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26 ABSTRACT

27 Bovine periodontitis is a progressive and purulent infection associated with an anaerobic 

28 subgingival biofilm, which induces irreversible damage to the dentition of affected animals. 

29 The aetiopathogenesis of the disease is unclear and treatment and control of the disease 

30 process in cattle are almost unknown. The aim of this study was to investigate the innate 

31 immune response by quantifying expression of Toll-like receptor (TLR) and cytokine genes 

32 in gingival tissue samples from cattle with and without periodontitis. Postmortem biopsies of 

33 gingival tissues were collected from 20 cattle with periodontitis and 20 cattle with no clinical 

34 signs of periodontal lesions. Tissue expression of TLR2, TLR4, TNF-α, IFN-γ, IL-1β and IL-4 

35 genes were determined using quantitative real-time PCR. Statistically significant increases in 

36 mRNA levels encoding TLR2 (p = 0.025), TLR4 (p = 0.037), TNF-α(p = 0.025), IFN-γ (p = 

37 0.014), IL-1β(p < 0.001) and IL-4 (p = 0.014) were observed in animals with periodontitis 

38 when compared to periodontally healthy animals. Increased levels of TLRs and inflammatory 

39 cytokines in periodontal tissue indicate an induction of the innate immune response of cattle 

40 and suggest that a substantial microbial challenge may be involved in the aetiopathogenesis 

41 of bovine periodontitis. 

42

43 Keywords: bovine; periodontitis; Toll-like receptors; cytokines; innate immune response
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51 1. Introduction

52 Bovine periodontitis is a naturally occurring progressive purulent and infectious process 

53 that causes cumulative and readily observed changes in the gums and dentition of slaughtered 

54 animals (Borsanelli et al., 2016). The periodontal lesions that develop throughout the 

55 productive life of the animals can be characterised by formation of periodontal pockets, 

56 gingival recession, loss of clinical insertion and premature loss of teeth (Döbereiner et al., 

57 2000). The complexity of its clinical diagnosis in herds makes it difficult to carry out 

58 epidemiological surveys to evaluate its true prevalence. The lack of evidence in the literature 

59 suggests that herd owners and veterinarians may not appreciate the potential economic and 

60 sanitary significance of periodontal disease in cattle. In its natural occurrence in ruminants, 

61 periodontitis has been recorded in sheep (Frisken et al., 1989; Ismaiel et al., 1989; McCourtie 

62 et al., 1990; Riggio et al., 2013) and cattle (Ingham, 2001; Borsanelli et al., 2016). The 

63 disease has also been noted in animals raised extensively in tropical biomes in Brazil (Blobel 

64 et al., 1987; Borsanelli et al., 2017; Dutra et al., 2000).

65 In studies on the aetiopathogenesis of bovine periodontitis, Gram-negative anaerobic 

66 bacteria have been associated with periodontal lesions, in particular species from the genera 

67 Porphyromonas, Prevotella and Treponema (Borsanelli et al., 2015a, 2015b; Dutra et al., 

68 2000). The presence of periodontopathogens is necessary but not sufficient for the 

69 development of periodontitis. The exaggerated immune inflammatory response of the host to 

70 microorganisms culminates in the destruction of periodontal tissues (Graves, 2008; Preshaw, 

71 2008). Thus, oral health is associated with homeostasis between host and microbiota 

72 (Hajishengalis, 2015).

73 The innate immune system of the host is activated when certain receptors recognise 

74 specific structures of molecular patterns associated with aggressive pathogens. These 

75 receptors include Toll-like receptors (TLRs), which aid in the early defense of the host 
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76 against invading agents by activating adapter molecules after binding to their ligands, thereby 

77 causing an increase or reduction in the expression of genes that influence the inflammatory 

78 response (Akira and Takeda, 2004). The importance of possible agents in the 

79 aetiopathogenesis of a disease can be defined by changes in the expression of certain TLRs 

80 (Arpaia and Barton, 2013). 

81 Some microorganisms are of recognised importance in the process of bone resorption 

82 caused by periodontal disease and it is known that levels of TLR2, TLR4, IL-4, IL-1α, TNF-

83  and IFN- are increased in human periodontitis (Feng and Weinberg, 2006; Mahanonda 

84 and Pichyangkul, 2007). Periodontopathogens can control the expression of a large number of 

85 inflammatory cytokines. Porphyromonas gingivalis is able to induce the expression of IL-1, 

86 IL-5, IL-6, IL-8, IL-10, IL-13, TNF- and IFN- while A. actinomycetemcomitans stimulates 

87 gingival epithelial cells to express IL-1, IL-6, IL-8 and TNF-. Tannerella forsythia induces 

88 IL-1 and TNF- expression and Fusobacterium nucleatum induces the secretion of IL-8 by 

89 epithelial and endothelial cells (Feng and Weinberg, 2006).

90 Thus, in additional to microbial factors, alterations in the innate immune response have 

91 been suggested to play a role in the pathogenesis of periodontitis. To date, there have been no 

92 studies of innate immunity in the bovine oral cavity or of its possible involvement in the 

93 pathogenesis of bovine periodontal disease.

94 We hypothesise that bacterial pathogens drive inflammatory cytokines expression by 

95 activating specific TLRs, thereby leading to the development of periodontal disease in 

96 susceptible animals. In this context, the aim of this study was to evaluate the expression of 

97 TLR and cytokine mRNAs in orally healthy cattle and those with periodontitis.
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101 2. Materials and methods

102 2.1. Sample collecting and processing

103 Tissue samples were collected in a local abattoir. Samples of gingival tissue were 

104 obtained from around the periodontal pockets of cows with periodontitis and from the 

105 gingival margin around PM2-PM3 of animals with a healthy oral cavity. Animals were 

106 considered to have periodontitis when both gingival recession and periodontal pockets over 

107 5mm in depth were observed.

108 The collected gingival tissue samples were immediately stored in RNAlater (Sigma-

109 Aldrich, Gillingham, UK) in order to preserve RNA quality. 50mg of each tissue was then 

110 disrupted by homogenisation as described previously (Kennedy et al., 2016b).

111

112 2.2. Isolation of RNA from gingival tissue

113 RNA was extracted from homogenised gingival tissue using the RNeasy Fibrous Tissue 

114 Mini Kit (Qiagen) and was quantified using a Nanodrop NP-1000 spectrophotometer 

115 (Thermo Fisher Scientific, Renfrew, UK).

116

117 2.3. Primer selection and validation

118 Primers were selected using the approach described previously (Dolieslager et al., 

119 2013). The bovine mRNA sequences for TLR2, TLR4, IFN-, IL-1, IL-4, TNF- GAPDH, 

120 β-actin and 18S rRNA are shown in Table 1. Primers were validated and amplification 

121 efficiency determined using the formula: efficiency = −1 + 10(−1/slope) (Dolieslager et al., 

122 2013). The original mRNA level in each tissue was determined using the Comparative 

123 Critical Threshold (Ct) method. 
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126 2.4. cDNA preparation

127 cDNA was synthesised using the SuperScriptTM First-Strand Synthesis System for RT-

128 PCR (Invitrogen, Paisley, UK) as described previously (Dolieslager et al., 2013).

129

130 2.5. Quantitative PCR

131 Quantitative PCR was carried out with SYBR® Select Master Mix (Invitrogen) as 

132 described previously (Kennedy et al., 2016b). The following primer annealing temperatures 

133 were used: TLR2, TLR4, IL-4, IFN-, -actin, GAPDH and 18S rRNA (58ºC) TNF- and 

134 IL-1 (60ºC). GAPDH, 18S rRNA and -actin served as housekeeping (reference) genes. 

135

136 2.6. Data and statistical analysis

137 Analysis of data was conducted using Microsoft Excel followed by GraphPad Prism for 

138 Windows (version 5). Gene expression levels were adjusted to the geometric mean of the 

139 three housekeeping genes by the 2−Ct method (Livak and Smittgen, 2001). A non-parametric 

140 statistical analysis was carried out using the Mann-Whitney U test, with p < 0.05 considered 

141 to be a statistically significant difference. A parametric age-weighted multivariate analysis 

142 was performed on the Ct data to ascertain the potential effect of the age as a confounding 

143 factor in the analysis. 

144

145 3. Results 

146 Gingival tissue samples were obtained from 20 animals with clear signs of periodontal 

147 destruction and 20 apparently periodontally healthy animals. The mean depth of the 

148 periodontal pocket of the diseased animals was 6.3 ± 1.7 mm, varying from 5 to 10 mm. 

149 Periodontally healthy animals were considered to be those with a subgingival sulcus depth of 

150 less than 5 mm and with no evident gingival recession. Although the clinical attachment level 
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151 of the gingival margin was not recorded precisely, the cement enamel to periodontal pocket 

152 base distance was seen to greatly exceed 5 mm. It was observed that the majority of animals 

153 with periodontitis (> 4.5 years of age) had complete dentition and healthy animals (2 to 3 

154 years of age) generally presented with the second or third premolar erupting. 

155 Following adjustment to the geometric mean of the three housekeeping gene mRNAs, 

156 the levels of mRNA encoding TLR2 (p = 0.025) and mRNA encoding TLR4 (p = 0.037) 

157 were increased in the periodontitis samples compared to the healthy samples (Fig. 1).  Data 

158 shown are adjusted for the three housekeeping genes. In the age-weighted analysis the 

159 difference in TLR4 mRNA levels remained statistically significantly higher in the diseased 

160 animals (p = 0.016). Differences in TLR2 mRNA levels did not reach statistical significance. 

161 Similarly, levels of IL-1β mRNA (p = 0.004), IL-4 mRNA (p = 0.014), TNF-α mRNA (p = 

162 0.025) and IFN-γ mRNA (p = 0.014) were increased in the periodontitis group (Fig. 1). Data 

163 shown are adjusted for the three housekeeping genes. In an age-weighted analysis IL-1β 

164 mRNA (p = 0.001), IL-4 mRNA (p = 0.004), TNF-α mRNA (p = 0.040) and IFN-γ mRNA (p 

165 = 0.004) were increased in the periodontitis group.

166

167 4. Discussion

168 In the present study, a statistically significant increase in the expression of mRNAs in 

169 the periodontal tissues of animals with periodontitis for TLR2, TLR4, TNF-α, and IL-1β was 

170 observed when compared to the group of periodontally healthy animals. In this context, it 

171 suggests that the occurrence of a substantial challenge to the innate immune system may also 

172 a feature of periodontal disease in cattle. In recent years the impact of periodontal disease in 

173 other large farm animals such as horses has become more widely recognised, and although 

174 the precise aetiology of periodontal disease is yet to be fully elucidated, several key 

175 observations are similar to those seen in cattle i.e., the implied involvement of Gram-negative 
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176 bacteria (Kennedy et al., 2016a) and induction of an almost identical set of innate immune 

177 response parameters (Kennedy et al., 2016b) in response to microbial challenge at the 

178 periodontium.  

179 In humans, oral microbiota dysbiosis results in changes in the amount of bacteria 

180 present in the biofilm and modifies the host-microorganism ratio at levels sufficient to 

181 mediate a destructive inflammatory response and bone loss (Hajishengallis, 2014; 

182 Hajishengallis, 2015). In this context, periodontal health requires a controlled immune and 

183 inflammatory state that maintains host-microorganism homeostasis in the periodontium. It is 

184 little known how dysbiosis occurs, if it is a cause or consequence of the disease process and 

185 how the dysbiotic microbiota is able to induce an immune inflammatory response that results 

186 in pathological bone loss. A major challenge is to understand the role of each component of 

187 the innate immune system in the host-microbiota relationship in periodontitis (Hajishengallis, 

188 2014). 

189 The innate response of host represents the first line of immune defence and initially 

190 involves the recognition of the microbial components as a warning signal by cells with 

191 subsequent production of inflammatory mediators. TLRs are expressed by leukocytes and 

192 cells residing in the periodontal environment and are the major signalling molecules through 

193 which mammals recognise the infection (Mukhodapdhyay et al., 2003), activating the innate 

194 response by recognising bacterial components. Thus, each TLR is able to recognise a 

195 molecule or subset produced by microorganisms (Mahanonda and Pichyangkul, 2007).

196 As in man, 10 distinct TLRs have been described in cattle (McGuire et al., 2006). Each 

197 of them has its own functional characteristics and an important function against invading 

198 pathogens. There is only a limited amount of published information on the expression of 

199 bovine TLRs and this is the first report about their role in bovine periodontitis. TLR2 and 

200 TLR4 are of importance in periodontitis, recognising pathogens such as A. 
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201 actinomycetemcomitans, P. gingivalis, T. forsythia and F. nucleatum, and the absence of 

202 these receptors results in reduction of alveolar bone loss in P. gingivalis-infected rats 

203 (Mahanonda and Pichyangkul, 2007).

204 In the present study, TLR2 mRNA (except for the age-weighted analysis) and TLR4 

205 mRNA levels were statistically higher in samples from animals with periodontitis when 

206 compared to periodontally healthy animals. Failure to observe increased expression of TLR2 

207 mRNA in the parametric age-weighted analysis was due the skewed nature of the Ct values 

208 for this particular parameter. This was despite the significant increase in expression in 

209 diseased animals according to the non-parametric analysis. 

210 TLR2 and TLR4 are found on the cell surface and can recognise a wide variety of 

211 bacterial cell wall components in Gram-positive and Gram-negative bacteria and 

212 Mycoplasma sp. (Vasselon and Detmers, 2002). Activation of TLR4 occurs after binding 

213 with the lipopolysaccharide of several Gram-negative bacteria (Akira and Takeda, 2004). 

214 TLR2 is specifically involved in the recognition of P. gingivalis (Hajishengallis et al., 2009), 

215 and lipopolysaccharide of Gram-negative periodontal pathogens activates TLR2 more 

216 efficiently than TLR4 (Lappin et al., 2011). 

217 The expression of TLR4 in the gingival epithelium (Mori et al., 2003; Ren et al., 2005) 

218 and human gingival fibroblasts (Beklen et al., 2014; Wang et al., 2003) reinforces the 

219 understanding of its role in periodontal disease. Thus, increased expression of TLR2 and 

220 TLR4 in bovine periodontitis may be indicative of high bacterial challenge in the periodontal 

221 pocket. Bacteria play a causal role in the pathogenesis of human and animal periodontal 

222 disease and hence their potential importance in bovine periodontitis is also expected. Several 

223 species of potential periodontopathogens have recently been identified in bovine periodontal 

224 lesions by PCR, including spirochaetes and black-pigmented anaerobic bacteria (Borsanelli, 

225 2015a; Borsanelli, 2015b).
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226 The excessive production of inflammatory mediators, caused by persistent stimulation 

227 of TLRs by periodontopathogens, results in the destruction of periodontal tissue (Mahanonda 

228 and Pichyangkul, 2007). After activation of TLRs, an intracellular signaling cascade is 

229 stimulated, resulting in the expression of inflammatory cytokines, leukocyte migration and 

230 osteoclastogenesis. Cytokines such as IL-1, IL-4, IFN-γ and TNF-α play a central role in the 

231 inflammatory reaction, bone resorption and loss of connective tissue. 

232 In order to characterise the response of the innate immune system in bovine 

233 periodontitis, the current study evaluated expression of IL1-β, IFN-γ, TNF-α and IL-4 in 

234 gingival biopsies of slaughtered animals. A positive correlation was observed between 

235 periodontitis and IL-1 mRNA levels. In human patients with periodontitis, IL-1 was 

236 detected in large quantities at sites with recent bone loss (Lee et al., 1995). This cytokine is 

237 also capable of inducing the production of matrix metalloproteinases (Okada and Murakami, 

238 1998). Although it was not an objective of the present study to correlate the findings with 

239 different clinical stages of disease, it could be hypothesised that these results may explain the 

240 loss of attachment, gingival recession, periodontal pocket formation and suppuration 

241 observed in these animals.

242 Studies in humans, rats and primates have shown that TNF- expression in gingival 

243 tissue and crevicular fluid plays a central role in the inflammatory reaction, production of 

244 chemokines leading to leukocyte recruitment, bone loss and loss of connective tissue (Graves 

245 and Cochran, 2003; Graves, 2008; Garlet, 2010). In the current study, the TNF-α mRNA 

246 mRNA levels were found to be greater in the periodontitis group. 

247 IFN- mRNA levels were greater in the periodontitis group when compared to the 

248 healthy group. IFN- is associated with the activation of phagocytes and the production of 

249 inflammatory cytokines and chemokines (Murphy and Reiner, 2002), with high levels 

250 observed in periodontal lesions and severe periodontal diseases (Garlet, 2010). Garlet et al. 
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251 (2008) further demonstrated that, in rats, IFN- induces bone resorption in response to A. 

252 actinomycetemcomitans. 

253 IL-4 mRNA levels were significantly higher in bovine periodontitis. IL-4 (produced by 

254 T cells, mast cells and basophils) regulates the production of some cytokines such as IL-1, 

255 TNF- and IL-6, and elevated IL-4 levels at sites with periodontitis thus indicate a role for 

256 this cytokine and Th2 responses in periodontal lesions (Gemmell et al., 1997).

257

258 5. Conclusions

259 In the present study, it was observed that bovine periodontitis is associated with an 

260 increase in the expression of several cytokines and TLRs. In other species, recognition of 

261 bacteria by TLRs in periodontal tissues initiates a potentially destructive inflammatory 

262 response which facilitates progression of periodontal disease. The results of this study 

263 suggest a similar pathogenesis in cattle.

264 An understanding of how oral pathogens interact with host immune responses may 

265 provide relevant information on the host-microorganism relationship in periodontitis and 

266 assist in the development of preventative and intervention therapies that block the subversive 

267 mechanisms of periodontal bacteria in the immune response, thus contributing to the 

268 treatment and control of the disease.
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399 Figure legend

400

401 Fig. 1. Box and whisker plots showing gingival tissue levels of (A) TLR2 mRNA, (B) TLR4 

402 mRNA, (C) IL-1β mRNA, (D) TNF-α mRNA, (E) IFN-γ mRNA and (F) IL-4 mRNA from 

403 the healthy oral cavity (H; n=20) and periodontitis-affected mouths (P; n=20) of cattle. 

404 Exceptions for TNF-α (H, n=19 and P, n=19), IL-1β (H, n=17 and P, n=19) and TLR2 (H, 

405 n=14 and P, n=16). Determinations were rejected because more than one product and/or 

406 primer dimers were detected.  Outliers are indicated by black dots. 

407 3.HK, three housekeeping genes.

408 *Significant difference between P and H, p < 0.05. 

409 **Significant difference between P and H, p < 0.01.   
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Table 1. Primers used for real-time PCR amplification of bovine TLR and cytokine genes.

Gene Sequence 5'-3'

Forward GGCCATGATTAAGAGGGGCG
18S rRNA

Reverse CGTCTTCGAACCTCCGACTT

Forward CTAGGCACCAGGGCGTAATG
β-actin

Reverse CCGTGCTCAATGGGGTACTT

Forward CAGGTTGTCTCCTGCGACTT
GAPDH

Reverse GGTCCAGGGACCTTACTCCT

Forward GCAAAATTCTGCTGCGTTGG
TLR2

Reverse CCATGCTGTCCACAAAGCAC

Forward TGCCTGAGAACCGAGAGTTG
TLR4

Reverse GGCTGCCTAAATGTCTCAGGT

Forward TGCCTTGGCTCAGATGTGTT
TNF-α

Reverse GAGCGGAGGTTCAGTGATGT

Forward TCTTCGAAACGTCCTCCGAC
 IL-1β 

Reverse AGCCAGCACCAGGGATTTTT

Forward AGATCCAGCGCAAAGCCATA 
IFN-γ

Reverse GGCAGGAGGACCATTACGTT

Forward AATTCCTGGGCGGACTTGAC
IL-4

Reverse CAGCGTACTTGTGCTCGTCT






