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Bernstein modes in a weakly relativistic electron-positron plasma

D A Keston, E W Laing, and D A Diver
Dept of Physics and Astronomy, Kelvin Building,

University of Glasgow, Glasgow G12 8QQ, Scotland UK.∗

(Dated: March 30, 2004)

The form of the propagating electrostatic Bernstein mode in a relativistic electron-positron plasma
is markedly different from that in the classical plasma, once the momentum-dependent cyclotron
frequency is accounted for in full inside the integrations. Given that particles in different parts of
momentum space ‘see’ a different cyclotron frequency, there is no simple global singularity which
reproduces the classical dispersion features.
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I. INTRODUCTION

Astrophysical electron-positron plasmas are, by their
nature, highly energetic. The mathematical modelling of
such media must be relativistic, since the thermal con-
tent of such a plasma will be significant compared to the
particles’ rest energy[1, 2]. In this paper we describe
the kinetic theory of weakly relativistic plasmas, defined
to be those for which the equilibrium distribution func-
tion is taken to be Maxwellian, but the full relativistic
correction for the mass-dependent cyclotron frequency is
included.

We present new dispersion curves for the particular
case of Bernstein modes [3–5], which are electrostatic
waves propagating perpendicularly, and nearly perpen-
dicularly, to the uniform equilibrium magnetic field. In
this article we will concentrate on the specific case of
perpendicular propagation. The classical treatment of
these modes for an electron-ion plasma depends upon
an arbitrarily low temperature, and yet is not entirely
consistent with cold plasma theory [6–8]. Part of the dis-
crepancy undoubtedly can be attributed to the handling
of singularities in the classical kinetic case, in which the
harmonic resonances are removed from the integration
over particle distribution. In fact, the correct method
of treating these points is to recognise that the cyclotron
frequency is momentum dependent (that is, the cyclotron
frequency drops as the particle momentum increases),
and treat the singular integral accordingly. Other re-
searchers have produced purely formal solutions [2] for
an arbitrary relativistic γ but without any phenomeno-
logical analysis, or have tackled either ultra-relativistic
plasmas [9, 10] or weakly relativistic behaviour in which
γ ≈ 1 + p2/(2m2c2)[6–9]; most of these treatments are
for electron-ion plasmas, and assume a stationary ion
background. In this article we present a treatment of
the Bernstein modes for a weakly relativistic electron-
positron plasma, valid for moderate values of γ, and with-
out the ‘stationary ion’ approximation. The next section
gives the full formal statement of the dispersion relation
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for all linear Vlasov-kinetic modes in an e+e− plasma.
Section III describes the non-relativistic Bernstein modes
in this context, to provide an essential comparison for the
weakly relativistic case in the subsequent section.

II. MODEL EQUATIONS

The starting point is the Vlasov equation formulated
in momentum space, rather than velocity space [9]:

∂fs

∂t
+ v · ∂fs

∂r
+ qs(E + v × B) · ∂fs

∂p
= 0 (1)

where fs(r,p, t) and qs are respectively the particle dis-
tribution function and charge, for particles of species s,
where s is either e for electrons, or p for positrons. To-
gether with Maxwell’s equations

∇× B = µ0

∑
s

ns

∫
qsvfsdp +

1
c2

∂E

∂t
(2)

∇× E =
∂B

∂t
(3)

∇ · B = 0 (4)

∇ · E =
∑

s

qs

ε0
ns

∫
fsdp (5)

Eqs. (1)-(5) constitute a complete set for describing the
plasma behaviour (although Eq. (4) and Eq. (5) can be
considered as initial conditions only). Note that ns is the
number density of species s.

Consider now the linearised equations appropriate for
describing small amplitude waves. Assuming that the
equilibrium quantities are distinguished from perturba-
tions by a subscript 0, we have

(p × B0) · ∂f0s

∂p
= 0 (6)

∂fs

∂t
+ v · ∂fs

∂r
+ q(v × B0) · ∂fs

∂p

= −q(E + v × B) · ∂f0s

∂p
(7)
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∇× B = µ0

∑
s

qs

ms
ns

∫
pfsdp +

1
c2

∂E

∂t
(8)

Our interest lies in small-amplitude waves, and so we
assume that the equilibrium is uniform in space, and
that perturbations vary as exp i(k · r − ωt). The full
details of the solution procedure are well documented
elsewhere[5, 11, 12] and need not be repeated. After some
manipulation the dispersion relation for small amplitude
waves can be written in the form

k × (k × E) +
ω2

c2
E =

−2π

c2

∑
s

ω2
ps

∞∫
0

∞∫
−∞

dp⊥dp‖
∞∑

n=−∞
Qns · E (9)

in which cylindrical co-ordinates (p‖, p⊥, φ) for the mo-
mentum have been used, with ‖, ⊥ denoting the direction
parallel, and perpendicular, to the equilibrium magnetic
field, and where ωps = nsq

2
s/(ε0ms) denotes the plasma

frequency of species s with (rest) mass ms. Note that the
summation is over integer n, and that we have assumed
that the equilibrium distribution function fs0 is isotropic,
so that p‖∂fs0/∂p⊥ = p⊥∂fs0/∂p‖. The matrix Qns is
defined by

Qns = Us(ω − k‖v‖ − nΩs)−1 ×


p2
⊥

n2

ζ2
s

J2
n −ip2

⊥
n

ζs
JnJ ′

n p⊥p‖
n

ζs
J2

n

ip2
⊥

n

ζs
JnJ ′

n p2
⊥J ′

n
2 ip⊥p‖J ′

nJn

p⊥p‖
n

ζs
J2

n −ip‖p⊥J ′
nJn p2

‖J
2
n



(10)

in which Ωs = qsB0/ms is the cyclotron frequency of
species s, ms is the particle mass, Jn is the Bessel func-
tion of order n and argument ζs, and the following defi-
nitions apply:

Us = (ω − k‖v‖)
∂f0s

∂p⊥
+ k‖v⊥

∂f0s

∂p‖
(11)

ζs =
k⊥v⊥
Ωs

(12)

There are several simplifications that can be applied im-
mediately. Since we wish to study perpendicular Bern-
stein modes primarily, k‖ = 0. Next, noting that ζe =
−ζp, the sum over species can be carried out quite simply
given that all the elements of Qns are identical in magni-
tude for an electron-positron plasma, with only the (1,3),
(2,3), (3,1) and (3,2) elements changing sign. Hence when
the positron and electron matrices are added, the result
is

Qnp + Qne = 2
ω2

∆n

∂f0

∂p⊥
×




p2
⊥

n2

ζ2
J2

n −ip2
⊥

n

ζ
JnJ ′

n p⊥p‖
n2

ζ

Ω
ω

J2
n

ip2
⊥

n

ζ
JnJ ′

n p2
⊥J ′

n
2 ip⊥p‖

nΩ
ω

J ′
nJn

p⊥p‖
n2

ζ

Ω
ω

J2
n −ip⊥p‖

nΩ
ω

J ′
nJn p2

‖J
2
n


 (13)

in which ∆n = ω2−n2Ω2 = ω2−n2Ω2
0/γ2 and all species-

related subscripts have been dropped, the positron value
of any quantity being assumed. A further simplifica-
tion results from considering the summing over integer
n, since those matrix elements which contain only a lin-
ear factor n must vanish, given that n ranges over all
positive and negative integer values. Finally, note that
since the integration in p‖ ranges from −∞ to ∞, those
elements which are odd in p‖ vanish identically on inte-

gration, and therefore may be discarded. As a result, the
right-hand side of Eq. (9) can be written

−4πω2
p

ω2

c2

∞∑
n=−∞

∞∫
−∞

dp‖

∞∫
0

dp⊥Kn · E (14)
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where

Kn =
1

∆n

∂f0

∂p⊥




p2
⊥

n2

ζ2
J2

n 0 0

0 p2
⊥J ′

n
2 0

0 0 p2
‖J

2
n


 (15)

Note that the left-hand-side of Eq. (9) simplifies to


ω2

c2
0 0

0
ω2

c2
− k2

⊥ 0

0 0
ω2

c2
− k2

⊥


 · E (16)

showing that for the particular case of wave propaga-
tion perpendicular to the equilibrium magnetic field in
an equal-mass plasma, the kinetic modes simplify beau-
tifully. Since this article is concerned with Bernstein
modes, only the solution for non-zero Ex will be exam-
ined, for which the dispersion relation is

1 = −4πω2
p

∞∑
n=−∞

∞∫
−∞

dp‖

∞∫
0

dp⊥
∂f0

∂p⊥
p2
⊥n2

∆nζ2
J2

n(ζ) (17)

However, in order to progress, the equilibrium distribu-
tion function f0 must be specified, and this is the subject
of the next sections.

III. CLASSICAL, NON-RELATIVISTIC
BERNSTEIN MODES

In the usual, classical treatment of electron Bernstein
modes for a plasma with stationary ions, the relativis-
tic terms are discarded, and the equilibrium distribution
function is the classical Maxwell-Boltzmann one,

f0(p) = (2πmekBT )−3/2 exp
[−p2/(2mekBT )

]
(18)

which is written here in momentum form, and in which
me is the electron (and positron) rest mass. It is in-
structive to proceed with the fully non-relativistic cal-
culation for an electron-positron plasma, since this cal-
culation will serve as a vital contrast to the relativistic
treatment that follows. The most important aspect of the
non-relativistic calculation is that the particle mass re-
mains a constant, and therefore the cyclotron frequency
is not momentum-dependent. Considering the (1,1)th
entry of the matrices in Eq. (16) and Eq. (15), the dis-
persion relation for Bernstein waves can be written

1 = 4π(2π)−3/2(mekBT )−5/2ω2
p ×

∞∑
n=−∞

n2

∆n

∞∫
−∞

dp‖

∞∫
0

dp⊥
p3
⊥

ζ2
J2

n(ζ) (19)

Notice that ∆n can be taken outside the integration,
since there is no relativistic correction to the cyclotron
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FIG. 1: Dispersion curves showing solutions in ω̂ − Λ space
for the classical, non-relativistic case, where ω̂ = ω/Ω. The
vertical axis is ω̂, and the horizontal, Λ. The non-dimensional
hybrid frequency is

√
3, for ω̂2

p = ω2
p/Ω2 = 1, and is shown

arrowed in the figure.

frequency. In fact, the double integration can be per-
formed analytically, since the integrations with respect
to p‖ and p⊥ are independent. The result is the form of
the dispersion relation

Λ = 4ω2
p exp(−Λ)

∞∑
n=1

n2

ω2 − n2Ω2
In(Λ) (20)

where Λ, the ratio of thermal energy to wave energy, is
given by

Λ =
k2
⊥kBT

meΩ2
(21)

Eq. (20) is exact for an electron-positron plasma; there
is no ‘static ion’ approximation here. Solutions occur at
frequencies close to the cyclotron harmonics, and the full
curves are presented in Figs. 1 and 2, which show the
cases ωp/Ω = 1 and ωp/Ω = 3 respectively. Note that
Eq. (20) also gives the approximate dispersion relation
for an electron plasma with stationary ions, if the factor
4 is replaced by 2.

A. Behaviour for small Λ

A deeper insight into the characteristics of the dis-
persion relation can be gleaned from the the Taylor ex-
pansion of Eq. (20) for small Λ, which gives the long-
wavelength (or low temperature) approximate dispersion
relation

Λ ≈ ∆H∆2

6Ω2ω2
p

, Λ � 1 (22)

in which

∆H = ω2 − ω2
H = ω2 − 2ω2

p − Ω2 (23)
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FIG. 2: Dispersion curves showing solutions in ω̂ − Λ space
for the classical, non-relativistic case, where ω̂ = ω/Ω. The
vertical axis is ω̂, the horizontal, Λ. The non-dimensional
hybrid frequency is

√
19, for ω̂p = ωp/Ω = 3, and is shown

arrowed in the figure.

defining the hybrid frequency ωH . First, note there is no
solution for ω = Ω, Λ � 1, since for this case Eq. (22)
predicts Λ ≈ 1, a contradiction. If ω2 = ω2

H + ε, then

Λ ≈ 2ω2
p − 3Ω2

6ω2
pΩ2

ε (24)

If 2ω2
p < 3Ω2, so that ωH < 2Ω, then Eq. (24) shows

that ε < 0 is required to ensure Λ > 0; hence the dis-
persion curve shows ω dropping as Λ increases from 0.
The next possible solution is one for which ω2 = 4Ω2 + ε,
giving the local dispersion relation

Λ ≈ 3Ω2 − 2ω2
p

6ω2
pΩ2

ε (25)

In this case, assuming again ωH < 2Ω, the dispersion
curve shows that ω increases as Λ increases. Hence, for
ωH < 2Ω, there is no wave solution for frequencies be-
tween ωH and 2Ω.

If, on the other hand, 2ω2
p > 3Ω2, so that ωH > 2Ω, the

dispersion curve at ω = 2Ω shows ω decreasing as Λ in-
creases from zero. In general, there is no long-wavelength
mode in the approximate frequency interval starting just
above ωH and ending before the next highest cylcotron
harmonic.

B. Behaviour for large Λ

For very short wavelength solutions, given that

exp(−Λ)In(Λ) ∼ (2πΛ)−1/2
, Λ � 1 (26)

then an approximate dispersion relation

Λ3/2 ≈ 4ω2
p√

2π

∞∑
n=1

n2

ω2 − n2Ω2
, Λ � 1 (27)

shows that short wavelength solutions can only occur at
frequencies close to cyclotron harmonics: ω ≈ nΩ.

C. Stationary modes

Solutions to the dispersion relation for frequencies
higher than the hybrid frequency have the property that
the group velocity has a zero for finite values of Λ, since
the dispersion curves are bell-shaped[5]. From the curves
in Figs. 1 and 2, the maxima in the dispersion curve oc-
cur at intermediate values of Λ, and so neither of the two
approximate treatments described above is adequate to
reveal this effect. Instead, if

fn(Λ) =
e−Λ

Λ
In(Λ) (28)

then the full dispersion relation can be written in the
form

1 = 4ω2
p

[
f1(Λ)

ω2 − Ω2
+

4f2(Λ)
ω2 − 4Ω2

+ . . .

]
(29)

For illustrative purposes, we shall consider only the first
2 terms, with the assumption Ω < ωH < 2Ω, as before.
An excellent approximation to fn(x) is

fn(x) ≈ 2−nxn−1

(
1
n!

+
x2

4(n + 1)!

)
e−x (30)

For solutions near the second harmonic, that is ω2 =
4Ω2 + ε, ε > 0 the position where the tangent to the
disperion curve is zero is readily approximated by the
solution to

f ′
2(Λ) ≈ 0 (31)

which, on using Eq. (30), yields the cubic equation

Λ3 − 3Λ2 + 12Λ − 12 = 0 (32)

the roots of which are the values of Λ for which the tan-
gent vanishes. In fact Eq. (32) has only one real positive
root, at Λ0 ≈ 1.22, in close agreement with Figs. 1 and
2. A more detailed asymptotic analysis[5] places these
critical points at Λ = 1.25, 3.05, 5.44 and 8.46 for fre-
quencies near ω̂ = 2, 3, 4, and 5, respectively. Given
that Λ ≈ k2

⊥R2
L/3, where RL is the Larmor radius these

critical values correspond to k⊥RL ≈ n, n = 2, 3, 4 re-
vealing a resonance between the wavelength of the Bern-
stein mode and the influence of the magnetic field via the
Larmor radius.

Hence all solutions for frequencies higher than the hy-
brid frequency have bell-shaped dispersion curves, show-
ing that for a given frequency, there are either two so-
lutions, corresponding to different values of k⊥, or no
solution at all, if the frequency is sufficiently far from a
cyclotron harmonic to be in the band-gap. Note also that
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there is always one (ω, k⊥) pair for which the group veloc-
ity is zero, and is therefore a non-propagating wave. How-
ever, for all frequencies less than the hybrid frequency,
there is always a unique value of k⊥ giving an electro-
static wave (allowing for infinite Λ values); none of these
solutions has zero group velocity.

D. Summary

The analysis in this section shows how the classical,
non-relativistic Bernstein modes can be described wholly
analytically, with general dispersion relations expressible
in closed form. This is only possible because the integra-
tions can be performed independently, since the poles in
the denominator are not functions of momentum.

IV. WEAKLY RELATIVISTIC
APPROXIMATION

In the relativistic case, the cyclotron frequency is a
function of momentum, and the integrations over p‖ and
p⊥ are not independent, as can be seen from the true
form of the relativistic equilibrium function[2, 9, 13]:

f0(p) =
(
4πm3

ec
3
)−1 a

K2(a)
exp (−aγ) (33)

where

a =
mec

2

kBT
(34)

is the non-dimensional reciprocal relativistic tempera-
ture, K2 is the modified Bessel function of the second
kind, of order 2, and

γ =

[
1 +

p2
⊥ + p2

‖
m2

ec
2

]1/2

(35)

is the usual relativistic Lorentz factor. It is clear that on
substituting Eq. (33) into Eq. (17) there is no possibility
of separating the integrand into independent parts, nor
of extracting ∆n from any part of the integration. As a
physically meaningful compromise, we define the weakly
relativistic approximation to be one in which the equilib-
rium distribution function for positrons and electrons is

the classical Maxwellian given by Eq. (18), but in which
the Lorentz factor γ is retained in full in the ∆n term
in the denominator of Eq. (14). This simplifies the in-
tegration over momentum-space, without sacrificing the
significant relativistic Doppler correction to the singular-
ity. Note that γ will not be expanded binomially as in
other articles [6, 8].

To simplify the algebra, the following non-dimensional
variables are adopted from now on:

ω̂ = ω/Ω0 ω̂p = ωp/Ω0

p̂‖ = p‖/(mec) p̂⊥ = p⊥/(mec)
k̂⊥ = k⊥c/Ω0 ζ = k̂⊥p̂⊥

(36)

where Ω0 = eB0/me is the rest cyclotron frequency, a
constant. The full dispersion relation for weakly rela-
tivistic Bernstein modes can then be written in the form

ω̂2 =
4ω̂2

p√
2πk̂2

⊥
a5/2

∞∑
n=1

∞∫
0

dp̂⊥

∞∫
−∞

dp̂‖
n2γ2p̂⊥

γ2 − n2/ω̂2
×

J2
n(k̂⊥p̂⊥) exp

[
− 1

2a
(
p̂2
⊥ + p̂2

‖
)]

(37)

Noting that

γ2

γ2 − n2/ω̂2
= 1 +

n2

ω̂2

(
1

γ2 − n2/ω̂2

)
(38)

the integrand in Eq. (37) can be split into two parts, one
of which has singularity. The first double integral can be
performed wholly analytically to yield

∞∫
0

∞∫
−∞

dp̂⊥dp̂‖p̂⊥J2
n(k̂⊥p̂⊥) exp

(− 1
2ap̂2

)
=

√
(2π)a−3/2e−ΛIn(Λ) (39)

where p̂2 = p̂2
⊥+p̂2

‖. Moreover, the summation over index
n applied to Eq. (39) can be performed analytically, via

∞∑
n=1

n2In(Λ) = 1
2ΛeΛ (40)

allowing the full dispersion relation to be written in the
form

ω̂2 = 2ω̂2
p +

4ω̂2
pa5/2

√
2πω̂2k̂2

⊥

∞∑
n=1

n4

∞∫
0

dp̂⊥p̂⊥J2
n(k̂⊥p̂⊥)e−ap̂2

⊥/2 ×
∞∫

−∞
dp̂‖

e−ap̂2
‖/2

1 + p̂2
‖ + p̂2

⊥ − n2/ω̂2
(41)

The denominator in the second integral in Eq. (41) has the factor γ2 − n2/ω̂2, which can lead to singularities in
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the p̂‖ integral if n2/ω̂2 > 1, since γ ≥ 1. Such singular
integrals, where they occur, are properly defined by the
procedure discussed below, and in the Appendix.

In particular, defining

b2
n = n2/ω̂2 − 1 (42)

there are two clear cases that can be identified for ω̂ < n,
that is, b2

n > 0:

1. b2
n > p̂2

⊥

2. b2
n < p̂2

⊥

The singularities on the real line in the p̂‖ integration
arise for small enough p̂⊥, and so can be negotiated by
splitting the range of the p̂⊥ integration into 2 parts, cor-
responding to cases (1) and (2): (1) 0 to bn, and (2) bn

to ∞. Only the first of these integration ranges incurs
singularities on the real k̂‖ line. In case (2), the denom-
inator does not have zeros on the real k̂‖ line, and so
no singularity arises in the p̂‖ integration. Finally, note
that if b2

n < 0, then there are no zeros in the denomina-
tor, and the p̂‖ integration is again well defined; this will
be referred to as case (3).

Returning to the full dispersion relation Eq. (41) we
can state that for cases (1) and (2), the double integration
term can be written in the form

bn∫
0

dβ βJ2
n

(
k̂⊥

√
b2
n − β2

)
e−

1
2 (b2n−β2)I1(a, β)

+

∞∫
0

dδ δJ2
n

(
k̂⊥

√
δ2 + b2

n

)
e−

1
2 (b2n+δ2)I2(a, δ) (43)

where the p̂⊥ integration has been transformed using the
changes of variable p̂2

⊥ = b2
n−β2 in the first integral, and

p̂2
⊥ = b2

n + δ2 in the second. The p̂‖ integration is folded
inside the integrals I1,2, with the following definitions.
Taking case (1) first,

I1(a, b) =

∞∫
−∞

dz
exp(−az2/2)

z2 − b2

= i
π

b
e−ab2/2erf

(
i
√

ab2/2
)

(44)

The integrand contains simple poles at ±b, and the de-
tails of the requisite integration contour and subsequent

evaluation of the integral are deferred to the Appendix,
rather than quoted here. The second integral I2 is de-
fined by

I2(a, b) =

∞∫
−∞

dz
exp(−az2/2)

z2 + b2

=
π

b
eab2/2erfc

(√
ab2/2

)
(45)

where once again the full details of the evaluation of this
integral are deferred to the Appendix.

With Eq. (44) and Eq. (45) substituted into Eq. (43),
and with a final change of variable that simplifies the
error function argument, the full dispersion relation
Eq. (41) can be written in the form

ω̂2 − 2ω̂2
p = D

∞∑
n=1

n4 ×



AI
n + AII

n n ≥ ω̂

AIII
n n < ω̂

(46)

where

AI
n = e−x2

n

xn∫
0

J2
n

(
κ
√

x2
n − x2

)
ierf(ix)dx (47)

AII
n = e−x2

n

∞∫
0

J2
n

(
κ
√

x2
n + x2

)
erfc(x)dx (48)

and

AIII
n = e−x2

n

∞∫
|xn|

J2
n

(
κ
√

x2
n + x2

)
erfc(x)dx (49)

Note that ierf(ix) is real. The following notation has also
been used:

D = 4π1/2
ω̂2

p

ω̂2

a2

k̂2
⊥

(50)

x2
n =

a

2

(
n2

ω̂2
− 1

)
(51)

κ =
√

2/ak̂⊥ (52)

Note that in AIII
n , x2

n < 0 since ω̂ > n. Hence for a given
ω̂ such that m − 1 < ω̂ ≤ m for some integer m ≥ 1, the
dispersion relation is

ω̂2 − 2ω̂2
p = D

{
m4AI

m + m4AII
m + (m + 1)4AI

m+1 + (m + 1)4AII
m+1 + . . .

+(m − 1)4AIII
m−1 + (m − 2)4AIII

m−2 + . . . + AIII
1

}
(53)
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FIG. 3: Dispersion curves showing solutions in ω̂-κ space for
the case a = 10, ω̂p = 3. Vertical axis is ω̂; horizontal axis is
κ.
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FIG. 4: Dispersion curves showing solutions in ω̂-κ space for
the case a = 20, ω̂p = 3. Vertical axis is ω̂; horizontal axis is
κ.

A. General remarks

The solutions to the dispersion relation are given in
Figs. 3, 4 and 5, for the cases a = 10, 20 and 50 respec-
tively. In each calculation, Bessel function terms up to
6th order were included. The computer algebra system
Macsyma[14] was used for all analytical and numerical
manipulations. It is clear from these curves for the var-
ious values of a that the weakly relativistic case is sig-
nificantly different from the classical case. Not only are
the classical single lines replaced by closed curves, there
is only one solution for vanishingly-small k̂⊥. Associ-
ated with each set of dispersion curves is a minimum,
non-zero value of κ, the latter increasing with increas-
ing frequency. Moreover, there is also a maximum value
of κ for those solutions which form closed curves; once

6

5

4

3

2

1
0 2 4 6 8 10 12 14

ω

κ

^

FIG. 5: Dispersion curves showing solutions in ω̂-κ space for
the case a = 50, ω̂p = 3. Vertical axis is ω̂; horizontal axis is
κ.

more, the higher the frequency, the greater the maximum
valid κ. Notice also that solutions occur between the cy-
clotron harmonics. Earlier weakly relativistic modelling
of electron-ion Bernstein modes revealed certain of these
features[6, 8], including frequency down-shifting, finite
minimum k⊥ values and even the hint of island-type for-
mations [8], albeit with complex wavenumbers.

However, not only are these treatments for electron-
ion plasmas, and so unable to exploit the symmetry of
the e+e− plasma, but they are also dependent on the
binomial expansion of the relativistic γ, or on expansion
in powers of k‖, and so are of restricted validity.

In our article, the plasma is mass-symmetric, and the
singularities appear in the full momentum integration.
As a result, there are no complex roots to the dispersion
relation for the specific case of perpendicular propaga-
tion. The treatment of residues given in the Appendix
makes this clear.

The general appearance of the dispersion curves in this
article reflects the fact that the surface which intersects
the zero plane (that is, the plane in ω̂ − k̂ space where
Eq. (41) is satisfied) to give the dispersion relations is not
a singular one, as in the classical case; rather than the
infinitely-thin slices produced by a singular surface pierc-
ing the zero-plane as it passes from −∞ to +∞, the dis-
persion curves are the zero contours of a well-behaved un-
dulating surface. The singularities have been integrated
out of the final form of the dispersion relation, resulting
in the island shapes shown in Figs. 3, 4 and 5; note that
the contouring algorithm is not flawless, and so there are
minor imperfections present in the graphics.

Note also that as a increases, the ‘islands’ elongate
and drift upwards in frequency. The elongation admits
smaller κ solutions as each island stretches towards the
frequency-axis intercept with κ = 0, indicative of a closer
agreement with the traditional classical case.

The next two sections address quantitatively the



8

salient features of the dispersion curves.

B. Properties of the integrals

Note that AI
n is negative definite, whilst AII

n and AIII
n

are positive definite. Given the strong dependence on
index in the terms in the infinite sum, as is clearest in
Eq. (53), any valid solution to the dispersion relation
depends ultimately on balancing the positive and nega-
tive contributions from the AI,II,III

n , so that the resulting
ω̂2 > 0. The strongest dependence on xn is exhibited in
AI

n and AIII
n , since in these integrals xn appears in the

limits, and not just in the Bessel function arguments.
Consider the mean value theorem applied to AI

n:

AI
n = J2

n(κ
√

x2
n − ξ2)EI(xn) (54)

where ξ ∈ [0, xn], and where the envelope EI(xn) is de-
fined to be

EI(x) = e−x2

x∫
0

ierf(iu)du (55)

= xe−x2
ierf(ix) + π−1/2(1 − e−x2

) (56)

(In fact, EI is proportional to the Dawson function[15],
and the entire analysis could be recast in Dawson func-
tion terms, rather than error function of imaginary ar-
gument.) Applying the same technique to the remaining
integrals yields

AII
n = J2

n(κ
√

x2
n + η2)EII(xn)

EII(x) = π−1/2 (57)

and

AIII
n = J2

n(κ
√

x2
n + ζ2)EIII(|xn|)

EIII(x) = π−1/2 − xex2
erfc(x) (58)

for some η ≥ 0, ζ ≥ |xn| such that 0 ≤ J2
n(κ

√
x2

n − η2) ≤
µ, where µ is the maximum of J2

n(x) for x ∈ [0,∞), and
0 ≤ J2

n(κ
√

x2
n − η2) ≤ µ′, where µ′ is the maximum of

J2
n(x) for x ∈ [|xn|,∞). The envelopes EI,III are shown in

Fig. 6, where it is clear that EI(x) has an extremum at
xc ≈ 1.16, but that EIII(x) is monotonically decreasing.

C. Position and shape of dispersion curves

Since it is important to balance the relative weights
of the integrals, consider the implications of maximising
the negative-definite contribution. For this to happen,
xn must be at its critical value at which EI has greatest
magnitude. In order to simplify the analysis, let this

0.5

0.25

0.0

-0.25

Y

0.0 1.00 2.00
X

3.00

FIG. 6: Dashed curve shows EIII as a function of x; solid one
is EI.

correspond to xn ≈ 1, with the frequency ω̂c at which
this occurs given by

ω̂c = n (1 + 2/a)−1/2 ≈ n(1 − 1/a) (59)

Hence we expect solutions to the dispersion relation to
be at frequencies below the classical cyclotron harmonic.
Note that as a → ∞, ω̂ → n, consistent with the classical
case.

Since erfc(x) ≈ 0 for x � 4, the range of the summa-
tions in Eq. (53) is limited, in practical terms. Thus in
the simplest possible ‘nearest neighbour’ approximation,
forming a balance of the negative and positive contribu-
tions means that AI

n has to be comparable in magnitude
to AIII

n−1. If xn ≈ 1, then xn−1 ≈ 1 − a/n < 0, assuming
n < a. Consider only the envelope behaviour near the
critical frequency, that is, consider ω̂ = ω̂c(1 + δ), where
|δ| � 1. Regardless of the sign of δ, if δ �= 0, EI falls
below its maximum magnitude (being at an extremum).
However, if δ > 0, then EIII also drops, but if δ < 0,
EIII rises. Hence there is a finite range of ω over which
the integrals AI

n and AIII
n−1 can maintain overall parity in

contributions.
The envelope analysis must be complemented by as-

sessing the Bessel function contribution, which of course
contains the κ variation. For AI

n, the argument to the
Bessel function is

κ
(
x2

n − ξ2
)1/2

, 0 ≤ ξ ≤ xn (60)

and for AIII
n , the Bessel argument is

κ
(
x2

n + ζ2
)1/2

, |xn| ≤ ζ (61)

The position of the first zero zn of Jn(z), n = 1, 2, . . . ,
increases with increasing order of the Bessel function,
scaling approximately according to zn ≈ 2.83 + n, with
z1 ≈ 3.83. Thus the full phase of the first peak of the
Bessel function is sampled over a range of κ ≈ zn/xn for
each n. This explains qualitatively why the dispersion
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curves form closed structures of increasing length as the
harmonic number increases.

The Bessel function behaviour also controls the rela-
tive magnitudes of AI

n and AIII
n . Using small-argument

expansions for the Bessel functions,∣∣∣∣ AI
n

AIII
n−1

∣∣∣∣ ∼

1
4

κ2

n2

(x2
n − ξ2)n

(x2
n−1 + ζ2)n−1

∣∣∣∣ EI(xn)
EIII(xn−1)

∣∣∣∣ (62)

Given that the optimum frequency is ω̂c for which the
envelope of AI

n is as large as it can be, Eq. (62) further
constrains the dispersion curves to begin at larger values
of κ as n increases, in order that the factor κ/n does not
erode the relative scaling necessary to maintain real solu-
tions to the dispersion relation. This agrees well with the
behaviour shown in Figs. 3, 4 and 5 in which the gradi-
ent of the line touching the left-hand edges of the islands
in each of the cases a = 10, 20 and 50 is approximately
1, 1.4 and 2.3, consistent with the predicted behaviour
∼ a1/2.

D. Behaviour for small k̂⊥

In the limit of small k̂⊥, which is also the small κ limit,
the Bessel function argument can be expanded in order
to find solutions that are the analogues of those in Sec-
tion IIIA. Since D contains k̂2

⊥ in the denominator, the
zeroth-order contribution must come from the case n = 1,
with higher n contributing to vanishingly small terms as
k̂⊥ → 0. The hybrid resonance must come from AIII

1 , and
so we have

AIII
1 ≈ e−x2

1

∞∫
|x1|

1
4κ2(x2 + x2

1)erfc(x)dx

=
κ2

12
e−x2

1

[
1 + 2x2

1√
π

e−|x1|2 − 2|x1|x2
1erfc(|x1|)

]
(63)

The dispersion relation can then be approximated as

ω̂2 ≈ 2ω̂2
p + 2

3a
√

π
ω̂2

p

ω̂2
×[

π−1/2(1 + 2x2
1) − 2|x1|x2

1e
−x2

1erfc(|x1|)
]
(64)

The asymptotic expansion[15]

erfc(z) ∼ e−z2

√
πz

(
1 − 1

2z2
+

3
4z4

. . .

)
(65)

when substituted into Eq. (64) yields

ω̂2 − 2ω̂2
p ≈ 2ω̂2

p

ω̂2 − 1
(66)

which on rearrangement yields the expected hybrid res-
onance as the non-trivial solution:

ω̂2 ≈ 1 + 2ω̂2
p (67)

Notice that when the same approximations are made in
the context of ω̂ ≤ 1 we have

AI
1 + AII

1 ≈ κ2

12

[
2x3

1e
−x2

1ierf(ix1) + π−1/2(2x2
1 + 1)

]
(68)

The required asymptotic expansion is now for erf(ix).
This is readily obtained via the hypergeometric
function[15]

erf(z) =
2z√
π

M( 1
2 , 3

2 ,−z2) (69)

using which yields

erf(ix) ∼ i
ex2

√
πx

(
1 +

1
2x2

+
3

4x4
· · ·

)
(70)

and so in the asymptotic limit,

ω̂2 − 2ω̂2
p ≈ − ω̂2

p

ω̂2

a

x2
1

(71)

which is the same as Eq.(66). The only possible solution
is the trivial one, ω̂ = 0.

Note that the special case of x1 = 0 is not a solution,
since ω̂ = 1 is not a solution. In general, xn = 0 means
that AI

n = 0, and AII
n is identical to AIII

n .
In summary, there is only one solution to the disper-

sion relation for the case k̂⊥ → 0, namely the mode which
becomes the hybrid resonance at κ = 0. This contrasts
markedly with the classical treatment, in which all the
cyclotron frequencies were solutions (save the one imme-
diately below the hybrid, and the fundamental). Note
also that for each value of κ, there are twice as many
frequencies corresponding to solutions of the dispersion
relation than there are in the classical case, reflecting
the continuity of the general surface (of which the zero
contour yields the dispersion curves), and therefore the
undulations above and below the zero plane will yield
two intersections, rather than one. Note also that the
band-gaps which appear above the hybrid in the classi-
cal case persist everywhere in the weakly relativistic one.
No single mode has an arbitrarily large range of κ for a
given small frequency range, as in the classical case.

E. Trapped modes

It is clear from the weakly relativistic dispersion curves
that there are a number of modes with vanishing group
velocity, that is, for which the tangent to the normalised
ω-k⊥ curve is zero. Although the classical case also
had many such modes above the hybrid frequency, The
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weakly relativistic case has two solutions between each
cyclotron harmonic, for those dispersion solutions that
form closed curves. Moreover, such stationary modes
are present at frequencies below the hybrid. Hence a
non-localised, broad-band disturbance of such a plasma
would yield many propagating electrostatic waves, and
several non-propagating stationary electrostatic oscilla-
tions. Given that plasma oscillations can be a source of
electromagnetic radiation in pair-plasmas[16, 17] it is sig-
nificant that the spectrum of possible electrostatic modes
is more richly structured in the relativistic case than the
classical one.

V. DISCUSSION

In this paper we have addressed the kinetic theory of
weakly relativistic electron-positron plasmas, producing
dispersion relations for the electrostatic Bernstein modes.
The treatment presented here preserves the full momen-
tum dependence of the cyclotron frequency, albeit with
a relaxation on the true relativistic form of the distri-
bution function. The form of the dispersion curves is
markedly different from that of the well-known classical
singular dispersion relations, in that the ω-k⊥ relations
form closed, island domains, between the cyclotron har-
monics, and show band-gaps distributed throughout the
solution space, rather than confined to frequencies just
above the hybrid. Moreover, there are extra limitations
on allowed modes for long and short wavelengths, and
within these limitations, there are greater numbers of al-
lowed ω-k⊥ modes than in the classical case. Some of
this new structure arises from the mass symmetry, but
most derives from careful handling of the integrations in
momentum space.

The implications of this new treatment are con-
fined largely to astrophysical plasmas, where relativistic
electron-positron plasmas occur naturally. It is very un-
likely that the results presented here impact on any lab-
oratory based electron-ion plasma, in which the relative
mobility of the species is paramount.

For example, in a pulsar atmosphere, the spectrum of
propagating electrostatic waves is more structured than
implied by the classical case. Waves are significantly
more band-width limited, and there is a greater num-
ber of trapped modes. These effects will have to be taken
into account in any future treatment of the radiation from
such sources.

The theoretical approach detailed in this article is also
valid for the ordinary and extraordinary electromagnetic
modes in equal-mass plasmas, including Landau damp-
ing.

. .

p - plane
||

^

p̂
||0

p̂
||0

+-

FIG. 7: The Bromwich contour for the p̂‖ integration

APPENDIX A: HANDLING OF SINGULAR
INTEGRALS

A proper derivation of the dispersion relation Eq. (46),
and especially the correct handling of the singularities in
the integrals Eq. (44) and Eq. (45), requires the time de-
pendence to be treated as an initial value problem. As
is well-known, this was first pointed out by Landau in
his derivation of the damping of electrostatic waves in an
unmagnetised plasma (so-called Landau damping). The
presence of a uniform magnetic field gives rise, in the
classical, non-relativistic case, to undamped electrostatic
Bernstein waves in a plasma with a stationary ion back-
ground, and as is shown in section 2.1 the extension to
a classical electron-positron plasma leads to similar con-
clusions.

In the case of weakly relativistic effects, of primary in-
terest in this paper, singularities arise where the denom-
inator of the p̂‖ integral vanishes. In the derivation of
Eq. (9) we introduced the perturbation exp i(k · r − ωt).
We note here that strictly the frequency ω should be
introduced by a Laplace transform, in which ω has a
positive imaginary part, and the first-order distribution
function f and electric field E have given initial values at
t = 0. The subsequent behaviour of the plasma is then
to be obtained by forming the inverse Laplace transform
of the electric field. The presence of a positive imaginary
part in ω implies that the p̂‖ integration is only defined
in the upper half ω-plane, and therefore no singularities
actually occur. In order to investigate the properties of
the dispersion relation Eq. (46) for all values of ω, and in
particular for real ω, Eq. (46) must be analytically con-
tinued into the region where Im(ω) ≤ 0. This is achieved
by treating p̂‖ as a complex variable and displacing the
path of integration so that it lies on the real axis of p̂‖,
except at the singular points ±p̂‖0 where the path of in-
tegration is indented above the real axis, as in Fig. 7.
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1. Case (i): I1(α, β)

The treatment of the integral

I1(α, β) =

∞∫
−∞

dz
exp(−αz2)

z2 − β2
(A1)

requires the definition of a suitable integration contour in
order that the integral is meaningful at the poles z = ±β.
Taking the contour as shown in Fig. 7, it is immediately
apparent that the residues around each pole are equal
and opposite in sign, leaving the contour integral equal
to the principal part along the real axis:

I1(α, β) = 1
βP

∞∫
−∞

exp(−αβ2u2)
u2 − 1

du (A2)

= A(αβ2)/β (A3)

where z = βu. Notice that

∂A(x)
∂x

+ A(x) = −
∞∫

−∞
exp(−xu2)du = −

√
π

x
(A4)

Given that

P
∞∫

−∞

du

u2 − 1
= 0 (A5)

the full solution to Eq. (A4)is

A(x) = iπe−xerf(i
√

x) (A6)

2. Case (ii): I2(α, β)

This time the integral has no poles along the real axis:

I2(α, δ) =
∞∫

−∞

exp(−αz2)
z2 + δ2

dz (A7)

= 1
δ

∞∫
−∞

exp(−αδ2u2)
u2 + 1

du (A8)

= B(αδ2)/δ (A9)

Proceeding as before, B satisfies the differential equation

∂B(x)
∂x

− B +
√

π

x
= 0 (A10)

which, together with

∞∫
−∞

du

1 + u2
= π (A11)

yields the solution for B(x) as

B(x) = πexerfc(
√

x) (A12)

[1] A. P. Lightman, Astrophys. J.253, 842 (1982)
[2] A. Georgiou, Plasma Phys. Control. Fusion 38, 347

(1996)
[3] I. B. Bernstein, Phys. Rev. 109, 10 (1958)
[4] F. W. Crawford, Nucl. Fusion 5, 73 (1965)
[5] T. H. Stix, Waves in Plasmas,(AIP Press, New York,

1992)
[6] P. A. Robinson, J. Plasma Phys. 37, 435 (1987); 37, 449

(1987)
[7] Yu. n. Dnestrovskii and D. P. Kostomarov, Sov. Phys.

JETP 13, 986 (1961)
[8] I. P. Shkarofsky, Phys. Fluids 9, 570 (1966)
[9] B. Buti, Phys. Fluids. 6, 89 (1963)

[10] A. A. Mamun, Phys. Plasmas 1, 2096 (1994)
[11] D. C. Montgomery and D. A. Tidman, Plasma Kinetic

Theory, (McGraw-Hill, New York, 1964)
[12] N. A. Krall and A. W. Trivelpiece, Principles of plasma

physics, (McGraw-Hill, New York, 1973)
[13] D. J. Rose and M. Clark, Plasmas and Controlled Fusion,

(MIT Press, 1961)
[14] Macsyma Symbolic/numeric/graphical mathematics

software, version 2.1 for PC.
[15] M. Abramowitz and I. Stegun, Handbook of Mathematical

Functions (Dover, New York, 1972)
[16] D. A. Diver, A. A. da Costa, and E. W. Laing, As-

tron. Astrophys. 387, 339 (2002)
[17] T. Kitanishi, J.-I. Sakai, K.-I. Nishikawa and J. Zhao,

Phys. Rev. E 53, 6376 (1996)


	Citation.template.pdf
	http://eprints.gla.ac.uk/1618/


