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Abstract   16 

The rate of change in ocean carbonate chemistry is a vital determinant in the magnitude of 17 

impacts observed. Benthic marine ecosystems are facing an increasing risk of acute CO2 18 

exposure, that may be natural or anthropogenically-derived (e.g. engineering and industrial 19 

activities). However, our understanding of how acute CO2 events impact marine life is 20 

restricted to individual organisms, with little understanding for how this manifests at the 21 

community level. Here, we investigated, in situ, the effect of acute CO2 enrichment on the 22 

coralline algal ecosystem - a globally ubiquitous, ecologically and economically important 23 

habitat, but one which is likely to be sensitive to CO2 enrichment due to its highly calcified 24 

reef-like structures engineered by coralline algae. Most notably, we observed a rapid 25 

community-level shift to favour net dissolution rather than net calcification. Smaller changes 26 

from net respiration to net photosynthesis were also observed. There was no effect on the net 27 

flux of dimethylsulphide / dimethylsulphoniopropionate (algal secondary metabolites), nor 28 

the nutrients nitrate and phosphate. Following return to ambient CO2 levels, only a partial 29 

recovery was seen within the monitoring timeframe. This study highlights the sensitivity of 30 

biogenic carbonate marine communities to acute CO2 enrichment, and raises concerns over 31 

the capacity for the system to ‘bounce back’ if subjected to repeated acute high-CO2 events.   32 

 33 

Keywords: calcification, photosynthesis, community, ecosystem, maerl bed, carbon dioxide, 34 

acidification   35 
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Introduction 36 

 Long-term environmental change as a result of rising atmospheric CO2 levels are 37 

projected to have significant impacts on marine organisms, especially those with calcified 38 

body parts (Kroeker et al. 2010). Simultaneously, the risk of exposure to acute periods of 39 

high-CO2 conditions is also increasing, due to coastal / marine processes (e.g. tides (Abril et 40 

al.), upwelling (Lachkar 2014)), land runoff (Strong et al. 2014) and the development of 41 

engineering activities such as carbon capture and storage (Blackford et al. 2015). Research 42 

has shown that the rate of environmental change is critical in determining the extent of 43 

organismal damage, and that acute high-CO2 exposures can have long-lasting effects (Burdett 44 

et al. 2012, Kamenos et al. 2013). However, our understanding of how marine ecosystems 45 

(rather than individuals) impact, and are impacted by, acute changes in ocean carbon 46 

chemistry is poorly understood (Pfister et al. 2014). This is despite the known importance of 47 

key biological processes such as calcification, photosynthesis, respiration and nutrient uptake 48 

in driving marine ecosystem variability. 49 

In the natural environment, an organism’s response to environmental change is mediated 50 

by community dynamics within the ecosystem. Failure to take these community-level 51 

interactions into account prevents macro-scale predictions of future ecosystem change 52 

(Queirós et al. 2014). To date, the majority of acute or chronic environmental change 53 

experiments have focused on one, or maybe two, environmental factors (e.g. increased CO2 / 54 

temperature), and consider organisms in isolation (Riebesell & Gattuso 2015). However, 55 

whilst informing our mechanistic understanding of physiological responses, these types of 56 

experiments are not representative of real-world impacts due to laboratory artefacts and the 57 

lack of appreciation for community-wide interactions (Cornwall & Hurd 2015, Riebesell & 58 

Gattuso 2015). Consequently, efforts in developing methods for in situ experimentation have 59 

recently increased.  60 
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Natural CO2 vents, where the water column is enriched with CO2 due to benthic bubbling 61 

of volcanic gases, have proven useful for understanding the impacts of long-term exposure to 62 

a high CO2 environment on marine ecosystem structure (Hall-Spencer et al. 2008, Fabricius 63 

et al. 2011, Kamenos et al. 2016). However, these study areas are typically characterised by 64 

conditions more extreme or more variable than those predicted for the future, due to variation 65 

in physical factors such as water currents and venting rates (Hall-Spencer et al. 2008). ‘Free 66 

Ocean CO2 Enrichment’ (FOCE) experimental setups attempt to bridge the gap between the 67 

precise control of laboratory experiments and the natural setting of CO2 vents (Gattuso et al. 68 

2014), by artificially exposing organisms or communities to a high CO2 environment. This 69 

also allows the effects of both chronic and acute CO2 enrichment to be tested. Partially-70 

artificial designs (where organisms are manually placed in the chambers, rather than 71 

examining the natural system) have been conducted on tropical reefs (Kline et al. 2012) and 72 

in the deep sea (Barry et al. 2014), whilst smaller chambers deployed on tropical seagrass 73 

beds have investigated the community-level response of this vegetated habitat to short-term 74 

CO2 enrichment (e.g. Campbell & Fourqurean 2014).   75 

One of the potentially most susceptible groups of organisms to both long and short-term 76 

CO2 enrichment are the red coralline algae (Kroeker et al. 2010) – key ecosystem engineers 77 

in the coastal zone (Riosmena-Rodríguez 2017). Coralline algal beds – supported by a free-78 

living coralline algal framework – are globally distributed (van der Heijden & Kamenos 79 

2015), highly diverse (BIOMAERL 1999, Barbera et al. 2003) and biogeochemically active 80 

(Burdett et al. 2015b, van der Heijden & Kamenos). However, the community susceptibility 81 

of coralline algal habitats is currently unknown, despite the real-world relevance of this 82 

question compared to laboratory-based single organism studies (Gattuso et al. 2014). 83 

Coralline algal beds are listed as ‘Vulnerable’ or ‘Endangered’ by the IUCN (Gubbay et al. 84 

2016), a status driven by the sensitivity of coralline algae to environmental change, but also 85 
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due to the paucity of data available on the functioning of these habitats at the community 86 

level.  87 

Our understanding of coralline algal community functioning remains limited, even under 88 

ambient conditions. Despite substantial gross primary production, coralline algal 89 

communities exhibit net heterotrophy (i.e. O2 uptake; Attard et al. 2015), acting as both a 90 

CO2 source (Martin et al. 2007a) and organic carbon sink (Attard et al. 2015). While nutrient 91 

availability is not thought to limit the growth of coralline algal ecosystems (Steller et al 92 

2009), there is evidence that coralline algal communities act as a nutrient source, at least in 93 

the Mediterranean (Martin et al. 2007b). Coralline algae also represent a globally significant 94 

stock of dimethylsulphoniopropionate (DMSP; Burdett et al. 2015a) – an algal secondary 95 

metabolite that is the major precursor to the climate-gas dimethylsulphide (DMS). DMSP and 96 

DMS (DMS/P) drive a range of community interactions (e.g. grazing behaviour; Lyons et al. 97 

2007), but it is not yet known if coralline algal communities are a net source or sink of these 98 

compounds. At an individual level, we know that CO2 enrichment can affect the 99 

photosynthesis, calcification and DMSP production of coralline algae (Burdett et al. 2012; 100 

Kamenos et al. 2013), but it is not currently understood how this is manifest at a community 101 

level, despite the significant implications for ecosystem functioning. 102 

Here, we investigated the effect of acute in situ CO2 enrichment on key community-level, 103 

biologically-driven processes in a temperate coralline algal bed. Periodic CO2 enrichment is a 104 

risk to marine habitats in this region due to the prevalence of human activities such as 105 

aquaculture – a rapidly expanding industry in Scotland and globally (OECD-FAO 2014). 106 

Diel-scale pulsed release of CO2 can occur from aquaculture infrastructures due to periodicity 107 

in fish metabolism, e.g. after feeding (Forsberg 1997, Zakęś et al. 2003). In addition, the 108 

development of carbon capture and storage facilities may further accentuate the risk of 109 

periodic acute CO2 release in the future (Blackford et al. 2015). Lithothamnion glaciale, the 110 
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coralline algal ecosystem engineer of this system, is known to be highly sensitive to acute 111 

CO2 exposure (Burdett et al. 2012, Kamenos et al. 2013), but sensitivity at a community level 112 

remains unclear. Here, we investigated the integrated community-level response of a 113 

coralline algal habitat to short-term CO2 enrichment via in situ experimentation.  114 

  115 
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Materials and Methods 116 

Study site and experimental set-up 117 

The experiment was performed on a coralline algal bed in Loch Sween, on the west 118 

coast of Scotland, UK, at a depth of 6 m. The ecosystem framework is dominated by the free-119 

living non-geniculate red coralline alga Lithothamnion glaciale, supporting a highly diverse 120 

community across multiple trophic levels. This includes both calcified and non-calcified 121 

macroalgae (including Laminariale) and invertebrates, being particularly rich in Mullusca 122 

(e.g. Aequipecten opercularis - queen scallops [~4 per 20 m2]) and particularly abundant in 123 

Ophiuroidea (sea stars & brittle stars, e.g. Ophiocomina nigra [up to 10,000 per m2] and 124 

Asterias rubens [~11 per 20 m2]) (BIOMAERL 1999, Barbera et al. 2003, Kamenos 2004). 125 

Community biodiversity was not further quantified in this study. Four benthic chambers (28 126 

litre volume, diameter = 38 cm) were deployed within the coralline algal bed by SCUBA 127 

divers pushing them into the seabed. Chambers were left open for 24 hours to allow the water 128 

within the chambers to equilibrate with the surrounding environment. Following 129 

equilibration, lids were fitted and the experiment begun, which consisted of three phases: (1) 130 

before CO2 enrichment at ambient (control) conditions (15 hours), (2) during CO2 enrichment 131 

(28 hours) and (3) post-enrichment recovery (37 hours).  132 

Chambers were individually connected to the surface via a flow-through system, 133 

which continually pumped water through the chamber via the surface at a rate of 120 L hr-1 134 

(Swell UK Filter pump 5000). Pumps were located perpendicular from the chambers in 135 

relation to the tidal current, to prevent the re-pumping of water through the system. CO2 136 

enrichment was achieved by bubbling pure CO2 directly into a mixing chamber on the 137 

surface, prior to the water being directed to the main in situ chambers. pH (total scale) of 138 

water in the mixing chamber was monitored using a pH probe (VitalSINE, daily 3 point 139 
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calibration following the manufacturer’s instructions) and the rate of CO2 bubbling was 140 

adjusted as required to maintain a stable ~0.2 pH unit offset from the incoming water supply. 141 

Actual pH change in the chambers (reflecting both the CO2 addition and biogeochemical 142 

community processes) was determined by sampling the in-chamber water during the 143 

experimental periods and analysing for total alkalinity (AT) and dissolved inorganic carbon 144 

(CT), from which pH is calculated (details below). Flow-through circulation was maintained 145 

for the duration of the experiment, except during 2-hour incubation periods when the water 146 

flow was stopped, but within-chamber circulation was maintained by stirring paddles (Attard 147 

et al. 2015). Water samples were taken for determination of dissolved oxygen, carbonate 148 

chemistry, nutrients and dimethylated sulphur at the beginning and end of a 2-hour incubation 149 

periods, which was carried out every ~12 hours during the experiment (i.e. around midday 150 

and midnight during the three experimental phases). Measurements from the beginning and 151 

end of the incubation were used for the determination of seabed flux measurements of each 152 

parameter to gain understanding of the community response to CO2 enrichment. All water 153 

samples were collected in borosilicate glass syringes using SCUBA diving. Immediately after 154 

collection, water samples were returned to the shore and prepared for various water chemistry 155 

parameters, as detailed below. 156 

Net photosynthesis / respiration (dissolved oxygen) 157 

Winkler reagents (200 µl each of 3M MnSO4.H2O solution and 200 µl of 8M NaOH+4M 158 

NaI) were added to 12 ml unfiltered water samples for subsequent dissolved oxygen (DO) 159 

determination, and stored in the dark at 4°C until analysis. DO concentrations were 160 

determined using the Winkler titration method (Grasshoff et al. 2007): The sample was 161 

acidified with 200 µl 5M sulphuric acid and titrated against 0.05M sodium thiosulphate 162 

solution with potassium iodate as a standard. 163 
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Net calcification / dissolution (carbonate chemistry) 164 

Samples for AT and CT were stored in borosilicate glass vials (Labco Ltd, UK) and poisoned 165 

with mercuric chloride, following Dickson et al. (2007). AT was measured on a Metrohm 848 166 

Titrino Plus using the 2-stage open-cell potentiometric titration method on 10 ml sample 167 

volumes with 0.01 M HCl (Dickson et al. 2007). All AT samples were analysed at 25 ± 0.1ºC 168 

with temperature regulation using a water-bath (Julabo 19). CT was determined by infra-red 169 

detection of CO2 from acidified samples on a dissolved inorganic carbon analyser (Marianda 170 

Airica). Additional carbonate chemistry parameters (pHNBS, pCO2, [HOC3
-], [CO3

2-], 171 

aragonite saturation state [ΩArg]) were calculated from AT and CT using CO2SYS (Pierrot et 172 

al. 2006) with dissociation constants from Mehrbach et al. (1973), refit by Dickson and 173 

Millero (1987) and KSO4 using Dickson (1990). In situ water temperature (°C), salinity and 174 

pH was measured hourly throughout the experimental period using an Exo2 multiparameter 175 

sonde (YSI Inc). Nitrate and phosphate concentrations were calculated throughout the 176 

experimental period (below) and included in carbonate chemistry calculations. Net 177 

community calcification rates were calculated using the alkalinity anomaly technique 178 

(Chisholm & Gattuso 1991), based on the change in seawater AT during the incubation 179 

period. For each mole of CaCO3 precipitated (i.e. calcification), AT is lowered by two molar 180 

equivalents. Therefore, the change in alkalinity can be converted to the mass of CaCO3 181 

precipitated. Certified seawater references materials for oceanic CO2 (Scripps Institution of 182 

Oceanography, University of California, San Diego) were used as AT and CT standards, 183 

following Dickson et al. (2007). 184 

Net DMS+DMSP (DMS/PT) flux 185 

Samples for total (dissolved+particulate) DMS+DMSP (DMS/PT) were stored in 50 ml 186 

crimp-top serum vials (Wheaton) fitted with Pharma-Fix lids. NaOH was added to a final 187 
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concentration of 0.03 M to hydrolyse DMSP into DMS. Samples were analysed by purge-188 

and-trap gas chromatography (Turner et al. 1990), using an SRI 8610C GC fitted with a 189 

flame photometric detector (nitrogen carrier gas @ 8 psi). Sample concentrations were 190 

quantified via comparison to a DMSP standard (Research Plus Inc); sample detection limit 191 

was <1 nmol L-1, precision and accuracy for standards and samples was within 1%. 192 

Net nitrate and phosphate flux 193 

Unfiltered samples for nitrate and phosphate were stored in HDPE bottles (Fisher Scientific) 194 

and frozen within 1 hour of collection. 10 ml samples were analysed for nitrate following the 195 

cadmium reduction spectrophotometric method (Grasshoff et al. 2007); absorbance was 196 

measured at 400 nm, with sodium nitrate used as a standard. 10 ml samples were analysed for 197 

phosphate using the ammonium molybdate/ascorbic acid method (Grasshoff et al. 2007); 198 

absorbance was measured at 885 nm, with potassium phosphate used as a standard. 199 

 200 

Statistical analyses 201 

Where parametric assumptions for normality and homogeneity of variance were met, 202 

parametric tests were used to interrogate the data. One-way ANOVAs were used to test for 203 

differences between ambient, CO2 enrichment and recovery experimental phases in terms of 204 

carbonate chemistry and net fluxes of DO, calcification rate, DMS/PT, nitrate and phosphate 205 

(i.e. experimental phase included as a factor; no data transformation was required). 206 

Correlation tests were used to test correlation significance between fluxes of dissolved 207 

oxygen, calcification, DMS/PT, nitrate and phosphate. Kruskall-Wallis tests were used to test 208 

for differences in DO fluxes (parametric assumptions could not be met). Analyses were 209 

conducted using Minitab V14.1.  210 
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Results 211 

Environmental conditions 212 

Water temperature was 15.3±0.32°C and salinity was 33.0±0.38 throughout the experimental 213 

period (mean±SD, n=80). No significant difference in TA was observed between the three 214 

experimental phases (F2,20 = 0.11, p = 0.89; Table 1). In contrast, CT was significantly higher 215 

during the CO2 enrichment compared to the ambient / recovery phases (F2,20 = 31.6, p < 216 

0.001; Table 1), resulting in a significant increase in HCO3
- (F2,20 = 10.45, p = 0.001) and 217 

pCO2 (F2,20 = 4.24, p = 0.03).  Mean aragonite saturation state and pH were reduced during 218 

CO2 enrichment compared to the ambient / recovery phases, but not to the extent that 219 

significant differences were observed (ΩAr: F2,20 = 1.47, p = 0.26; pH: F2,20 = 2.76, p = 0.09; 220 

Table 1). Average in situ pH at the site in the 38 days before and during the experiment was 221 

8.04±0.04 (mean±SD) (Figure S1). 222 

Net photosynthesis / respiration (dissolved oxygen) 223 

At ambient conditions, an average net uptake of O2 (i.e. net respiration) was observed, 224 

characterised by a small net release of O2 during the day (i.e. net photosynthesis) to net 225 

respiration during the night (Figure 1). During the CO2 enrichment average net O2 release 226 

increased compared to the ambient / recovery phases, reducing the difference between day 227 

(higher net O2 release) and night (lower net O2 release / net uptake) measurements (F2,27 = 228 

2.98, p = 0.07). During the recovery phase, net O2 uptake decreased towards initial levels, but 229 

did not quite reach the magnitude of net photosynthesis originally observed. When compared 230 

separately, net oxygen flux was significantly higher in CO2-enriched conditions than ambient 231 

or recovery periods during the night (H1 = 4.20, p = 0.040), but not during the day (H1 = 1.70, 232 

p = 0.192), reflecting the observed overall trend towards increased O2 flux under CO2 233 

enrichment (Figure 1).  234 
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Net calcification / dissolution (carbonate chemistry) 235 

A significant reduction in net calcification was observed during the CO2 enrichment 236 

compared to the ambient / recovery phases (F2,25 = 5.49, p = 0.01; Figure 1). Under ambient 237 

CO2 conditions, the coralline algal community consistently exhibited a net calcification. 238 

During CO2 enrichment, a significant shift towards net dissolution was observed. The 239 

recovery phase was characterised by an intermediate rate of net calcification. A significant 240 

negative correlation between DO flux and net calcification rate was observed (r = -0.40, p = 241 

0.05; Figure 1). 242 

Net DMS/PT flux  243 

Under ambient CO2 conditions, there was a net uptake of DMS/PT by the coralline 244 

algal community of between 11 – 24 µmol m-2 h-1 (Table 2). During CO2 enrichment there 245 

was a small reduction in net uptake rates, manifest as a shift towards the occasional net 246 

release of DMS/PT, but this change was not significant between experimental phases (F2,27 = 247 

0.62, p = 0.54; Table 2). DMS/PT flux was not significantly correlated with any of the other 248 

biogeochemical parameters, at p < 0.05.  249 

Net nitrate and phosphate flux 250 

Average net nutrient release and uptake rates were balanced (i.e. flux of ~zero), and 251 

no significant change was observed during CO2 enrichment compared to the ambient / 252 

recovery phases (nitrate: F2,25 = 0.80, p = 0.46; phosphate: F2,25 = 0.01, p = 0.99; Table 2). 253 

Net benthic flux of phosphate, but not nitrate, was significantly correlated with benthic 254 

oxygen flux (r = 0.46, p = 0.02). No other significant correlations between net O2, nitrate, 255 

phosphate and DMSPt flux and net calcification rate (at p < 0.05) were observed. 256 

  257 
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Discussion 258 

Despite the known issues with investigating the effect of elevated CO2 in a laboratory 259 

setting, only a handful of in situ CO2 enrichment experiments have been conducted, and even 260 

less on the whole natural community. This is the first community-level in situ acute CO2 261 

enrichment study in mid/high latitudes, and the first to consider the rate of recovery following 262 

acute CO2 perturbation. In this study, there was a rapid community level response to acute 263 

CO2 enrichment. This was particularly evident for net calcification, demonstrating the 264 

sensitivity of the whole community to acute CO2 exposure, not just individual species.  265 

Unlike single-organism laboratory experiments, this study integrated the response of 266 

the whole community. Whilst this means we are unable to assign individual species to 267 

specific biogeochemical changes, the results obtained are relevant to real-world challenges 268 

such as the designation of marine management strategies, which by necessity incorporate 269 

whole communities (even if a particular species is the target focus). At the level of CO2 270 

enrichment used in this study, the skeleton and epithelial cell surface of Lithothamnion 271 

glaciale is compromised (Burdett et al. 2012, Kamenos et al. 2013), allowing for skeletal 272 

dissolution (Langdon et al. 2000) – supporting the observed shift towards net community 273 

dissolution. This may have also been facilitated by dissolution of carbonate sediment and 274 

dead sections of coralline algae, which cannot exert biological control and buffering against 275 

changes in carbonate chemistry (Kamenos et al. 2013). Like other reef-based marine 276 

ecosystems, this coralline algal community is highly diverse across multiple trophic levels 277 

(BIOMAERL 1999, Barbera et al. 2003, Kamenos 2004). Calcifying invertebrates are 278 

especially abundant (e.g. Ophiocomina nigra, which can make up 47% of total faunal 279 

biomass; BIOMAERL 1999), and CO2 enrichment is known to lead to a reduction in 280 

calcification rate / increase in dissolution rate of these organisms (Kroeker et al. 2010). Thus, 281 

these organisms are likely to have also contributed to the observed shift towards net 282 
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dissolution, impacting their contribution to coastal CO2 flux (Davoult et al. 2009). Due to the 283 

high heterotrophic diversity of coralline algal beds (Barbera et al. 2003), only a small net 284 

photosynthesis during the day was observed, supporting previous measurements using the 285 

Eddy correlation technique (Attard et al. 2015) and providing confidence that results recorded 286 

do not represent treatment artefacts. CO2 enrichment led to a small increase in net O2 release, 287 

suggesting an increased capacity for net photosynthesis – supporting the likely benefits of 288 

elevated CO2 conditions for aquatic photosynthetic organisms (Kroeker et al. 2010). 289 

Photosynthetic use of CO2 can also provide a potential refuge for calcifying species by 290 

buffering against the damaging effects of CO2 enrichment (e.g. crustose coralline algae; 291 

Cornwall et al. 2014, Short et al. 2014, Kamenos et al. 2016), although this was not observed 292 

in this study. Increased photosynthetic capacity may also increase the carbon sequestration 293 

potential of these ecosystems (a key process in blue carbon storage; van der Heijden & 294 

Kamenos 2015), but a shift towards net dissolution may impact the stability of coralline algal 295 

carbonate deposits. The balance and interaction of photosynthesis and calcification / 296 

dissolution, and subsequent impact on carbon sequestration / storage is exemplified by the 297 

observed correlation between net O2 flux and net calcification. 298 

Change in the community-level flux of dimethylated sulphur compounds appears to 299 

be robust to acute CO2 enrichment, despite the known sensitivity of coralline algal DMSP 300 

dynamics to acute CO2 exposure (Burdett et al. 2012). Thus, it may be hypothesised that 301 

although DMS/PT concentrations did not change, the proportion of the molecular species (e.g. 302 

dissolved vs particulate, DMSP vs DMS) may have been altered, but this was not calculable 303 

by the approach employed. Nutrient fluxes were also insensitive to acute CO2 enrichment, at 304 

least at the level used in this study. However, the correlation between phosphate and DO 305 

suggests that a larger CO2 perturbation (in duration and / or magnitude) may impact 306 

phosphorus cycling processes.  307 
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Acute CO2 enrichment is just one aspect of carbon-chemistry pressures on marine 308 

habitats. In addition, the combined effects of acute CO2 enrichment and chronic, long-term 309 

changes in carbonate chemistry may exacerbate biological responses. This has yet to be tested 310 

at the community scale, despite the known importance of both acute and chronic CO2 311 

enrichment in driving responses in marine organisms. Surprisingly, even after a recovery 312 

phase almost 1.5 times the length of the CO2 enrichment, a full recovery (i.e. complete return 313 

of all parameters to the initial measured rates) was not seen, at least in terms of the 314 

parameters measured here, suggesting that, at best, there is considerable lag in community 315 

recovery response times. This calls into question the capacity for the system to ‘bounce back’ 316 

following repeated exposure to acute CO2 inputs, which would be likely given the sources of 317 

short-term CO2 enrichment (e.g. aquaculture, CCS). Previous studies have shown that 318 

damage to the coralline algal skeletal structure under CO2-enriched conditions can rapidly 319 

occur (Burdett et al. 2012, Kamenos et al. 2013). In situ, this effect may manifest through to 320 

the community level. Results from this study and others (e.g. Hall-Spencer et al. 2008, 321 

Fabricius et al. 2011) collectively suggest that CO2 enrichment may cause change across 322 

biological scales, from the individual to community levels. If these changes persist in the 323 

long-term, we may observe permanent transitions in community composition, perhaps one 324 

that favours net photosynthesis, thereby tipping the balance in terms of biodiversity, and / or 325 

net dissolution. Such transitions would not favour the growth of carbonate-depositing 326 

ecosystem engineers such as coralline algae. 327 

 328 
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 458 

Table 1. System parameters under ambient, CO2 enrichment and recovery phase conditions, 459 

in benthic chambers deployed on a coralline algal bed in Loch Sween, Scotland. Water 460 

temperature, salinity, photosynthetically active radiation (PAR), AT (total alkalinity) and CT 461 

(dissolved inorganic carbon) were directly measured; all other carbonate parameters were 462 

calculated as detailed in the methods (pH is on NBS scale; ΩArg = aragonite saturation state). 463 

Data presented as mean±SD (n=18, except for temperature and salinity, where n=80). Bold 464 

text denotes parameters that were significantly different during the CO2 enrichment phase (at 465 

p < 0.05). 466 

 Ambient 

conditions  
CO2 enrichment  

Recovery 

period 

Temperature (°C) 15.3±0.32 15.3±0.32 15.3±0.32 

Salinity 33.0±0.38 33.0±0.38 33.0±0.38 

Max PAR (µmol photons m-2 s-1) 158 158 158 

AT (µmol kg-1) 2190.7±87.2 2202.0±123.28 2210.8±68.2 

CT (µmol kg-1) 2084.8±12.8 2168.9±31.20 2066.2±23.2 

pHNBS 7.9±0.2 7.7±0.39 8.0±0.2 

pCO2 (µatm) 821.6±343.4 1747.7±1403.33 646.7±320.6 

HCO3
- (µmol kg-1) 1961.1±27.5 2033.5±20.35 

1927.6±49.2 

CO3
2- (µmol kg-1) 92.0±45.9 67.8±50.77 

113.5±45.5 

ΩArg 1.4±0.7 1.0±0.78 1.7±0.7 
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Table 2. Community response of acute in-situ CO2 enrichment in terms of net DMSPt, nitrate 469 

and phosphate flux, under initial ambient CO2 conditions, during CO2 enrichment and during 470 

the recovery phase at ambient CO2. Data presented as mean±SD. 471 

 Ambient conditions  CO2 enrichment  Recovery period 

Net DMSPt flux (µmol m-2 h-1) -23.13±27.12 -13.46±28.12 -11.47±11.39 

Net nitrate flux (mg m-2 h-1) -11.40±36.11 -0.55±19.90 7.71±27.37 

Net phosphate flux (mg m-2 h-1) 0.04±0.44 0.02±0.24 0.05±0.29 
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Figure 1. Community response of acute in-situ CO2 enrichment in terms of net dissolved 475 

oxygen flux and net calcification rate, under initial ambient CO2 conditions (black circle), 476 

during CO2 enrichment (white circle) or during the recovery phase at ambient CO2 (grey 477 

circle). Data presented as mean±SD. 478 

 479 

 480 

 481 


