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Abstract

Understanding the interactions between mineral nutrition and disease is essential for

crop management. Our previous studies with Arabidopsis thaliana demonstrated that

potassium (K) deprivation induced the biosynthesis of jasmonic acid (JA) and

increased the plant's resistance to herbivorous insects. Here, we addressed the ques-

tion of how tissue K affects the development of fungal pathogens and whether sen-

sitivity of the pathogens to JA could play a role for the K–disease relationship in

barley (Hordeum vulgare cv. Optic). We report that K‐deprived barley plants showed

increased leaf concentrations of JA and other oxylipins. Furthermore, a natural tip‐

to‐base K‐concentration gradient within leaves of K‐sufficient plants was quantita-

tively mirrored by the transcript levels of JA‐responsive genes. The local leaf tissue

K concentrations affected the development of two economically important fungi in

opposite ways, showing a positive correlation with powdery mildew (Blumeria

graminis) and a negative correlation with leaf scald (Rhynchosporium commune) disease

symptoms. B. graminis induced a JA response in the plant and was sensitive to methyl‐

JA treatment whereas R. commune initiated no JA response and was JA insensitive.

Our study challenges the view that high K generally improves plant health and sug-

gests that JA sensitivity of pathogens could be an important factor in determining

the exact K–disease relationship.
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1 | INTRODUCTION

Reducing the amount of excess mineral fertilizer applied to crops is an

essential step towards sustainable food production (White, Broadley,

& Gregory, 2012). It is therefore important to understand how food

crops respond to changes in nutrient supply. High‐throughput methods

for the analysis of transcripts, metabolites, proteins, and enzyme activ-

ities have already provided us with detailed information about the
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molecular responses of plants to varying nutrient supply under con-

trolled conditions, and about the integration of these responses with

plant growth (Amtmann& Armengaud, 2009; Chérel, Lefoulon, Boeglin,

& Sentenac, 2014; Sulpice et al., 2009, 2010; Tschoep et al., 2009;

Wang & Wu, 2013). In the field, nutrient deficiencies are accompanied

by other stress factors, most importantly pathogens and pests. Combat-

ing disease in crops is already a major drain on agricultural budgets with

expenditure ranking third after that for energy and fertilization
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(Pimentel, 2005; Savary, Ficke, Aubertot, & Hollier, 2012; Tegtmeier &

Duffy, 2004). Thus, a more detailed understanding of the relationships

between plant responses to nutritional and biotic stresses is needed for

rapid progress towards low‐input agriculture.

Availability of mineral nutrients can affect plant susceptibility to

pathogens in a variety of ways (Datnoff & Elmer, 2007; Gupta,

Debnath, Sharma, Sharma, & Purohit, 2017; Huber, Römheld, &

Weinmann, 2012). Some mineral elements, such as nitrogen and sul-

phur, are constituents of organic compounds that feed, attract, or deter

pathogens, whereas others, such as calcium and silicon, determine the

mechanical properties of cell walls and influence physical barriers or

palatability (Bloem, Haneklaus, Salac, Wickenhäuser, & Schnug, 2007;

Datnoff & Elmer, 2007; Halkier & Gershenzon, 2006; Huber, Römheld,

& Weinmann, 2012). Potassium (K) fertilization is generally advertised

as improving plant health (Imas & Magen, 2000; Wakeel, Gul, & Zörb,

2016; Wang & Wu, 2013), but a close look at the published studies

shows that the effect of K on disease is much less predictable. Evi-

dence from over 2,000 laboratory, glasshouse, and field trials indicates

that the effect of K fertilization is most beneficial in ameliorating fungal

diseases and pests, whereas less benefit is seen for bacterial and viral

infections (Perrenoud, 1990; Prabhu, Fageria, Huber, & Rodrigues,

2007). For all classes of pathogens, some studies report no benefit or

even a negative impact of K fertilization. As the mode of pathogenicity

does not correlate with taxonomic grouping, this might be expected. A

correlation with mode of pathogenicity or trophic state that shows

more correspondence with mode of recognition or defence might be

more significant in determining infection success (Newton, Fitt, Atkins,

Walters, & Daniell, 2010). The exact relationship between K supply and

disease incidence and severity depends not only on the specific host–

pathogen interaction but also on accompanying mechanistic and envi-

ronmental factors, but these vary between studies and are often poorly

documented. There is no shortage of possible mechanistic links

between K deficiency and disease. The “usual suspects” include

increased sugar content, lack of stomatal control, decreased turgor,

and mechanical stability (Amtmann, Troufflard, & Armengaud, 2008).

However, it is important to note that experimental studies proving a

relationship or even a correlation between K‐induced physiological

changes and disease severity are lacking.

Previous work in our laboratories identified K‐dependent changes

in metabolites of arabidopsis (Arabidopsis thaliana [L.] Heynh.), such as

increases in reducing sugars and accumulation of glucosinolates, which

are potentially of relevance to pathogens and pests in K‐deficient

plants (Armengaud et al., 2009; Troufflard et al., 2010). K‐deficient

arabidopsis plants were found to have greater expression of genes

related to the biosynthesis of the phytohormone jasmonic acid (JA)

and of genes related to defence, the latter being dependent on the

function of the JA receptor COI1 (Armengaud, Breitling, & Amtmann,

2004, 2010; Yan et al., 2009). AtLOX2, encoding lipoxygenase 2,

which catalyses the first committed step in JA biosynthesis (Delker

et al., 2006; Wasternack & Hause, 2013), responded to low K prior

to any visible symptoms (e.g., senescence and growth retardation),

demonstrating that the induction of the JA pathway was not a second-

ary effect of stress symptoms (Troufflard et al., 2010). In agreement

with the transcriptional regulation of JA‐biosynthesis genes, levels of

JA, as well as its precursors 12‐oxo‐phytodienoic acid (OPDA) and
hydroxyl‐12‐oxo‐octadecadienoic acids (HODs), were elevated in K‐

deficient plants (Troufflard et al., 2010). Although extensive research

on JA signalling has been carried out in dicots such as arabidopsis

and tomato (Kazan & Manners, 2008; Pathak, Baunthiyal, Pandey,

Pandey, & Kumar, 2017; Wasternack & Hause, 2013; Yan et al.,

2016), JA signalling pathways in monocots are relatively unexplored

(Ding, Yang, Yang, Cao, & Zhou, 2016; Lyons, Manners, & Kazan,

2013; Shyu & Brutnell, 2015). A number of genes induced in response

to JA treatment have been identified in barley, but little is known

about their function. They are referred to collectively as jasmonate‐

induced proteins (JIPs) and known by their molecular weight

(Andresen et al., 1992; Wasternack, Parthier, & Mullet, 1997;

Weidhase et al., 1987).

In light of the relationship between low plant K status and JA, it is

possible that some of the variations in the effects of K nutrition on

plant disease evident in the literature are due to different sensitivities

of pathogens to JA. Thus, high concentrations of JA or related

oxylipins in K‐deficient plants might positively or negatively modulate

plant‐inherent defence responses. It has been proposed that

necrotrophic pathogens induce plant defences through JA (Dar, Uddin,

Khan, Hakeem, & Jaleel, 2015; Glazebrook, 2005; Kazan & Lyons,

2014; Thaler, Humphrey, & Whiteman, 2012) whereas biotrophic

pathogens induce plant defences through the JA antagonist salicylic

acid (SA). However, this generalisation does not always hold true.

For example, treatment of tomato plants with methyl‐jasmonate

(Me‐JA) increased resistance to a range of pathogens with both life-

styles (Thaler, Owen, & Higgins, 2004). The issue is further compli-

cated by a complex cross‐talk between JA and SA signalling

pathways; whereas antagonistic interactions prevail in early signalling

events, synergistic interactions have been reported for systemic

responses (Berens, Berry, Mine, Argueso, & Tsuda, 2017; Devoto &

Turner, 2005; Loake & Grant, 2007; Mur, Kenton, Atzorn, Miersch,

& Wasternack, 2006; Per et al., 2018; Truman, Bennett, Kubigsteltig,

Turnbull, & Grant, 2007; Wasternack & Hause, 2013). Finally, crop

varieties display a continuous spectrum of resistance to a given path-

ogen due to allelic variation in many different genetic loci that deter-

mine pathogen recognition and inducible defence responses

(Moscou, Lauter, Steffenson, Wise, & Soller, 2011; Piffanelli et al.,

2004; Seeholzer et al., 2010; Wise, Lauter, Szabo, & Schweizer,

2009; Zellerhoff et al., 2010). Clearly, the effect of low‐K‐induced

up‐regulation of the JA pathway on disease needs to be investigated

in individual, well‐defined host–pathogen systems before we can

understand (and predict) the effects of K supply on disease incidence.

To test the hypothesis that JA is an important factor for the K–

disease relationship in crops, we measured K concentrations in leaves

of barley (Hordeum vulgare L. cv. Optic) plants grown under different K

regimes and related them to transcript levels of JA‐biosynthesis and

JA‐responsive genes, and the development of two fungal pathogens.

On the basis of agricultural importance and different lifestyles, we

selected the obligate biotroph Blumeria graminis f. sp. hordei (powdery

mildew, B. graminis) and the hemi‐biotroph Rhynchosporium commune

(rhynchosporium, R. commune). The UK malting barley variety Optic

was selected due to its susceptibility to both fungi. Infection with

B. graminis initiates no hypersensitive response or lesion formation,

thereby allowing the fungus to spread across the leaf and to obtain
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nutrients from epidermal leaf cells (Glawe, 2008). The life cycle of

R. commune (scald or leaf blotch) includes an early biotrophic phase

during which the fungus grows asymptomatic under the cuticle, and

a necrotrophic phase during which conidia are formed normally and

necrotic lesions become visible on the leaf surface (Avrova & Knogge,

2012). The results obtained suggest that jasmonate‐signalling links

plant K status with disease development.
2 | MATERIAL AND METHODS

2.1 | Plant material and growth conditions

Barley (H. vulgare L. cv. Optic) seeds were germinated on water‐satu-

rated paper towels in an environmentally controlled growth chamber

with 9‐hr light (270 μmol·m−2·s−1) at 22°C and 15‐hr dark at 18°C and

constant 70% relative humidity. After 4 days, seedlings were trans-

ferred to hydroponic solution, supported by corrugated plastic sheets,

each holding 60 plants, suspended above 10 L of nutrient solution.

The control nutrient solution was composed of (in mM) 1.25 KNO3,

0.5 Ca(NO3)2, 0.5 MgSO4, 0.625 KH2PO4, and 2 NaCl. A solution with

no added K (−K) was composed of (in mM) 1.0 Ca(NO3)2, 0.5 MgSO4,

0.625 NaH2PO4, and 1.375 NaCl. Both media contained the following

micronutrients (in μM): 42.5 FeNaEDTA, 0.16 CuSO4, 45 H3BO3,

0.015 (NH4)6Mo7O2, 0.01 CoCl2, 0.38 ZnSO4, and 1.8 MnSO4. The

nutrient solution in the plant growth containers was replaced every

7 days. Shoots and roots were harvested at the indicated intervals,

weighed, frozen in liquid nitrogen, and stored at −80°C.

2.2 | Preparation of detached leaf segments

Barley seedlings were grown for 14 days in control or −K solutions.

Segments that are 40 mm long were cut from the tip, middle, and base

parts of the emerged blade of the second leaf (Supporting Information

Figure S1). For subsequent analysis of K content, RNA, or oxylipins,

the tissue was frozen immediately after cutting. Treatment of the leaf

segments with Me‐JA or fungal pathogens is described below.

2.3 | Determination of tissue water, K, and oxylipin
contents

Approximately 100 mg of frozen shoots, roots, or leaf segments was

weighed and freeze‐dried overnight. Water content was determined

as the loss of weight by drying and expressed as percentage of fresh

weight. To determine K content, freeze‐dried tissue from shoots,

roots, or leaf segments was incubated in 2 M HCl (100 μl for 1 mg

of dry tissue) at room temperature for 48 hr. Tissue debris was

removed by centrifugation, and the extracts were diluted 1:500 in

ddH2O. K was detected using a flame photometer (Sherwood flame

photometer 410). K concentrations in the diluted extracts were deter-

mined from a standard curve established with solutions containing 15

to 250 μM KCl in 4 mM HCl. Tissue K concentrations were then calcu-

lated by multiplication with the dilution factor and the incubated dry

weights. Oxylipins were measured in triplicate 50‐mg samples of

lyophilized leaf tissue from leaf segments of plants grown for 14 days

in control or −K media (20 plants each). Extraction and liquid chroma-

tography–mass spectrometry analysis were carried out according to
previously described procedures (Dave et al., 2011). Initial analysis

showed that the variation was too large to resolve differences

between leaf segments. Therefore, data from all leaf segments grown

in either control or −K media were pooled for statistical analysis.

2.4 | Measurement of transcript levels using
quantitative PCR

Total RNA was extracted from leaf tissue using TRIzol® Reagent

(Invitrogen, Cat. 15596‐026) and cDNA prepared using the Super-

script III™ Reverse Transcriptase kit (Invitrogen, Cat. 18080–044). A

1/10 dilution of the reverse transcription final reaction was prepared;

1 μl of the dilution was used as template for the qPCR consisting of

0.4 μM of each primer and 1× SYBR Green Master Mix (QuantiTect®

SYBR® Green PCR Kit; Qiagen, Cat. 2041453), using a Bio‐Rad

Chromo 4 with Opticon Monitor 3 software (Bio‐Rad Laboratories,

Inc., California). Serial dilutions of corresponding amplification product

were used to monitor the amplification efficiency and to transform

threshold cycles into concentrations. The PCR conditions were

15 min at 95°C and then 40 cycles of 15 s at 95°C, 30 s at 58°C,

and 30 s at 72°C. Transcript levels were normalized to the expression

level of α‐tublin (U40042). Primers were as follows: lipoxygenase 2.A

(HvLOX2, gene bank AK362687) AGTACCTGGGAGGGATGGAG (for-

ward) and TGGTTTCATGAGCTGGTACG (reverse); allene oxide

cyclase (HvAOC, gene bank AJ308488) GCTACGAGGCCATCTACAGC

(forward) and AAGGGGAAGACGATCTGGTT (reverse); 60‐kDa JIP

(HvJIP60, gene bank BM815987) CAGCAGCGACTTCATTTACA (for-

ward) and ATGGTGTCGCAGACTATCCT (reverse); α‐tubulin (Hvα‐

TUB, gene bank U40042) AGTGTCCTGTCCACCCACTC (forward)

and AGCATGAAGTGGATCCTTGG (reverse).

2.5 | Treatment with Me‐JA

For treatment with Me‐JA, the middle segments from the second leaf

of 14‐day‐old seedlings grown in control nutrient solution were

floated on 45 μM Me‐JA (from 0.1 M stock solution in ethanol) dis-

solved in water or water with the same final concentration of ethanol

(control) and incubated for 24 hr in a lit incubator (LEEC) at 17°C.

Detached leaf segments were blotted dry on paper towel and trans-

ferred to 0.5% agar/120 mg L−1 benzimidazole plates for subsequent

inoculation.

2.6 | Treatment with pathogens

Barley leaf segments were placed on 0.5% agar/120 mg L−1 benzimid-

azole plates (Newton, 1989; Newton, Hackett, & Guy, 1998) and incu-

bated in a lit incubator (LEEC) with continuous light (light intensity

200 μmol·m−2·s−1 at 17°C) for 24 hr before inoculation with the fungal

pathogens. R. commune isolate 13‐13 from the culture collection at

The James Hutton Institute was grown on CZV8CM agar medium

(Newton, Hackett, & Guy, 1998) at 17°C in the dark. The mycelia were

scraped from 14‐day‐old cultures using a sterile spatula, transferred to

a homogenizer containing sterile water, and homogenized for approx-

imately 30 s. The suspension was filtered through glass wool and

resuspended in sterile distilled water at a concentration of

106 spores ml−1. The leaf area to be inoculated was brushed gently
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with a trimmed‐down paint brush to disrupt the cuticle (Newton,

Searle, Guy, Hackett, & Cooke, 2001). Ten microlitres of

106 spores ml−1 solution was dispensed on to each leaf segment.

The plates were returned to the 17°C incubator. The severity of infec-

tion was assessed by measuring the length of the lesions (Figure S2A).

B. graminis f. sp. hordei was isolated from infected barley leaves.

Spores from individual colonies were used to inoculate detached leaf

segments with a paint brush, and the fungus was allowed to grow

for approximately 2 weeks. To ensure a pure culture, individual colo-

nies were selected twice more. To inoculate the leaf segments uni-

formly, an inoculation tower was used (Figure S2B). The plate

containing the spores was inverted over a sheet of paper and tapped

to dislodge the spores. A cone was formed from the paper, and the

spores were blown into the inoculation column. The spores were

allowed to settle on the leaf segments for 5 min before the lids were

replaced, and plates were returned to the lit incubator at 17°C. The

level of infection was assessed by counting the number of visible col-

onies on each leaf segment (Figure S2C) and dividing by the leaf area

(measured from photographs using ImageJ). Noninoculated leaf seg-

ments kept in the same conditions as the inoculated leaf segments

showed no visible signs of deterioration (Figure S2D).

2.7 | Statistical analysis

Statistical analysis was performed using analysis of variance with

Genstat Version 15.1 and calculation of Pearson correlation between

parameters measured over time and across the leaf using Minitab 15

statistical software. Correlation coefficients are shown in Table 1,

and P values for all correlations tested are given in Supporting Infor-

mation Table S1.
3 | RESULTS

3.1 | Leaves of K‐deprived barley plants reach
critically low tissue K concentrations

Barley seedlings were transferred to hydroponic culture 4 days after

germination and grown on a minimal nutrient solution with either

2 mM K (control) or no K added (−K). No differences in plant size or
TABLE 1 Water content (% fresh weight) of barley plants grown in cont

Daya
Shoot water content (% FW)

Control

3 90.6

6 91.5

9 91.9

12 92.7

15 91.7

Leaf
regionc

Tissue water content (% FW)

Control

Tip 90.1

Middle 91.4

Base 92.1

P valued 0.217

aAfter transfer to hydroponics. bDifference of water content in different media
different leaf segments.
development were apparent between treatments until 10–12 days

after transfer to hydroponics (Figure 1). Subsequently, K‐deprived

plants displayed constantly lower shoot fresh weights (Day 12, n = 3,

P = 0.005) and shoot lengths (Day 12, n = 3, P = 0.013) than control

plants (Figure 1a,b). The time point at which K deprivation started to

impact visually on growth coincided with the emergence of the third

leaf (Figure 1c–e). At this time, seed K reserves for leaf growth will

have been exhausted (White & Veneklaas, 2012). The first leaf of K‐

deprived plants grew to its full length, and the second leaf showed

only a minor reduction in length at the end of its growth period

(Figure 1c,d). The third leaf, however, was shorter in K‐deprived plants

than in control plants from the beginning of its emergence on Day 10

(Figure 1e). The root fresh weight of K‐deprived plants was also less

than that of the control plants grown in full nutrient medium after

10 days (Figure S2A), although the roots were longer than those in

control medium (Figure S3B).

The K concentration in the medium had an impact on tissue K con-

centrations, expressed on a dry weight basis, before a difference in fresh

weight was apparent (Figure 2, Supporting Information Figure S3). Three

days after transfer to hydroponics, the K‐deprived plants already had

lower shoot K concentrations than the control plants (1.4% compared

with 2.5% dry weight). Over the following 12 days, shoot K concentra-

tions increased in the control plants and decreased in K‐deprived plants

(n = 3, P = 0.012; Figure 2a). The root K concentration in K‐deprived plants

was also lower than that in control plants on Day 3 (n = 3, P = 0.043) and

remained constant thereafter while root K concentrations of control

plants increased (Supporting Information Figure S3C). On Day 12, the

shoot K concentration of K‐deprived plants was only 14% (n = 3,

P = 0.044) and the root K concentration was 22% (n = 3, P = 0.010) of

the shoot K concentration of control plants. From this time point onwards,

shoot growth was no longer sustained in K‐deprived plants (Figure 1a,b).

Nevertheless, the overall shoot water content was maintained (Table 1).
3.2 | Leaf K concentration displays a gradient across
the emerged blade

Potassium is mobile in the plant and is preferentially allocated to

growing and metabolically active tissues (White & Karley, 2010).
rol or K‐free (−K) media

−K P valueb

92.6 0.196

89.5 0.169

90.5 0.342

92.0 0.499

90.3 0.444

−K P valued

86.4 0.043

90.7 0.334

91.5 0.225

0.004

. cSecond leaf, as described in Section 2. dDifference of water content in
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Barley leaves are particularly well characterized in this respect; differ-

ential allocation of K has been reported in epidermis and mesophyll,

in the elongation zone (inside the sheath of the previous leaf) and

the emerged leaf blade, and in different sections in the emerged leaf

blade (Fricke, Hinde, Leigh, & Tomos, 1995; Fricke, Leigh, & Deri

Tomos, 1994a; Karley, Leigh, & Sanders, 2000; Karley & White,

2009; Leigh, Chater, Storey, & Johnston, 1986; Volkov et al., 2009).

To investigate spatial differences of tissue K concentrations within

the leaf area that is most accessible to airborne pathogens, we mea-

sured K concentrations in three zones of the emerged part of the

second leaf (base, middle, and tip as shown in Supporting Information

Figure S1). In control plants, the K concentration decreased signifi-

cantly from the base to the tip of the leaf blade (n = 3, P = 0.012),

with the K concentration at the tip being 70% of the K concentration

at the base (Figure 3). This is consistent with the observations of

Fricke, Leigh, and Deri Tomos (1994b). A decreasing base‐to‐tip leaf

K concentration trend was also apparent in K‐deprived plants,

although the differences were not statistically significant (Figure 3a).

In accordance with the function of K as a major osmoticum,

K‐deprived plants showed a significant decrease in water content

(expressed as percentage of fresh weight) from the base to the tip

of the leaf (n = 3, P = 0.004; Table 1), and the tip of the leaf was

the first part of the plant to show chlorosis and necrosis (Figure

S3F). Pearson correlation analysis of the data confirmed a positive

correlation between K and water content within the second leaf

(n = 9, R = 0.507, P = 0.032; Table 2). In summary, the experimental

system allowed us not only to manipulate leaf K concentrations by

varying external K supply but also to take advantage of natural differ-

ences between local leaf K concentrations within leaves of K‐suffi-

cient plants.
3.3 | Transcript levels of JA‐related genes are
inversely related to leaf K concentration

Previous research had shown that K deprivation of arabidopsis plants

led to increased transcript levels of genes encoding enzymes of

jasmonic acid (JA) biosynthesis, such as AtLOX2, AtAOS, AtAOC1,

and AtOPR3 (encoding lipoxygenase, allene oxide synthase, allene

oxide cyclase, and OPDA reductase, respectively), as well as well‐

known JA targets such as AtVSP2 (encoding vegetative storage pro-

tein; Armengaud, Breitling, & Amtmann, 2004; Armengaud, Breitling,

& Amtmann, 2010; Troufflard et al., 2010). To monitor JA response

in barley, we used a barley homologue of AOC1 (AJ308488) and a bar-

ley homologue of LOX2 (gene bank number AK32687). In order to

select the most appropriate sequence for LOX2, three LOX2 genes

were investigated. All three sequences have higher similarity to the

arabidopsis LOX2 gene than to any other arabidopsis genes encoding

lipoxygenases. LOX2.2 and LOX2.3 were identified by Bachmann

et al. (2002) as LOX2 genes and shown to be responsive to JA treat-

ment. Our BLAST searches identified a third LOX2 gene (AK32687,

LOX2.A). Its closest homologue was the rice LOX2 gene, and its closest

homologue in arabidopsis was LOX2. The dendrogram in Supporting

Information Figure S4 shows that it is difficult to identify the most

likely functional homologue of arabidopsis LOX2 among the three bar-

ley genes on the basis of sequence similarity alone. In a preliminary

expression analysis with all three genes, we found that LOX2.A

displayed a more consistent response to −K than did the other

HvLOX2 genes identified, and therefore, we selected it for further

study. No VSP homologue was found in the available barley nucleotide

or protein sequence databases, but a number of Me‐JA‐induced genes

(“JA‐induced proteins”, JIPs) have been identified (Andresen et al.,
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1992; Weidhase et al., 1987). HvJIP60 (BM815987), used here,

encodes a ribosome‐inactivating protein with glycosidase activity

(Chaudhry et al., 1994; Dunaeva, Goebel, Wasternack, Parthier, &

Goerschen, 1999; Reinbothe et al., 1994). Three barley genes,

encoding α‐tubulin (Hvα‐TUB, U40042), glyceraldehyde 3‐phosphate

dehydrogenase (HvGAPDH, M36650), and ubiquitin (HvUBQ,

M60175), were tested for their suitability as reference genes by deter-

mining the variation of Ct values and the frequency distribution of

transcript levels obtained by qPCR across a number of different condi-

tions (Supporting Information Figure S5). From this analysis, Hvα‐TUB

emerged as a robust constitutive reference and was used for normal-

ization of transcript levels.

Transcript levels of HvLOX2, HvAOC, and HvJIP60 in shoots of

barley plants varied during the experimental period (3–15 days after

transfer of the plants to hydroponics), but they were consistently

higher in shoots of K‐deprived plants than in shoots of control plants

from Day 9 onwards (n = 3, LOX2, P = 0.027; AOC, P = 0.007; JIP60,
P = 0.002; Figure 2b–d). To establish whether the transcripts

responded to tissue K concentration, we analysed different leaf zones

of the second leaf. Not only were transcript levels of HvLOX2, HvAOC,

and HvJIP60 higher in all zones of K‐deprived plants (P < 0.001 for all

genes) compared with control plants, but they also increased signifi-

cantly from the base to the tip of the leaf (n = 3, P = 0.002,

P = 0.044, and P = 0.005, respectively; Figure 3b–d), thus showing

the opposite gradient of that observed for tissue K concentration

within the leaf (Figure 3a). In summary, the expression of genes in

the JA pathway was inversely related to shoot K concentration

whether comparisons were made between K‐replete and K‐deprived

plants, over the experimental period, or within individual leaves.

Indeed, Pearson correlation analysis identified transcript levels of

LOX2 (R = 0.696, P < 0.001), AOC (R = 0.731, P < 0.001), and JIP60

(R = 0.548, P = 0.019) as reliable reporters of the overall shoot K con-

centration, and of local K and water concentrations within the leaf

(Table 2).
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To test whether the increase in gene expression observed in

response to K deficiency was associated with an increase in the con-

centrations of JA and related compounds, the tissue concentration

of several oxylipins was determined (Figure 4) in leaf tissue from

plants grown in control or −K media. These included 12‐oxo‐

dodecenoic acid (12‐ODD), 13‐hydroxyoctadecatrienoic acid

(13‐HOD), 3‐oxo‐2‐(29‐pentenyl)‐cyclopentane‐1‐octanoic (OPC‐8),

12‐oxo‐phytodienoic acid (OPDA), and JA, which are formed in the

13‐LOX pathway. This pathway starts with the conversion of linoleic

acid into 13‐hydroperoxy‐9,11,15‐octadecatrienoic acid (13‐HPOT),

which is catalysed by LOX2 (Figure 4b, Wasternack & Strnad, 2016).

We also measured 9‐hydroxyoctadecatrienoic acid (9‐HOD) and

10‐octadecenoic acid (10‐ODA), which are produced in the 9‐LOX

pathway (Figure 4b; Wasternack & Strnad, 2016). The measured

oxylipin concentrations were considerably (5–50 times) lower than

those previously determined in arabidopsis leaves using the same pro-

tocols (Troufflard et al., 2010), and we could not resolve statistically

significant differences between the leaf segments (data for all leaf seg-

ments are shown in Supporting Information Figure S6). However, clear

differences were apparent between control and −K (Figure 4). With

the exception of 10‐ODA, all oxylipins measured were found in signif-

icantly greater concentrations in the second leaf of the K‐deprived

plants than in the second leaf of the control plants (Figure 4a; n = 3,

P < 0.05 for JA and 12‐ODD, P < 0.01 for all others). Strong positive

correlations were found between the transcript levels of the selected

JA marker genes and the concentrations of JA and other oxylipins

(Table 2).
0
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Oxylipin

ng
/m

g 
D

W

(a)

**

**

*

**

*

**

FIGURE 4 Oxylipin concentrations in leaves of barley plants grown in con
grown in control (black bars) or K‐free (open bars) media. Results from tip,
of 20 plants was pooled for each sample, and means (±SE) of three indepe
Position of oxylipins in the JA‐biosynthesis pathway. Compounds measure
are shown in italics
3.4 | Low tissue K has contrasting effects on
powdery mildew and rhynchosporium

Typical disease symptoms from B. graminis and R. commune infection

on barley leaves are shown in Supporting Information Figure S2.

B. graminis colonies form “fluffy” patches (Figure S2B) whereas R. com-

mune causes necrotic lesions only visible during this necrotrophic

phase (Figure S2A). Development of the fungal pathogens on the

leaves was scored by assessing occurrence, number of colonies

(B. graminis), or size of lesions (R. commune) after inoculation of leaf

segments from the second leaf, harvested 14 days after transfer of

the plants to hydroponics.

Disease symptoms caused by B. graminis were delayed in leaf seg-

ments obtained from K‐deprived plants compared with leaf segments

from control plants (Figure 5a). In all leaf zones obtained from K‐

deprived plants, the number of B. graminis colonies was significantly

lower than that in leaf zones from control plants (P < 0.001; Figure 5

b–d). Furthermore, the number of B. graminis colonies was always sig-

nificantly lower at the leaf tip than at the leaf base (P < 0.001), for

both K‐deprived and control plants. Pearson correlation analysis

showed that B. graminis infection (percentage of segments inoculated

with visible colonies) was positively correlated with the local tissue K

concentration measured before inoculation (e.g., R = 0.687,

P = 0.003 for Day 9; Table 2). Thus, a low tissue K concentration in

the leaves seems to protect barley against powdery mildew. Correla-

tion analysis also revealed a significant negative correlation between

B. graminis and transcript levels of JA‐related genes or oxylipin con-

centrations (Table 2).
(b)

trol or −K media. (a) Oxylipin concentrations in leaves of barley plants
middle, and base segments from the emerged blade of the second leaf
ndently grown and treated batches of plants are shown (n = 3). (b)
d are shown in bold; genes encoding enzymes or downstream targets



FIGURE 5 Effect of tissue K concentration on infection by Blumeria graminis and Rhynchosporium commune. (a, e) Number of barley leaf
segments (in % of total number of inoculated leaf segments) showing symptoms after inoculation with B. graminis (a) or R. commune (e). (b–d)
Number of B. graminis colonies on segments derived from tip (b), middle (c), or base (d) of the second leaf. (f–g) Length of R. commune lesions on
segments derived from tip (f), middle (g), or base (h) of the second leaf. Leaf segments were harvested from barley plants grown for 14 days in
control (black symbols) or −K (open symbols) media. Means (±SE) from three replicate experiments are shown (n = 3)
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Low tissue K concentrations had the opposite effect on disease

symptoms caused by R. commune. Necrotic lesions appeared earlier

in leaf segments obtained from K‐deprived plants than in segments

from control plants (Figure 5e), and the individual lesions were signif-

icantly larger (P < 0.001; Figure 5f–h). In accordance with an effect of

local tissue K concentration on R. commune infection, lesions were

smaller at the base of the leaf than at the tip of the leaf for both con-

trol and K‐deprived plants. Pearson correlation analysis showed that

the severity of R. commune symptoms was directly and negatively cor-

related with the K concentration measured before inoculation

(Table 2). Thus, a low tissue K concentration in barley leaves seems

to promote the development of R. commune.
3.5 | B. graminis, but not R. commune, is sensitive to
Me‐JA and induces JA‐related genes

The preceding results suggest that induction of the JA signalling path-

way by low K nutritional status may protect barley plants against pow-

dery mildew but not against R. commune. This hypothesis is consistent

with reports that external application of Me‐JA or other oxylipins to

barley inhibited powdery mildew development both locally and sys-

temically (Cowley & Walters, 2005; Schweizer, Gees, & Mosinger,

1993; Walters, Cowley, & Mitchell, 2002) but had variable effects on

infection by R. commune (Steiner‐Lange et al., 2003; Walters et al.,

2014; Weiskorn, Kramer, Ordon, & Friedt, 2002). These previous stud-

ies used different barley varieties and growth conditions; therefore,

we compared JA sensitivity of the two fungal pathogens in our exper-

imental system directly (Figure 6a,b). Plants were grown in hydropon-

ics with control medium for 14 days, and middle leaf segments were

floated on a solution with or without Me‐JA prior to inoculation with
the fungi. The Me‐JA treatment reduced the number of B. graminis

colonies (n = 3, P < 0.001; Figure 6a) but had little effect on R. com-

mune symptoms (Figure 6b). Thus, Me‐JA treatment mimicked the

effect of low tissue K concentration on powdery mildew but was inef-

fective on R. commune. Furthermore, transcript levels of HvLOX2 and

HvJIP60 were increased after inoculation with B. graminis (n = 3,

P < 0.001 for both genes) but not after inoculation with R. commune

(Figure 6c–f). These data suggest that barley uses a JA‐based defence

against JA‐sensitive powdery mildew but not against JA‐insensitive

rhynchosporium.

In summary, using defined growth and treatment protocols of bar-

ley and taking advantage of an inherent K gradient within the emerged

blade of the second leaf, we have shown opposite effects of low tissue

K concentrations on B. graminis and R. commune (decreased/

increased), different sensitivities of the fungi to JA (sensitive/insensi-

tive), and different inducibility of the JA pathway by the fungi

(induced/not induced).
4 | DISCUSSION

4.1 | Barley leaves are an excellent system to study
nutrient–pathogen interactions

Understanding the interactions between mineral nutrition and disease

in plants is essential for good crop management and for making agri-

culture more sustainable in the future. Molecular plant science has

made important contributions to understanding how plants respond

to nutritional or biotic stresses, but it is now necessary to (a) design

experiments that allow us to assess combined stress and (b) translate

knowledge gained in model organisms to crops. In this study, we have



(a)

(b)

(c)

(d)

FIGURE 6 Sensitivity of Blumeria graminis and Rhynchosporium commune to Me‐JA treatment and inducibility of JA‐related genes. (a, b) Number
of B. graminis (Bgh) colonies (a) and length of R. commune lesions (b) on barley leaf segments pretreated for 24 hr with 45 μM Me‐JA (black circles)
or water (control, grey circles). (c–f) Relative transcript levels of HvLOX2 (c, d) and HvJIP60 (e, f) in uninoculated leaf segments (black bars) or leaf
segments inoculated (patterned bars) with B. graminis (c, e) or R. commune (d, f). α‐TUB was used as reference gene. Experiments were performed
on middle segments of the second leaves of plants grown for 14 days in control conditions. Means (±SE) from three replicate experiments (n = 3)
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done both; using a controlled hydroponics system, we have assessed

the effects of plant nutritional status on fungal infection in barley.

Measurement of several parameters (ions, transcripts, hormones, and

disease symptoms) allowed us to relate these parameters to each

other directly. In addition, we have exploited the differential allocation

of nutrients within leaves of barley to relate disease symptoms to tis-

sue nutrient concentrations independent of the amount of nutrient

supplied in the growth solution. The second leaf was selected for

the latter experiments because it grew similarly well in control and

K‐deprived plants over most of its growth period but reached critically

low K concentrations in its tip towards the end of this time. The exper-

imental system developed here provides a useful tool for studying

nutrient–pathogen interactions in barley and other cereal crops.
4.2 | The K–JA relationship: Possible signals and
physiological functions

Previous work by our groups had discovered a strong effect of K defi-

ciency on the JA biosynthesis and signalling pathways in arabidopsis

(Armengaud, Breitling, & Amtmann, 2004; Armengaud, Breitling, &

Amtmann, 2010; Troufflard et al., 2010). Many of the downstream tar-

gets of JA signalling (e.g., production of glucosinolates) are particularly

prominent in Brassicaceae, and it was therefore conceivable that the

JA response to K deprivation was limited to species of this angiosperm

family. The results presented here show that this is not the case.
Transcript levels of HvLOX2 and HvAOC, encoding JA‐biosynthetic

enzymes that underlie positive feedback regulation by JA in

arabidopsis (Delker et al., 2006), and of HvJIP60, previously identified

in a screen for Me‐JA inducible genes in barley (Andresen et al., 1992;

Wasternack, Parthier, & Mullet, 1997; Weidhase et al., 1987), were

consistently increased in K‐deprived barley plants (Figure 2). More

strikingly, the relative levels of these three transcripts increased from

the base to the tip of the emerged blade of the second leaf and thus

displayed a gradient that was the inverse of the tissue K concentration

gradient, even in plants that were grown in K‐sufficient conditions

(Figure 3). We conclude that the expression of the genes is quantita-

tively determined by variation in tissue K concentration, whether the

latter is the result of external supply or of endogenous tissue alloca-

tion. At this stage, we cannot distinguish whether the local K signal

for JA metabolism is apoplastic or intracellular, and we can only spec-

ulate about the downstream events. A number of early signals in

wounding and pathogen responses, for example, change in membrane

potential, rise of cytoplasmic calcium, and H2O2 production (Maffei,

Mithöfer, & Boland, 2007; Thordal‐Christensen, Zhang, Wei, &

Collinge, 1997; Yang, Shah, & Klessig, 1997), also occur in response

to reduced apoplastic K (Allen et al., 2001; Amtmann, Troufflard, &

Armengaud, 2008; Armengaud et al., 2009; Shin & Schachtman,

2004). However, whether these signals can be quantitative and can

persist long enough to explain a continuous dose–response gradient

within the leaf is uncertain.
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More intriguing is the observation that constitutively high activity

of the vacuolar cation channel TPC1 in the arabidopsis fou2 mutant

results in high LOX2 activities (Bonaventure et al., 2007). The vacuole

plays an essential role in cellular K homeostasis because it is used as a

reversible K reservoir to maintain stable cytoplasmic K over a wide

range of external K concentrations (Carden, Walker, Flowers, & Miller,

2003; Walker, Leigh, & Miller, 1996; White & Karley, 2010). Trans‐

tonoplast K fluxes through vacuolar channels will therefore reflect tis-

sue K status in a quantitative manner. Indeed, TPC1 is permeable to K

and has been implicated in K homeostasis (Amtmann & Armengaud,

2007; Beyhl et al., 2009; Peiter et al., 2005; Ranf et al., 2007),

although it is not clear whether the link is direct (K transport through

TPC1) or indirect.

Another good candidate for mediating between cellular K sta-

tus and defence responses would be calcium. Single‐cell measure-

ments of ion concentrations in different parts of barley leaves

have shown a negative correlation between vacuolar concentra-

tions of K and Ca (Fricke, Hinde, Leigh, & Tomos, 1995). It has also

been shown before for arabidopsis leaves that a decrease of tissue

K under K starvation is compensated by a rise of Ca (Armengaud

et al., 2009). Although it is unlikely that a change of the vacuolar

Ca concentration directly impacts on the development of fungal

pathogens, it could alter the signature of intracellular Ca signals in

response to pathogens and thus impact on defence responses.

Genetic manipulation of vacuolar K and Ca transporters in barley

needs now to be undertaken to investigate whether it is possible

to uncouple cellular K and/or Ca homeostasis from JA signalling

and whether fluxes of K and/or Ca across the tonoplast underpin

the effect of K on pathogen development.

The highest expression of HvLOX2, HvAOC, and HvJIP60 was

measured in the tips of leaves of K‐deprived plants, which not only

had the lowest K concentration but also were the first parts of plants

to show chlorosis and a significant drop in water content. It has been

shown for arabidopsis that induction of two senescence‐associated

genes, AtSAG12 and AtSAG13, by K deprivation no longer occurred

when JA antagonists SA and acetyl SA were applied (Cao, Su, & Fang,

2006). These findings raise the possibility that JA‐related genes inform

the plant about local tissue concentrations of the most important cel-

lular osmoticum, K+, and induce senescence when tissue K concentra-

tion falls below a critical threshold.
4.3 | What underlies the differential effect of leaf K
on B. graminis and R. commune?

The question of how K deprivation affects the susceptibility of barley

to different fungal pathogens was addressed by infecting leaves from

control and K‐deprived plants with B. graminis and R. commune, two

economically important pathogens with biotrophic and hemi‐

biotrophic (with a necrotrophic phase) lifestyles, respectively. Inocula-

tion with the fungi requires different techniques, which impacts on

symptom assessment. An equal number of B. graminis spores are

blown over the leaf segment, allowing quantification of fungal invasion

by counting colonies. By contrast, R. commune is point inoculated as a

spore suspension, and therefore, all infection sites potentially produce

symptoms. Accordingly, the time it takes for visible symptoms to
appear and the size of the necrotic lesions formed were scored. In

the future, it would be interesting to dissect, at the microscopic level,

the effects of tissue K on different phases of fungal invasion and

development.

The protocols used here for inoculation and disease scoring

followed established techniques in the pathogen field (Newton,

1989), but potential problems for combined nutrient–pathogen stud-

ies should be discussed. The extended incubation of the leaf segments

did not lead to any visible deterioration of the tissues apart from chlo-

rosis in a small area adjacent to the cut (see uninoculated segments

after 15 days on plates shown in Supporting Information Figure

S1D). However, it is possible that the segments lose some K during

the incubation period. Therefore, our K–disease results strictly relate

to the differences of K/JA status before inoculation. Any potential

changes occurring in the segments during the incubation period

should be monitored in more detail in the future, and controlled plate

experiments should be complemented with whole‐plant experiments

on soil.

Compared with control plants, K‐deprived plants showed less dis-

ease caused by the biotroph B. graminis and more by the necrotrophic

life stages of R. commune. This finding was surprising in the light of the

conventional assignment of biotrophic and necrotrophic pathogens to

SA and JA‐based defence pathways, respectively. However, it agrees

with previous reports of increased resistance against biotrophic path-

ogens (including powdery mildews) of the arabidopsis mutant cev1,

which has constitutively high endogenous JA levels (Ellis, Karafyllidis,

& Turner, 2002; Ellis & Turner, 2001). External application of

jasmonate has also been shown before to reduce B. graminis infection

in barley both directly and systemically, under controlled conditions

(Schweizer, Gees, & Mosinger, 1993; Walters, Cowley, &

Mitchell, 2002).

Further information on the K–disease relationship came from

analysing disease symptoms in different leaf regions. Interestingly,

occurrence and severity of disease symptoms caused by B. graminis

and R. commune were directly (positively and negatively, respectively)

correlated with the local tissue K concentration in leaves even in

plants that were K sufficient (control plants). To visualize the leaf pro-

files of potentially relevant parameters, we assigned a semiquantita-

tive score between −−− (much lower than the median) and +++

(much higher than the median) to the measured absolute values, and

we plotted this score against the leaf zones for both K‐replete and

K‐deprived plants. As can be seen in Figure 7, R. commune and

B. graminis symptoms display almost continuous gradients across

zones and treatments as do tissue K concentrations and transcript

levels of HvLOX2, HvAOC, and HvJIP60.

Promotion of B. graminis by increasing tissue K concentration

meant that this biotroph developed better in K‐rich tissues, particu-

larly at the base of the emerged leaf blade of K‐replete plants.

Although this could be due to a direct beneficial role of K as an essen-

tial nutrient, it is difficult to conceive that the small differences of K

concentration found in K‐replete plants would cause nutritional defi-

ciency in the fungus. It is more likely that the increased JA level in

low‐K tissues leads to enhanced plant defence, preventing successful

development of B. graminis. The opposite effect of K on the JA‐insen-

sitive fungus R. commune (inhibition by high tissue K concentrations) is
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whole shoots or into seven levels for leaf segments, ranging from
much lower (−−−) to much higher (+++) than the median (0) across all
samples (see scale bar). If amounts differed between adjacent
segments, a continuous gradient within the segments was assumed
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in line with the general view that K protects plants against disease, but

it still requires identification of the underlying mechanism(s). It has

been reported that R. commune infection leads to increased transpira-

tion and K accumulation around stomata (Ayres & Owen, 1971), indi-

cating that stomatal function is modulated either as part of the fungal

infection strategy or as a downstream effect. Lowering K may interact

with this process and facilitate infection.

The results from this study strongly motivate a new hypothesis

that links the effect of tissue K on disease development with the sen-

sitivity of the pathogen to plant JA signalling, but alternative explana-

tions are still possible and should be examined in more targeted

studies. For example, K starvation might increase not only vacuolar

but also apoplastic Ca, leading to increased rigidity of cell wall and

membranes, which in turn could differentially inhibit pathogens

depending on their infection paths. Furthermore, the allocation of K

and Ca into individual cell types (Fricke, Hinde, Leigh, & Tomos,

1995) could change under K starvation, which again might differen-

tially affect pathogens with specific invasion patterns. With reported

effects of JA on ion fluxes being taken into account (Evans, Gottlieb,
& Bach, 2003; Yan et al., 2015), it is also possible that an initial rise

in JA leads to redistribution of K and/or Ca between cellular compart-

ments and cell types. Monitoring ion concentrations and pathogen

development at a much higher spatial resolution would be a good

way forward to test these hypotheses. The experimental protocols

developed here to score K–disease interaction provide a basis for such

studies.

4.4 | A working model for the K–JA–disease
interaction

The results from this study can be summarized in a simple working

model (Figure S7) in which a low K concentration in leaf tissue induces

JA signalling, which in turn enhances the inducible defence response

of the plant against B. graminis. In this case, the effect seems to be

strong enough to overcome any other effects of low K status that

may increase plant susceptibility. By contrast, R. commune does not

induce a JA‐based defence response, and this pathogen is not sensi-

tive to JA. Induction of JA signalling by low K has therefore no conse-

quence on pathogen development. The observed effect of K on

R. commune is in accordance with the conventional view that K defi-

ciency promotes disease, but the exact cause still remains to be iden-

tified. Our finding that the effect is local and continuous over a range

of K tissue concentrations narrows the spectrum of potential causes.

For example, levels of sugars increased in −K conditions but were

not correlated with K concentrations in the leaf segments (Figure S8).

Interestingly, it has been reported that soil‐grown barley plants

exposed to a combination of elicitors (including cis‐jasmonate) after

preinfection with R. commune down‐regulate LOX2 (although in this

case the transcript measured differed from the one assessed here;

Walters, Paterson, Sablou, & Walsh, 2011). This raises the possibility

that R. commune infection may cancel the protective effect of low K

on B. graminis, observed here. Future experiments should assess the

effect of K on simultaneous or successive infection by both patho-

gens. Depending on which pathogen is more damaging, there might

be scope for fine‐tuning K fertilizer applications. Furthermore, the

observed differential development of the two fungi in different parts

of the leaf could open the possibility of a more targeted application

of fungicides.
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Figure S1. Barley leaves and leaf zones. A: Numbering of leaves. B:

Leaf segments of second leaf harvested for the analysis

Figure S2. Pathogen symptoms and inoculation procedure. A: Lesions

caused by R. commune 12 days after inoculation. B: Colonies of B.

graminis 12 days after inoculation. C: Setup for applying B. graminis

spores to leaf segments. D: Appearance of un‐inoculated leaf seg-

ments after15 days on the inoculation plates.

Figure 3S. Growth and K content of barley roots in control and low‐K

conditions. Length (A), fresh weight (B) and K concentration (C) of

roots from barley plants grown in control (black symbols) or ‐K (open

symbols) media. Five plants were harvested for each time point, the

means (± SE) from three independently grown and treated plant

batches are shown (n=3). Pictures of representative roots and shoots

20 days after K deprivation are shown in D, E, and F.

Figure S4: Dendrogram showing the relationship between LOX2 gene

sequences. Locus identifiers are shown in brackets and bootstrap

values in italics.

Figure S5. Identification of suitable constitutive reference gene. A:

Variation across samples of transcript levels determined from Ct

values in qPCR for UBQ, GAPDH and α‐TUB. B, C: Frequency distri-

bution of transcript levels obtained in qPCR for GAPDH (B) and α‐

TUB (C). RNA was prepared from barley plants grown in full nutrient

control and low‐K nutrient solution for 3, 6, 9, 12 and 15 days, and

transcript levels were normalised to day‐3 control.

Figure S6: Oxylipin concentrations of leaf segments Oxylipin concen-

trations in leaf segments from barley plants grown in control (black

bars) or ‐K (open bars) media. Leaf tissue of tip (A), middle (B) and base

(C) segments from the emerged blade of the second leaf of 20 plants

was pooled for each sample, and means (± SE) of three independently

grown and treated batches of plants are shown. For abbreviations of

oxylipin names, see text. ‘Oxy’ is the sum of all measured oxylipins.

Figure S7 Current working model for K‐pathogen relationship. Low

tissue K concentrations induce JA‐biosynthesis and signalling (black

arrow, data in Figs. 2 and 3) with different consequences for B.

graminis (A) and R. commune(B). A: JA is part of the defence of barley

against B. graminis. It is induced upon B. graminis infection and it

inhibits the fungus (data in Fig. 6). JA‐induction by low tissue K there-

fore protects barley against B. graminis (data in Fig. 5). Other physio-

logical factors accompanying low K may weaken the plant's

resistance against B. graminis (white arrow, literature) but the protec-

tive effect of JA outweighs these factors. B: JA is not induced by R.

commune, and R. commune is insensitive to JA (data in Fig.6). The

low‐K induced rise of JA has therefore no effect on R.commune.

Enhanced disease

Figure S8. Sugar concentrations in barley shoots and leaf segments.

Concentrations of glucose, fructose and sucrose in whole shoots (A)
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and in different zones of the second leaf (B) of barley plants grown in

control (black symbols) or ‐K (open symbols) media. For A, five plants

were pooled for each sample. For B, corresponding leaf segments

were pooled from six plants. Means (± SE) of three independently

grown and treated plant batches are shown (n=3) development in tis-

sues with low K (white arrow, data in Fig. 2 and 3) is not counteracted

by JA.

Data S1 Supporting information item
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