measurement  

All markers were measured in K3 EDTA plasma. A custom Human Premixed Multiplex 

Luminex (catalog no. CUST0I704; R&D Systems, Minneapolis, MN) was used to 

measure eleven markers with 1:2 sample dilution: Chitinase-3-like protein 1 (CHI3L1), 

Chemokine receptor ligand 2 (CCL2), Growth hormone (GH), Hepatocyte growth factor 

(HGF), Matrix metalloproteinase 1 (MMP1), Matrix metalloproteinase 7 (MMP7), Matrix 

metalloproteinase 8 (MMP8), Sclerostin (SOST), Tyrosine-Protein Kinase Receptor 

(TIE2), Tumor necrosis factor receptor 1 (TNFR1) and Vascular cell adhesion molecule 

1 (VCAM1). A second Human Premixed Multiplex Luminex Kit (catalog no. LXSAH-03; 

R&D Systems) was used to measure three markers with 1:50 sample dilution:  

Uromodulin (UMOD), Endostatin and Cystatin C. Samples were diluted using the 

calibrator diluent provided in the kit, processed according to manufacturer specification 

and measured on a Luminex 200 (Luminex Corporation, Austin, TX) with xPONENT 

software (version 3.1.971.0). Instrument settings were set according to assay protocol.  

For the calibration and verification of the Luminex a Luminex 200 Performance 

Verification Kit and Calibration Kit (catalog no 40-276 and 40-275, Merck Millipore, 

Billerica, MA) were used.  

Kidney injury molecule-1 (KIM1) was measured by ELISA (catalog no. DSKM100, R&D 

Systems). Samples were diluted 1:2, processed according to assay procedure and 
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measured on a TriStar² LB 942 Modular Multimode Microplate Reader (Berthold 

Technologies, Bad Wildbad, Germany) using wavelength settings as instructed in the 

assay procedure. Absolute concentrations were determined using MikroWin2010 

v5.21 software (Berthold Technologies). 

For quality control, Pooled Normal Human Plasma K3 EDTA (catalog no. IPLA-N-

100ml-K3 EDTA, Innovative Research, Novi, MI) was spiked with recombinant proteins 

(R&D Systems) to create low, medium and high-level controls.  

All samples were measured as two technical replicates and required to have a 

coefficient of variation (%CV) below 12%. In addition, 10% of all samples were 

remeasured on a different plate to perform FDA recommended incurred sample 

reanalysis. More than 72% of incurred sample reanalysis showed a percentage 

difference below 20% and measurements were therefore in concordance with FDA 

guidelines (supplement table 4). Values out of quantifiable range were set to 0.5 and 

1.5 times the lower and upper quantification limits, respectively (supplement table 5 

and supplement figure 2). 

Fibroblast growth factor 23 (FGF23) was measured using a FGF-23 (C-Term) ELISA 

(catalog no. 60-610, Quidel San Diego, CA) with a dilution of 1:2 according to 

manufacturer’s recommendations.  Signal was measured using EnVision plate reader 

(Perkin elmer, Waltham, MA) using optical density wavelength instructed by the 

procedure. N-terminal prohormone of brain natriuretic peptide (NTproBNP) was 

measured using an NTproBNP ELISA (catalog no. K151JKC, Mesoscale Discovery, 

Gaithersburg, MD) with a dilution of 1:10. Samples were processed according to 

manufacturer recommendations, and electrochemiluminescence signal was measured 

on a MESO QuickPlex SQ 120 (Mesoscale Discovery). Samples were measured in 

technical replicates. Interassay %CV was estimated using internal controls. Due to 
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limited available sample volume NTproBNP and FGF23 concentrations were 

determined in only 480 and 437 out of the 481 samples respectively and for 86 samples 

FGF23 concentration could only be determined in  single measurements. %CV were 

required to be less than 20% and average inter- and intra-assay %CV for FGF23 and 

NTproBNP were 5.5 and 3.2 and 13.2 and 7.0, respectively. 

Samples Size Estimate 

As all 17 biomarkers were pre-selected from previous projects, it was estimated that 

500 samples would be sufficient to reach more than 80% power to detect at least a 

single biomarker with a statistically significant effect on the outcome renal function 

decline (supplement figure 4). Key assumptions were derived from (7). 

Statistical Analysis 

Patient characteristics were described by mean and standard deviation, median and 

1st and 3rd quartile or frequency and percentage for continuous and binary variables, 

respectively. Biomarker levels between the stable and fast progressing patient groups 

were compared by means of Mann-Whitney U tests. To estimate the effects of clinical 

risk factors and protein biomarkers on the outcome we employed univariable and 

multivariable linear mixed models. eGFR baseline measurements take on a special 

role in such analysis as they can be understood as part of the outcome or as a clinical 

covariate. Our main goal was to validate the biomarkers as predictors for renal function 

decline; therefore, eGFR levels at baseline were considered as part of the outcome 

and thus included in the dependent variable as they are subject to the same random 

variation as later values. To compare the contribution of biomarkers and baseline 

eGFR to the prediction of future eGFR levels we repeated the same modeling 

procedure as described in the following but added baseline eGFR to the set of 

covariates and removed it from the dependent variable. Random intercepts and 



 

12 
 

random slopes were used to model the patient specific eGFR trajectories, imposing no 

restrictions on their covariance. Interaction terms with time were included to model the 

effect on the eGFR slope.  

Results are reported as coefficients and associated p-values. The baseline coefficient 

(main effect) can be interpreted as association with mean eGFR levels; the slope 

coefficient (interaction effect) as association with the eGFR change over time. We 

investigated the importance of predictors by applying backward elimination based on 

Akaike’s Information Criterion (AIC) on a model containing all protein biomarkers and 

clinical predictors. Hierarchy of interactions and main effects were kept intact: a 

baseline effect was only dropped if no associated slope effect was present in the 

model.  

The adjusted R2 of the fixed effects part was obtained by multiplying the unadjusted R2 

with a correction factor of (N-K-1)/(N-1), where N and K denote the number of patients 

and the number of fixed effects in the model, respectively. To further assess the 

contribution of specific covariates to the prediction of the outcome, we decomposed 

the adjusted R² by computing the drop in R² when excluding a specific covariate from 

the model, scaling the resulting values to add up to the total adjusted model R2.  

Biomarker levels were log2 transformed to normalize their distributions. The model 

results presented here were pooled by Rubin’s rules from multiply imputed datasets to 

account for uncertainty due to missing data in predictors. Thus, in each model all 481 

samples were included. By applying the variable selection procedure to each 

imputation we obtained selection frequencies facilitating assessment of model 

instability due to missing data. Our final model comprised predictors chosen in at least 

half of the imputations. Model instability due to general sampling variation was 

assessed by drawing bootstrap resamples in each imputed dataset.  
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Complete-case only analyses, the number of available samples per predictor and a 

description of the multiple imputation procedure is provided in the supplementary 

material.  

Logistic regression models were applied to obtain classification models for progression 

status based on the predictor values. 

P-values less than 0.05 were considered statistically significant and all p-values are 

two-sided. We used the R statistical software (https://www.r-project.org/foundation, 

Vienna, AT) for all analyses. 

 

Results  

In total, 481 patient baseline plasma samples were measured for 17 biomarkers. A 

detailed breakdown of availability by marker is provided in supplement table 6. Figure 

1 shows biomarker levels grouped by speed of progression of renal function decline. 

When comparing median levels using Mann-Whitney U tests, several markers showed 

a significant difference between the two groups of patients (no adjustment for multiple 

testing). However, the marker level distributions overlap and the observed differences 

are small with an average of 25%. Non-parametric Spearman correlation coefficients 

between biomarkers and clinical data are visualized as heatmap in supplement figure 

3. 

Supplement table 7 shows the results from univariable mixed model analysis. Reported 

baseline coefficients correspond to the prediction of mean eGFR levels at timepoint 

zero; slope coefficients to the prediction of the change of eGFR levels over time. 

Except for SOST, MMP8 and CCL2, all markers show a significant association with 

eGFR levels via the baseline coefficients. Most of these associations remain 

https://www.r-project.org/foundation
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significant, even after adjustment for clinical risk factors (supplement table 8). Only few 

biomarkers show a significant association with eGFR change over time via their slope 

coefficients.  

MMP8 (66% of samples below limit of quantification) and SOST (30% missing) were 

removed from all further multivariable analyses due to the high number of missing 

values and no apparent association with eGFR decline in univariable analysis. The 

results from the final model obtained from backward elimination are reported in table 

2. Overall the biomarker predictors account for 34.4% of the explained variability of 

eGFR levels. According to their contribution to explained variability, the biomarkers can 

be split into two groups (supplement table 9). Biomarkers in the first group are mainly 

useful for prediction of mean eGFR values via their baseline coefficients; their effect 

stays constant over time. The second group also adds to the prediction of eGFR 

change over time via their slope coefficients. However, the contribution of the second 

group to the model R² is comparatively small (30.9% and 3.5% for group one and two, 

respectively) indicating that the biomarkers contribute primarily through the prediction 

of mean eGFR levels. Figure 2 shows the model fit via predicted median eGFR 

trajectories for stable and fast progressing patients from the final mixed model together 

with observed eGFR distributions at each FU visit. An additional bootstrap procedure 

shows that almost all predictors from our final model are selected with high frequency, 

indicating satisfactory model stability (supplement table 10). Furthermore, multivariable 

models without variable selection including clinical covariates only and biomarkers on 

top of clinical covariates give an indication of the achievable predictive performance in 

this cohort (supplement tables 11 and 12). 

The weak association with eGFR slopes is further demonstrated by low discriminative 

power when using logistic regression models to discriminate between stable and fast 
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progressing patients. The resulting low Area Under the Curve (AUC) values 

corroborate our findings that the biomarkers are mainly associated with mean eGFR 

baseline levels (supplement table 13 and 14).  

Results from the analysis including baseline eGFR levels as covariate further indicate 

that the added value of the biomarkers on top of these measurements is low with 

regards to prediction of future eGFR levels. In corresponding univariable analyses, 

only six biomarkers remained significantly associated with mean eGFR levels, when 

baseline eGFR was included in the models (supplement table 15).  

The final model selected by backward elimination from the pool of candidate predictors 

including baseline eGFR is provided in supplement table 16. Compared to the model 

without baseline eGFR as covariate, further four biomarkers are eliminated from the 

model; otherwise biomarker selection remains similar (supplement table 17). The 

dominating influence of baseline eGFR levels on prediction of eGFR levels after 

baseline is expressed by their high adjusted R² measure, which is essentially equal to 

the model’s R² – dropping any other predictor leaves the model’s predictions virtually 

unchanged. However, even for baseline eGFR levels, the predictive power is mostly 

due to prediction of mean eGFR levels after baseline, rather than through the prediction 

of the eGFR slope. 

Corresponding complete-case only analyses and the number of available samples per 

predictor are provided in the supplement tables 18 and 19. The results remained 

largely unchanged with an adjusted R2 of 62% of the mixed model for eGFR prediction, 

thus supporting the validity of the results of the multiply imputed analysis. 
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Conclusions 

We performed a validation study of 17 pre-selected plasma protein markers with 

reported high evidence for the prediction of eGFR decline in patients with type 2 

diabetes and incident or early stage CKD. We showed that in an univariable analysis 

nine of the markers had significantly different concentration levels between patients 

with stable eGFR and fast progression of eGFR decline. Fourteen biomarkers 

significantly contributed to the prediction of eGFR levels. However, most of the 

predictive ability was attributable to the association with baseline GFR. In the 

multivariable analysis of eGFR decline over time only five markers (KIM1, FGF23, 

NTproBNP, HGF, MMP1) remained significant but exhibited only a modest predictive 

power on top of clinical covariates. Furthermore, if the longitudinal analysis was 

adjusted for baseline eGFR, none of the biomarkers were able to contribute a relevant 

portion of explained variability, suggesting that baseline eGFR is the key variable in 

prediction of renal function at a very early CKD stage. Interestingly urinary albumin 

excretion was only of limited value for predicting eGFR loss which may be explained 

by the minute amount of albuminuria in the patients investigated. 

 

Other studies of patients with type 2 diabetes and incident or early stage CKD have 

shown that even well-established clinical risk factors of later stage disease do not 

perform well in discriminating progressors at early stages. Dunkler and colleagues 

have shown by using only clinical variables that the discrimination for the progression 

of CKD in patients with type 2 diabetes is actually very low on an individual basis (14). 

eGFR and to some extent albuminuria were the most important factors for predicting 

progression but their predictive ability in total was modest.  
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Niewczas and colleagues showed that, on top of clinical covariates, elevated 

concentrations of serum TNFR1 in 410 patients with later stage disease and long term 

FU was strongly associated with baseline GFR and predicted ESRD that happened in 

59 patients after a median FU of twelve years (15). This is in line with our current and 

previous findings that TNFR1 exhibited the highest explained variability in the 

longitudinal analysis for eGFR loss. However, death as a competing risk factor in 

analysis of the progression of kidney disease needs to be considered here. It is 

possible that differences in lead-time bias between studies explain the discrepancies 

in biomarker prediction of eGFR decline between the present and other studies (15). 

For example, patients that reached ESRD in the Niewczas study exhibited 

macroalbuminuria of 623 µg/min already at baseline compared to very low grade 

albuminuria of 20 µg/min in patients without progression. Additionally, supporting the 

argument of a lead-time is the fact that patients who progressed to ESRD over 12 years 

exhibited an eGFR reduction by almost half to 61 mL/min/1.73m2 at baseline compared 

to non-progressors.  

 

A multinational consortium from France investigated serum TNFR1 as predictor of 

eGFR slope in 522 patients (median FU of four years) with type 2 diabetes at later CKD 

stages, i.e. albuminuria of more than 30 mg/mmol creatinine (16). The investigators 

applied logistic regression and found a statistically significant increase of ESRD 

discrimination in each TNFR1 baseline quartile, but parameter estimates for a 

multivariable model with clinical covariates were missing.  

 

Similar as in our previous study and in Saulnier et al. we used linear mixed models to 

separate the marker contributions into association with baseline eGFR and eGFR 

change over time (17). Our finding of higher levels of TNFR1 and NTproBNP in the fast 
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progressor group are in line with the association with renal function loss observed by 

Saulnier et al.   

 

Ban and colleagues reported serum MMP7 association with proteinuria and GFR in a 

cross-sectional analysis (18).  

 

In 2017, a group from Denver investigated the test characteristics of selected plasma 

biomarkers for predicting eGFR below 60 mL/min/year and albuminuria above 30 mg/g 

creatinine in patients with type 1 diabetes using principal component analysis and Cox 

proportional-hazards models (19). The main finding was that after adjustment for 

traditional risk factors only KIM1 and Cystatin C exhibited a significant but modest 

improvement in discrimination. The principal component holding the most promising 

markers increased the AUC by only two percent. These results are well in line with our 

finding that in patients with type 2 diabetes candidate biomarkers may not be useful for 

eGFR slope prediction. 

 

Recently, Garlo et al. observed results similar to our findings in their biomarker 

evaluation in over 5000 enrolled patients with type 2 diabetes (20). eGFR decline 

occurred in 98 patients over a median of 1.5 years. Established markers such as 

Cystatin C or biomarkers of tubular injury did not substantially improve the prediction 

of eGFR loss on top of clinical predictors. 

 

Our previous analysis of nine biomarkers in two cohorts of patients with different 

baseline eGFR showed that explained variability of eGFR loss in patients with eGFR 

below 60 mL/min was mainly driven by MMP7 and TNFR1 (7). In patients with baseline 

eGFR above 60 mL/min contribution of all markers was modest with an adjusted R2 of 
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15% and 35% for a combination of biomarkers and clinical predictors.  The inclusion 

of further eight well investigated biomarkers did not substantially increase the 

predictability of eGFR loss in our current analysis. However, the fact that nine out of 

the 17 markers showed statistically significant differences in concentration levels 

between the group of patients with stable kidney function and the group with fast renal 

function decline supports the initial marker selection for this study. Yet, our analysis 

showed that the main contribution of these biomarkers is their association with baseline 

eGFR values rather than eGFR slopes.  

 

The individual slope of eGFR loss is highly variable in patients with diabetes and may 

be modified by medication. However, the aim of the present study was to predict the 

slope from baseline biomarkers independently of subsequent interventions such as 

comedication, lifestyle changes or any other factors. Therefore, we did not use 

medication in our main model on purpose, because it would be a baseline-adjustment 

for interventions that occurred afterwards, hence using information not available at time 

of prediction. In addition, all patients in the PROVALID study were optimally treated 

according to guidelines for patients with diabetes (21; 22). An analysis including 

treatment status at baseline, corroborating the negligible effect of medication on the 

performance of the biomarkers can be found in supplement tables 20 and 21. 

 

A key strength of PROVALID is that the study was specifically designed for the 

validation of biomarkers in patients with type 2 diabetes (10). However, our study has 

a few limitations. The selection of patients from the PROVALID cohort was based on 

the outcome of eGFR. While this likely leads to over-optimistic results, our rationale 

was to maximize power to validate the candidate biomarkers utility to predict eGFR 

loss independently of clinical parameters. Since it turned out that even with the 
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preselection marker performance was poor in this cohort of early stage CKD patients 

this limitation is irrelevant. A potential limitation is the relative short FU of three years. 

However, all patients had baseline and annual eGFR determinations which led to a 

robust slope estimation and thus stable marker performance estimates.   

 

The strengths of our study are the careful analysis of biomarkers according to EMA 

and FDA standards in a multinational prospective study (http://academy.gmp-

compliance.org/guidemgr/files/UCM368107.PDF).  Sample aliquots were stored at 

minus 80°C immediately after collection and never thawed until analysis. The 

percentage difference between reruns was well within the FDA recommended range. 

A further asset is the thorough statistical analysis in which we dissociated the effects 

of markers on the prediction of baseline eGFR and slope alone and in combination with 

clinical covariates known to be key risk factors for CKD progression.  

 

In conclusion, the prediction of eGFR slope using baseline circulating biomarkers in 

combination with clinical parameters was modest. Most of the predictive power was 

generated by the association of markers with baseline eGFR, which was by far the 

strongest predictor of future eGFR levels. Given the inferior performance of this highly 

selected biomarker set in early stage CKD patients to predict future eGFR loss, it is 

unlikely that these markers will be useful for clinical decision making. Nevertheless, 

their assessment might be useful to identify individual biological processes that may 

contribute to the progression of very early stage renal disease. 

Acknowledgments 

A full list of BeatDKD partners may be found on the website 

(http://www.imi.europa.eu/projects-results/project-factsheets/beat-dkd).  

http://academy.gmp-compliance.org/guidemgr/files/UCM368107.PDF
http://academy.gmp-compliance.org/guidemgr/files/UCM368107.PDF
http://www.imi.europa.eu/projects-results/project-factsheets/beat-dkd


 

21 
 

Funding 

This project has received funding from the Innovative Medicines Initiative 2 Joint 

Undertaking under grant agreement No 115974. This Joint Undertaking receives 

support from the European Union’s Horizon 2020 research and innovation programme 

and EFPIA. MMcC is a Wellcome Senior Investigator supported by Wellcome grants 

090532 098381 and 203141. This work was partially supported by National Institute of 

Diabetes and Digestive and Kidney Diseases (NIDDK) (P30DK081943, to M.Kr.). This 

work was also supported by JDRF award 2-SRA-2014-276-Q-R, and by IMI funding to 

the SUMMIT consortium. The funding sources did not have a role in the design, 

conduct, and analysis of the study. 

Duality of Interest  

No potential conflicts of interest relevant to this article were reported. 

Author Contributions 

R.O. wrote the draft of the manuscript. A.H. supervised data acquisition, contributed to 

interpretation of data and writing of the manuscript. M.Ka. performed data processing 

and analysis and contributed to writing of the manuscript. G.M. conceived the design 

of the study cohort and contributed data. R.R. contributed to analysis of the data. K.H. 

performed most laboratory measurements and contributed to data quality control. P.P. 

contributed to study design and writing of the manuscript. K.D. and J.W. contributed 

additional laboratory measurements. S.E. contributed to data acquisition. M.A. 

contributed to initial biomarker selection. L.R., P.M., W.J., M.Kr., P.G., M.McC., H.H., 

A.W., M.F.G. and all other authors revised the manuscript for important intellectual 

content. R.O. is the guarantor of this work and, as such, had full access to all the data 

in the study and takes responsibility for the integrity of the data and the accuracy of the 

data analysis. 



 

22 
 

  



 

23 
 

Figure 1. Concentration levels (log2 transformed) for all 17 biomarkers grouped by 

speed of progression of renal function decline. All concentrations are given in pg/ml 

except for FGF23 which is given in relative units. Quantifiable range of assays is 

indicated by areas shaded in grey. Biomarkers marked with an * show a significant 

difference in median levels between the two groups (Mann-Whitney U test, no p-

value adjustment for multiple testing). 
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Figure 2. Predicted median eGFR trajectories from the multivariable linear mixed 

model for eGFR levels (with baseline eGFR as part of the dependent variable) 

obtained by AIC-based backward elimination (solid line). Shaded areas indicate the 

interquartile range of predictions. Superimposed boxplots show the observed values 

summarized at each yearly FU visit. 
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Table 1. Baseline characteristics of the study cohort, overall and stratified by stable or 

fast progression of eGFR decline. Data are reported as mean ± standard deviation, 

median (1st quartile, 3rd quartile) and absolute frequency (relative frequency) where 

appropriate. Supplement table 3 gives more details on medication of the study patients. 

None of the differences between the two groups are significant after adjusting for 

multiple comparisons by Holm’s method (except for eGFR decline, which is the 

outcome of the study). We compared medians of continuous variables with Mann-

Whitney U tests and proportions of categorical variables with Chi-squared tests.  
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  Baseline value 

 Missing Overall Stable Fast 

Number of patients  481 258 223 

Age (Years) 0 64 ± 9.3 64 ± 10 65 ± 9 

Gender (Female) 0 232 (47%) 117 (45%) 115 (50%) 

Smoking status (Never) 0 250 (51%) 134 (52%) 116 (50%) 

Duration of diabetes 

(Years) 
0 10.8 ± 8.8 10 ± 8 12 ± 9 

BMI (kg/m2) 0 31 ± 5.5 31 ± 5 32 ± 6 

Systolic blood pressure 

(mmHg) 
0 138 ± 17.4 138 ± 16 139 ± 19 

Diastolic blood pressure 

(mmHg) 
0 79 ± 10.3 79 ± 10 79 ± 10 

HbA1c (%; mmol/mol) 4 (<1%) 
6.8 (6.3 / 

7.6);51 (45 / 60) 

6.8 (6.3 / 7.7); 51 

(45 / 61) 

6.8 (6.2 / 7.6); 51 

(44 / 60) 

Hemoglobin (mmol/l) 9 (1%) 8.6 (8.1 / 9.3) 8.8 (8.2 / 9.3) 8.5 (7.9 / 9.1) 

Serum glucose (mmol/l) 1 (<1%) 7.4 (6.2 / 9) 7.5 (6.3 / 9) 7.4 (6 / 8.9) 

Serum cholesterol 

(mmol/l) 
1 (<1%) 4.6 (4 / 5.5) 4.6 (4 / 5.4) 4.6 (4 / 5.6) 

Serum creatinine 

(µmol/l) 
0 77 (66 / 95) 77 (67 / 95) 77 (65 / 95) 

UACR* (mg/g) 14 (3%) 8.8 (4.7 / 26.5) 8.2 (4.6 / 21) 9.2 (5 / 36.5) 

Glucose lowering 

agents† 
0    

None  59 (12%) 35 (14%) 24 (11%) 

1 – 2 agents  355 (74%) 192 (74%) 163 (73%) 

> 2 agents  67 (14%) 31 (12%) 36 (16%) 

Blood pressure lowering 

agents‡ 
0    

None  77 (16%) 52 (20%) 25 (11%) 

1 – 2 agents   195 (41%) 106 (41%) 89 (40%) 

> 2 agents  209 (43%) 100 (39%) 109 (49%) 
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  Baseline value 

 Missing Overall Stable Fast 

ESA therapy§ 0 11 (2%) 4 (2%) 7 (3%) 

eGFR CKD-EPI 

(ml/min/1.73m2) 
0 84 (64 / 94) 85 (65 / 96) 82 (63 / 94) 

eGFR CKD-EPI decline 

per year 

(ml/min/1.73m2/year) 

0 -0.71 (-6.3 / 0.2) 0.14 (-0.44 / 0.68) 
-6.75 (-9.04 / -

5.48) 

 

*UACR: Urinary albumin to creatinine ratio 

† Agent classes: Biguanides, Insulin, Sulfonylureas, DPPIV inhibitors/GLP1 agonists, 

Glinides, Glitazones, Alpha-Glucosidase-inhibitors, SGLT2 

‡ Agent classes: ACE inhibitors / ARBs, β-blockers, Calcium antagonists (including 

direct vasodilators), α-blockers, Diuretics (Thiazide diuretics / Loop diuretics) 

§ Including Darbepoetin alfa, Epoetin alfa, Epoetin beta, Epoetin theta, Epoetin zeta, 

Others 
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Table 2. Multivariable linear mixed model for prediction of eGFR levels (with baseline 

eGFR as part of the dependent variable) obtained from AIC-based backward 

elimination on all candidate predictors (log2 transformed biomarker and clinical). The 

model had an adjusted R² of 62.5%. Biomarkers had a total contribution of 34.4%, 

clinical risk factors had a total contribution of 28.1%. The decomposition of the model 

R² combines the contributions of baseline and slope coefficients for each predictor. 

 Baseline  Slope  

Predictor Coefficient p-
value 

Coefficient p-
value 

R² 
decomposition 

Constant 407.630 <0.001 -2.102 0.396 - 

Cystatin C -11.661 <0.001 n.s. n.s. 9 

Endostatin -2.957 0.133 n.s. n.s. <1 

UMOD 2.977 <0.001 n.s. n.s. 4.3 

CHI3L1 1.124 0.037 n.s. n.s. <1 

HGF 0.047 0.949 0.463 0.044 <1 

MMP1 0.731 0.187 -0.307 0.082 <1 

MMP7 -1.233 0.064 n.s. n.s. <1 

TIE2 4.622 <0.001 n.s. n.s. 3.3 

TNFR1 -10.888 <0.001 n.s. n.s. 12.9 

KIM1 -0.064 0.922 -1.084 <0.001 3 

FGF23 -0.983 0.269 0.456 0.086 <1 

NTproBNP 0.071 0.793 -0.253 0.006 <1 

Age (Years) -0.684 <0.001 0.048 0.039 27 

Current or former 
smoker 

2.460 0.024 n.s. n.s. <1 

MAP 0.085 0.087 n.s. n.s. <1 

Total cholesterol -0.762 0.096 n.s. n.s. <1 

n.s.: not selected 


