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ABSTRACT

With the detection of a binary neutron star system and its corresponding electromagnetic counter-

parts, a new window of transient astronomy has opened. Due to the size of the sky localization regions,

which can span hundreds to thousands of square degrees, there are significant benefits to optimizing

tilings for these large sky areas. The rich science promised by gravitational-wave astronomy has led

to the proposal for a variety of proposed tiling and time allocation schemes, and for the first time,

we make a systematic comparison of some of these methods. We find that differences of a factor of 2

or more in efficiency are possible, depending on the algorithm employed. For this reason, with future

surveys searching for electromagnetic counterparts, care should be taken when selecting tiling, time

allocation, and scheduling algorithms to optimize counterpart detection.

Keywords: gravitational waves

1. INTRODUCTION

The era of multi-messenger gravitational-wave astron-
omy has arrived with the detection of GW170817 (Ab-

bott et al. 2017a) by Advanced LIGO (Aasi et al 2015)

and Advanced Virgo (Acernese et al 2015) coincident

with the detection of both a short gamma-ray burst

(SGRB) (Abbott et al. 2017b; Goldstein et al. 2017;

Savchenko et al. 2017) and a kilonova detected in coin-

cidence (Coulter et al. 2017; Smartt et al. 2017; Abbott

et al. 2017c). This work is the culmination of significant

effort expended in the search for the electromagnetic

counterpart of the gravitational waves found by compact

binary black hole systems (Abbott et al. 2016a,b, 2017d)

(see Abbott et al. (2016c) for an overview of the search

for an electromagnetic counterpart to GW150914).

It has been known for some time that there are poten-

tial electromagnetic counterparts to binary neutron star

and black hole - neutron star systems across durations

and wavelengths (Nakar 2007; Metzger & Berger 2012).

For example, a kilonova, arising from sub-relativistic

ejecta, in particular has predicted bolometric luminosi-

ties of ≈ 1040− 1042 ergs/s (Metzger et al. 2015; Barnes

& Kasen 2013) (GW170817 peaked at ≈ 1042 ergs/s

(Smartt et al. 2017)) and optical and near-infrared col-

ors and durations that depend on the physical condi-

tions of the merger (Metzger et al. 2010; Kasen et al.

2013; Barnes & Kasen 2013; Tanaka & Hotokezaka 2013;

Kasen et al. 2015; Barnes et al. 2016; Metzger 2017).

The scientific output from a joint gravitational-wave

and electromagnetic observation is significant, as the

detection of a kilonova coincident with a gravitational-

wave observation allows for the exploration of the neu-

tron star equation of state (Bauswein et al. 2013) and

r-process nucleosynthesis in the unbound ejecta from a

merger involving a neutron star (Metzger et al. 2015;

Just et al. 2015; Roberts et al. 2017; Wu et al. 2016).

The gravitational-wave posteriors alone, including mass

and tidal parameter information, allow for estimates
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of the contribution of dynamical ejecta to the opti-

cal counterpart Abbott et al. (2017e). Among others,

Smartt et al. (2017) use photometry of GW170817 to

place constraints on the ejecta mass, velocity, and ef-

fective opacity. Radice et al. (2018) use photometry

of GW170817 in conjunction with kilonova models and

numerical-relativity results to place a lower bound on

the tidal deformability parameter. The identification

of the host galaxy allows for a distance-ladder indepen-

dent measurement of the Hubble Constant (Abbott et al.

2017f). In addition, the joint observation with a short

gamma-ray burst not only confirms these phenomena

are driven by compact binary mergers, but also allows

for the study of their beaming, energetics, and galactic

environment (Metzger & Berger 2012).

To facilitate the detection of gravitational-wave coun-

terparts, probability skymaps as a function of sky di-

rection and distance are released for gravitational wave

triggers produced by the LIGO and Virgo detectors

(Singer et al. 2014; Berry et al. 2015; Singer et al. 2016).

Due to the significant sky coverage required to observe

the gravitational-wave sky localization regions, usually

spanning ≈ 100 deg2, techniques to optimize the fol-

lowup efforts are of significant utility (Fairhurst 2009,

2011; Grover et al. 2014; Wen & Chen 2010; Sidery

et al. 2014; Singer et al. 2014; Berry et al. 2015; Es-

sick et al. 2015; Cornish & Littenberg 2015; Klimenko

et al. 2016). Given the large sky localization regions

involved, wide-field survey telescopes have the best op-

portunities to make a detection. The Panoramic Survey

Telescope and Rapid Response System (Pan-STARRS)

(Morgan et al. 2012), Asteroid Terrestrial-impact Last

Alert System (ATLAS) (Tonry 2011), the intermediate

Palomar Transient Factory (PTF) (Rau et al. 2009) and

(what will become) the Zwicky Transient Facility (ZTF),

BlackGEM (Bloemen et al. 2015) and the Large Synop-

tic Survey Telescope (LSST) (Ivezic et al. 2008) are all

examples of such systems. For example, Pan-STARRS

has a 7deg2 field of view (FOV), achieving a 5 σ limit

of 21.5 (AB mag) in the i band in a 45 second exposure.

ATLAS has a 29.2deg2 field of view, achieving a 5 σ

limit of 18.7 in the cyan band in a 30 second exposure.

For comparison, LSST will have a 9.6deg2 FOV and will

require a 21 s r-band exposure length to reach 22 mag.

Due to the significant difference in telescope configura-

tions, including FOV, filter, typical exposure times, and

limiting magnitudes, in addition to placement on the

earth and therefore different seeing and sky conditions,

optimizing gravitational wave followups for an arbitrary

telescope is difficult. In the following, we will take the

telescopes mentioned above as examples. For this rea-

son, we have created a codebase named gwemopt (Grav-

itational Wave - ElectroMagnetic OPTimization) that

utilizes methods from a variety of recent papers geared

towards optimizing efforts of followup. We employ

methods to read gravitational-wave skymaps and the

associated information made available from GraceDB 1,

which is the gravitational-wave database from which one

can access information about gravitational-wave trigger

candidates (Abbott et al. 2016c). We also use informa-

tion about the telescopes to tile the sky, allocate avail-

able telescope time to the chosen tiles, and schedule

the telescope time. This is done in a way that is op-

timized based on the telescope configurations and the

lightcurves, i.e. the time evolution of luminosity, of the

transients they are expected to detect. We will describe

algorithms that use the gravitational-wave probability

skymaps, some of them with right ascension and dec-

lination information only, some of them with distance

information as well), to perform optimizations. In sec-

tion 2, we describe the algorithm. In section 3, we de-

scribe the performance of the algorithms. In section 4,

we offer concluding remarks and suggest directions for

future research.

2. ALGORITHM

Figure 1 shows the flowchart for the gwemopt pipeline,

developed to optimize the efforts of electromagnetic fol-

lowup of gravitational-wave events. gwemopt is devel-

oped in python, which has the benefit of an interface to

LIGO and Virgo’s gravitational-wave candidate event

database (GraceDB). It internally uses HEALPix (Hi-

erarchical Equal Area isoLatitude Pixelization) (Górski

et al. 2005), the format in which LIGO and Virgo reports

skymaps, when performing optimization calculations.

The general sequence of the pipeline is as follows. gwe-

mopt uses events provided by GraceDB in addition to

information about the telescopes for creating tiles and

optimizing time allocations in the fields. It uses infor-

mation about potential lightcurves from electromagnetic

counterparts to schedule the available telescope time. In

the following, we will describe the calculations that go

into creating tiles, time allocations, and observing se-

quences from the skymaps. We will account for both

diurnal and observational constraints and have the pos-

sibility of imaging over many nights.

We will show the command line syntaxes required to

reproduce the results at the beginning of each section.

By way of an outline of the the algorithm to be dis-

cussed, the subsections in this section are:

1 https://gracedb.ligo.org
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GraceDB Telescope

Tiling of
the field
of view

Calculate
time

allocations

Schedule
obser-
vations

Calculate
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Figure 1. A flow chart of the gwemopt pipeline.

1. GraceDB (Subsection 2.1): Loading HEALPix

maps from the gravitational-wave server.

2. Telescope Configurations (Subsection 2.2): Con-

figuration files giving required information about

the telescopes for optimization purposes.

3. Tiling (Subsection 2.3): Algorithms for determin-

ing what the best fields to observe are.

4. Time Allocation (Subsection 2.4): Algorithms for

determining how long the exposure times are and

the number of exposures for each of the fields.

5. Scheduling (Subsection 2.5): Algorithms for de-

termining the order in which each of the fields is

observed.

6. Efficiency (Subsection 2.6): Probability of detect-

ing transients given the specific characteristics of

the skymap, the telescope, and the tiling, time al-

location, and scheduling choices.

2.1. GraceDB

python gwemopt_run --doEvent --do3D --event G268556

-150-120-90-60-300306090120150

-60

-30

0

30

60

Figure 2. The gravitational-wave posterior probabil-
ity distribution LGW(α, δ) (marginalized over distance) for
GW170104.

GraceDB is a service that provides information on

candidate gravitational-wave events and the multi-

messenger followups performed on them. An API is

made available that allows for access to this informa-

tion. gwemopt uses this API to access information

pertinent for gravitational-wave followups. First of all,

it downloads the gravitational-wave skymap for a given

event; an example is shown in Figure 2. In addition,

information such as the time of the event and the time

delay between the time-of-arrivals at the detectors is

noted.

2.2. Telescope configuration

python gwemopt_run --doEvent --do3D --telescope

LSST

gwemopt relies on standardized configuration files for

the telescopes to be analyzed (please see 2 for examples

for the telescopes in Table 1). The information in these

files includes the filter being used, the limiting mag-

nitude of the instrument, the exposure time required

to achieve that magnitude, site location information,

and information about the shape and size of the field

of view (FOV). Different telescopes have different FOV

shapes. For this, two options, square and circle are

available, with the FOV being specified by the length of

the square side and the radius of the circle. In addition,

a tesselation file, which encodes the placement of the

fields on the sky, is requested. This is especially useful

for telescopes such as ZTF which use fixed telescope

pointings. Fixed telescope pointings can be useful for

ensuring the availability of reference images, which are

useful when performing image subtraction to look for

transients. In case a tesselation file is not available, one

2 https://github.com/mcoughlin/gwemopt/tree/master/config

Downloaded from https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/sty1066/4987229
by University of Glasgow user
on 24 May 2018



4

Telescope Latitude [deg] Longitude [deg] Elevation [m] FOV [deg] FOV shape Filter Exp. time [s] Lim. Mag.

ATLAS 20.7204 -156.1552 3055.0 5.46 Square c 30.0 18.7

Pan-STARRS 20.7204 -156.1552 3055.0 1.4 Circle i 45.0 21.5

BlackGEM -29.2612 -70.7313 2400.0 2.85 Square g 300.0 23.0

LSST -30.1716 -70.8009 2207.0 1.75 Circle r 30.0 24.4

ZTF 33.3563 -116.8648 1742.0 6.86 Square r 30.0 20.4

Table 1. Configuration of telescopes.

is automatically generated, and this output is described

in the next section. Configuration files for ATLAS,

BlackGEM, LSST, PS1, and ZTF are available. Table 1

provides the information assumed for these telescopes.

2.3. Skymap tiling

python gwemopt_run --doEvent --do3D --doTiles

--doPlots --tilesType ranked

Once a telescope configuration has been determined, the

next step of the analysis is to generate the sky-map

tiling. There are a variety of algorithms in the litera-

ture for sky-map tiling, and the ones implemented in

gwemopt will be detailed below. The idea is to cover

the sky with tiles the size of the telescope’s field-of-view

with minimal overlap. In some cases, these tiles are pre-

determined by survey constraints in order to simplify

difference imaging, where a reference image is subtracted

from a science image to facilitate transient identifica-

tion. In other cases, it is possible to optimize the tile

locations based on the gravitational-wave skymaps, such

that the tiles maximize the probability contained. Due

to the FOV for these telescopes being in general much

smaller than the probability region, the effect is ex-

pected to be relatively minimal. For example, the num-

ber of tiles chosen to allocate time to will be dominated
by choices such as whether there is utility in filling in

chip gaps (gaps in the CCD arrays that compose the en-

tire camera) and thereby having overlapping tiles, as op-

posed to simply maximizing the probability contained.

Gravitational-wave skymaps in general contain metrics

that report the spatial probability of a gravitational-

wave source lying within a certain location. They are

composed of HEALPix arrays that encode either the

2D probability, in right ascension and declination, or

3D probability, which includes probability distributions

for the luminosity distance of the transient. These are

reported in maps with a particular number of pixels,

usually Nside = 512. This can introduce quantization

errors, which arise from using a map of limited resolu-

tion, especially for small FOV telescopes. The –nside

flag allows for the up-sampling and down-sampling of

the skymaps in the analysis.

There are four options related to skymap tiling

currently available and defined below: ranked, MOC

(multi-order coverage), hierarchical and greedy. In the

following, we will summarize the key features of each

implementation, and refer the reader to the literature

for further details. The goal is to create a common

mathematical formalism for straightforward compar-

isons between algorithms.

ranked. The ranked tiling scheme, described in Ghosh

et al. (2016), uses pre-defined sky cells (see Fig. 2 of

Ghosh et al. (2016) for a visualization of how this tiling

is performed). This tiling scheme is based on a grid

system with grids of equal sizes. The sizes of the grids

are the same as the size of the telescope FOV. For each

tile in the grid at (αi, δi), where αi is the right ascension

and δi is the declination, we calculate a double integral

that accumulates the probability distribution in this tile,

shown in Eq.1,

Tij =

∫ αi+∆α

αi

∫ δi+∆δ

δi

LGW(α, δ)dΩ (1)

where LGW(α, δ) is the sky location probability of the

event as a function of right ascension and declination,

as derived from the analysis of gravitational-wave data.

Then, we rank all the tiles with their Tij and select

from the top of the rankings until we reach the target

integrated probability desired. In the following, we will

take 95% as our target integrated probability, which is a

reasonable trade-off between capturing as many poten-

tial counterparts as possible while also limiting the sky

coverage required. Other integrated probabilities could

also be considered, and the ideal choice will depend on a

trade-off between a few different priorities. These could

include the desire to take at least one image of a poten-

tial counterpart by covering nearly the entire probability

region; another possibility is to take enough images of

the same fields to determine the candidates that are ap-

propriately fading and reddening by mapping out their

luminosity and color and time evolution.

MOC. The “MOC” tiling scheme, based on the multi-

order coverage of HEALPix maps, hierarchically prede-

fines cells in order to specify arbitrary sky regions (Fer-

nique et al. 2014). MOC is proposed in order to pro-

vide “fast set operations” between regions on the sky,

which are designed to minimize computational time for
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Greedy Hierarchical
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Figure 3. Example outputs of different tiling algorithms. On the top left is the greedy version with Ntiles = 10, where Ntiles

is the number of tiles employed, on the top right is the hierarchical version with the same, on the bottom left is the MOC
skymap, and on the bottom right is the ranked skymap tiling. The top row of skymaps are similar, given that 10 tiles are used
for both algorithms. The differences between the two schemes, one of which places the tiles all at once and the other places
them sequentially, when integrating the probabilities, leads to minor differences in tile placement. The bottom row, with two
schemes that cover the entire grid, are identical up to small numerical differences. This is expected as MOC is an on-the-fly
scheme, and ranked pre-computes the tile locations.

standard set operations (unions, intersections, etc.). In

MOC, the spherical sky is recursively divided into 4 re-

gions and each region is a diamond. The division stops

according to the resolution necessary for a particular us-

age. MOC is particularly useful in the case that most

information is contained in just a handful of pixels, and

therefore it is desired to save that information at high

resolution for those pixels, and the remainder of the map

at low resolution. This is important to be both memory

efficient and retain all the relevant data.

Here are three relevant implementation details about

MOC.

• MOC uses an equatorial coordinate system.

• MOC divides the sphere recursively into four dia-

monds.

• MOC indexes each tile as follows: the initial tile is

numbered 0 on level 0. Then, when divided, we get

tile indices of 0, 1, 2, 3 on level 1. More generally,

if we start from a tile numbered M, its children will

be numbered M×4, M×4+1, M×4+2,M×4+3

on the next level.

The scheme for integrating probability in tiles is the

same as in “ranked” above.

hierarchical. The hierarchical tiling scheme, which is

a MultiNest-based (Feroz et al. 2009b,a; Buchner et al.

2014) optimization, chooses tiles for a given skymap by

placing them sequentially on the skymap and maximiz-

ing the probability at each step. This is distinctive from

the ranked scheme in that it does not use pre-defined

sky cells. MultiNest was chosen because with many live

points available, multiple live points could simultane-

ously explore multiple portions of the skymap at once.

This helps to overcome any potential issues that arise

from natural bi-modality of gravitational-wave skymaps,

where a single chain could be caught on a single is-

land. We note that any algorithm designed for high-

dimensional sampling is possible here. This method

starts by selecting the tile that covers the most prob-

ability. Then, it sets the probability in that tile to be

zero before going to the next iteration, when it again
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selects the tile that covers the most probability. The

algorithm stops when a user-specified number of tiles,

Ntiles, are selected. The tiles selected might overlap on

the corners when there are higher probability distribu-

tions around that corner.

greedy. The greedy tiling scheme, an emcee (Foreman-

Mackey et al. 2013) based algorithm, optimizes tiles for

a given skymap by placing all tiles simultaneously on

the map. This allows all tile locations to vary at the

same time. Similar to the “hierarchical” case, any high-

dimensional sampler would be reasonable to use here.

The algorithm works by taking the user-specified num-

ber of tiles, Ntiles, and allowing the tile locations to vary.

It uses a likelihood that maximizes the integrated prob-

ability. It prevents double counting by setting the prob-

ability of a given tile to zero when integrating the prob-

ability. This method selects tiles that cover the highest

integrated probability from the skymap. It ranks all

possible tiles and selects from the top. Thus, the tiles

selected by greedy methods might overlap significantly

when the probability distribution is concentrated.

2.4. Time allocations

python gwemopt_run --doEvent --doPlots --doTiles

--doSchedule --timeallocationType coverage

Having decided on the preferred set of tiles, exposure

time allocation forms the next important constraint to

address. Because telescopes have fields of view that are

in general smaller than the probability region and typi-

cal exposure times for these telescopes are of order min-

utes (see Table 1), it is, therefore, not possible to im-

age the entire probability region to interesting limiting

magnitudes in a reasonable amount of time. There are

further constraints that arise from the diurnal cycle, ob-

serving time available for followup, limitations on the

pointing that a particular telescope is capable of (such

as horizon limits), and the rising and setting of tiles.

The following algorithms use a variety of methods to

optimize the probability of imaging a counterpart with

the constraint of limited telescope resources.

The amount of time allocated is defined with a few

constraints. First of all, time segments are gener-

ated based on the observing time allocated after the

gravitational-wave event. In the following analyses, we

will assume that 72 hours following the event are avail-

able for followup (the code can account for limited target

of opportunity time by breaking the time into segments).

The segments are then intersected with night time at

the site of the particular telescope, which defines the

segments that can be used for observations. This as-

sumes implicitly that the electromagnetic counterpart

has not faded beyond detection limits in the time avail-

able. Some of the time allocation algorithms below use

models to determine the detectability of the lightcurve.

There are four options related to time allocations as

a function of sky location, coverage, powerlaw, WAW

(Where and when), PEM (Probability of electomagnetic

counterpart). Figure 4 shows examples of the powerlaw,

WAW, and PEM types.

Coverage. The “coverage” option is one whereby cov-

erage from existing surveys, including the right ascen-

sion and declination of the pointing and the limiting

magnitude, are used. The benefit of this mode is to

establish efficiencies of detection of kilonovae in exist-

ing surveys. For example, this code will be used to

determine the efficiencies of the Pan-STARRS and AT-

LAS surveys to both gravitational-wave and gamma-ray

burst triggers. It can be used as a way to prioritize ex-

amination of survey data for serendipitous observations

of these transients, where both reference images and the

time of the transients are known.

Powerlaw. The “powerlaw” option is one where scal-

ing relations are applied to the probability map to de-

termine the time allocation. Many authors (Ghosh et al.

2016; Coughlin & Stubbs 2016; Chan et al. 2017) have

proposed a variation on simply scaling the time alloca-

tion proportional to the probability skymaps, a tech-

nique employed in the powerlaw method below. Pan-

STARRS and ATLAS based searches have employed

this technique (Smartt et al. 2016a,b; Stalder et al.

2017). Coughlin & Stubbs (2016) derived scaling re-

lations for the time allocated to any given field, ti,

given the gravitational-wave posterior probability distri-

bution. While the powerlaw based analysis is straight-

forward, it does not account for the fact that the tele-

scope must be sensitive enough to detect the counter-

part. In this sense, this algorithm is the least model de-
pendent. The detectability of a given transient is model-

dependent, depending both on the distances predicted

by the gravitational-wave data analysis and the abso-

lute magnitude of the sources; the following algorithms

account for this dependnce in multiple ways.

The Powerlaw algorithm optimizes the probability of

detecting the transient with N observations, which is

simply the sum of the probability of each observation.

The expression is shown in Eq.2:

ptot = ΣNi=1

Mi

Mtot

LGW (αi, δi, Ri)

LGWtot

Fi(ti)

a(αi, δi)
, (2)

where Ri is the distance to the galaxy, Mi is the mass

for galaxy i, Mtot is the total mass of galaxies in the

field, LGW (αi, δi, Ri) is the posterior probability distri-

bution of the gravitational wave source in this galaxy,
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F (t) is the luminosity as a function of allocated time,

and a(αi, δi) is the Galactic extinction. In the follow-

ing, we will simply scale the gravitational-wave posterior

probability distribution as LGW(αi, δi)
2/3 (as shown by

the analysis of Coughlin & Stubbs (2016) to be optimal

given their assumptions). Within this formalism, inde-

pendent scaling of the distance is also possible (such as

with R4 to maintain a constant electromagnetic signal-

to-noise ratio for a particular target absolute magnitude)

, but this dependence has been accounted for in calculat-

ing the sky map probability’s associated powerlaw. It is

possible that this approximation could be improved us-

ing galaxy catalogs, although this introduces concerns

about galaxy catalog completeness. Eq. 2 is optimized

with the constraint that the total observation time is

limited, shown as

ΣNi=1ti = T, (3)

where T is the total observation time.

WAW. The “When and Where” algorithm, defined in

Salafia et al. (2017), uses counterpart lightcurve models

in the optical, infrared and radio constructed from in-

formation from the gravitational-wave signals to create

a time- and sky location dependent probability for de-

tecting electromagnetic transients. The WAW approach

introduces time into the model by defining a concept of

detectability. Detectability is the probability of detect-

ing a light flux greater than the flux limit at position

α and time t. These flux limits are computed using

a combination of lightcurve models and knowledge of

distance to the counterparts for compact binary coales-

cences. Thus, by having detectability introduced, the

algorithm can optimize ”where” and ”when” to sched-

ule the observation based on α and t with a greedy ap-

proach. The procedures of the algorithm are shown be-

low.

1. The tiles are generated covering the confidence re-

gion based on the probability distribution, which

comes from the gravitational wave signal.

2. The algorithm takes in the information encoded

in the gravitational waves and computes the

lightcurve Fi(t) for each tile.

3. Then, the algorithm computes the detectability as

P (F (t) > Flim|α, S) ≈ ΣNi=1ωiH(Fi(t)− Flim)

(4)

where H is the Heaviside function where if Fi(t) is

greater than Flim, it is 1; otherwise it is 0. Fi(t)

is the light flux for position sample i at time t.

Flim is the limiting flux, which is the minimum

detectable flux by the instrument. ωi is the ”in-

verse distance weight” that gives the contribution

of the sample i to position α. The further away

sample i is from α, the less it contributes. ωi is

normalized so that ΣNi=1ωi = 1.

4. For each tile, we find a time interval [tE,λ, tL,λ]

when the detectability is greater than a threshold

λ.

5. We start from the tiles that cover the most

probability and arrange their observation times

[tE,λ, tL,λ] if the time is available.

This method optimizes the search by introducing de-

tectability, defined as Eq. 4 over the three dimensional

observation volume of direction and time, with the con-

straint that only one location can be observed at the

same time.

PEM. The “Probability of electromagnetic counter-

part” algorithm, defined in Chan et al. (2017), optimizes

the number of fields to observe and their time allocations

by adopting priors on the intrinsic luminosities of the

sources and using knowledge of distance to the counter-

parts for compact binary coalescences. More concretely,

its input is the sky localization map and information

about the telescope. It selects the tiles to observe with

a greedy algorithm and allocates the observation time

for each tile to maximize the probability of detecting

the EM counterpart of the GW event.

The procedures of the algorithm are shown below, and

further details can be found in Chan et al. (2017).

1. Based on the sky localization map, we locate the

tiles that cover the region enclosed by the contour

of the target confidence level.

2. These N tiles are ranked based on the total prob-

ability covered.

3. We optimize the number of tiles selected and then

the time allocation for each selected tile. For all k

from 1 to n, we do the following:

• the top k tiles from the rankings are selected.

• Eq. 5 is the total detection probability of all

the tiles and optimized with Lagrange multi-

pliers with the constraint of Eq. 6, which en-

codes the limited observational time on the

telescope:

P (DEM |k) = Σk≤ni=1 P (DEM |ω(k)
i , τ

(i)
i , I)

(5)
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kT0 + Σki=1τ
(i)
i = T (6)

where ωi is the probability density; τi is the

time allocated and I are the parameters of

the telescope, T0 is the time to adjust the

telescope before each observation, τi is the

time allocated to each tile, and T is the total

observation time.

• Eq. 5 is maximized with the constraint of

Eq. 6 to determine the best k, the tiles and

the time allocation.

4. The optimal tiles {ωi} and their allocated times

{τi} for i = 1...k are the output.

2.5. Scheduling

python gwemopt_run --doEvent --doPlots --doTiles

--doSchedule --scheduleType weighted

Once the time allocated to each tile has been set, the

next task is to schedule the observations that both best

represent the time requested and optimize the times that

are chosen in some way. For example, the tiles could be

re-imaged at an approximately fixed cadence so as to

measure possible lightcurve evolution. Another option

is to simply go as deep as possible in one field to ensure

detection of a counterpart there. Other optimizations

might employ ordering based on airmass (or the amount

of atmosphere a telescope observes through), as sources

imaged through higher airmass will have lower signal-

to-noise ratios.

For each of the algorithms that perform the schedul-

ing, the time that each tile is available for observation
above the altitude limit, which corresponds to the lowest

altitude a telescope can observe (assumed to be 30◦ in

this analysis), is computed. These tile-specific times are

intersected with the set of times available to the tele-

scopes to form a set of visibility segments for each tile.

This has the benefit of avoiding issues related to simply

tracking the rise and set times of each tile. To account

for lunar sky brightness, we use a model from Coughlin

et al. (2016). Any tile whose sky brightness is increased

by at least 1 mag is excluded.

There are three options related to scheduling observa-

tions: greedy, sear, and weighted. Greedy. The “greedy”

algorithm, which is the simplest version in the code

package, employs a schedule on the basis of probabil-

ity contained. The idea is that higher ranked tiles are

observed before lower ranked tiles based on this rank-

ing scheme. Rana et al. (2017) implements a greedy

algorithm whereby the field with the highest probabil-

ity region in a given time window is observed. As the

Rana et al. (2017) implementation does not include the

possibility of multiple exposures for each pointing, it is

modified in this analysis to include multiple exposures.

The algorithm is as follows:

1. Construct a list of the tiles and number of expo-

sures for each tile based on the time allocation

algorithm utilized.

2. For each window, find the sky tiles that are in the

current window: T0 + (j − 1)Texp and T0 + jTexp,

where T0 is the start time for the observation, Texp
is the exposure time, and j is the index of the

window.

3. Allocate the window to the sky tile with the great-

est probability, and increment the number of ex-

posures for that tile down by 1.

sear (Setting Array). The “Setting Array” algorithm,

overcomes the shortcoming of the greedy algorithm to

include site visibility. This motivates re-ordering the

sequence such that as many tiles can be imaged as pos-

sible. Rana et al. (2017) also implements a version

whereby the rising and setting of tiles were accounted

for. Sear prioritizes observing high probability tiles first,

subject to the condition that each tile from the observ-

ing sequence must be observed before it sets. The con-

cept of imaging “windows” are used in this algorithm,

where the available observational time is broken up into

segments referred to as windows. We denote the ith

window as Wi. We denote the tile that will be imaged

in window Wi as the tile Si. The algorithm uses the

recursive relation between the optimal observation ar-

rangement between the first k windows S1 ... Sk and

the k + 1 window Sk+1. The details are shown below.

1. Consider the first window W1 and initialize S1 to

be the tile that has the highest probability for W1.

2. Move on to W2 and find the two tiles c1 and c2
that have the greatest probability density.

3. Compare c1 and c2 with S1 and act depending on

the following conditions:

• If both c1 and c2 contain greater probability

than S1, set S1 = c1 and S2 = c2.

• Otherwise, put the tile with higher probabil-

ity coverage between c1 and c2 into S2; c2 is

then assigned to S3.

We can see that either way, S1 and S2 will have

the two highest probability tiles observable.
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Figure 4. Example outputs of different time allocation algorithms. On the top left is the tile coverage with the PEM algorithm.
On the top right is the tile coverage with the Powerlaw algorithm. On the bottom is the tile coverage with the WAW algorithm.
In generating all of the plots, the MOC algorithm is used. Given the differences in the algorithms discussed in the text, it is
unsurprising that some differences in the time allocations are seen.

4. Move on to the next observation window and re-

peat until the last one is reached.

5. Return the last set Sw where w is the total number

of observation windows.

weighted. A different scheme, known as “weighted,” is

an algorithm where each tile is weighted based on both

gravitational-wave posterior probability distribution en-

closed, the number of exposures required for that tile,

and the number of available slots for it to be imaged.

This is an alternative to greedy and sear, as it is impos-

sible to observe all of the tiles as they rise and set given

the requirement of using multiple exposures per tile.

The idea is that all of the tiles are given a weight that

depends on the requested number of exposures. There-

fore we define the weights wi as

wi = LGW(αi, δi)×
NR

NA
(7)

where NR is the number of remaining images to be taken

for a given tile and NA is the number of allocated expo-

sures for that tile. In this way, NR

NA
prioritizes the tiles

with the most remaining exposures. Therefore, for each

exposure segment, we calculate the weight for each pos-

sible tile and select the tile with the highest weight to

fill that slot.

2.6. Efficiency

python gwemopt_run --doEvent --doPlots --doTiles

--doSchedule --doEfficiency

We are able to test and compare the performance of

these algorithms by performing simulated observations.

We adopt observational constraints as follows. We use

an observing limit of an altitude of 30◦, corresponding to

an airmass of 2.0. We assume observations are available

to begin at twilight and dawn, corresponding to when

the sun is 12◦ below the western and eastern horizons.

We do not point away from the moon or account for sky

brightness.

The simplest metric of success is the “efficiency,”

which is defined as the number of transients detected

over the number of transients injected. To estimate

the efficiency for the “detection” of the electromagnetic

counterparts to gravitational-wave transients, we per-

form simulated injections of supplied lightcurves, which

corresponds to the absolute magnitude in the color re-

quested in the telescope configuration file. The number
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of transients injected are proportional to the values in

the sky localization probability map to account for the

selection effects of the gravitational-wave detector net-

work. We provide example lightcurves for a variety of

lightcurve models, including:

1. Tanaka et al. (2014): Simulations of binary sys-

tems showing ejecta morphology and resulting

lightcurves. These simulations led to analytical

models for black-hole neutron star systems from

Kawaguchi et al. (2016) andDietrich & Ujevic

(2017).

2. Kawaguchi et al. (2016): Analytical models for

black-hole neutron star systems based on Tanaka

et al. (2014).

3. Dietrich & Ujevic (2017): Analog to Kawaguchi

et al. (2016) for binary neutron star systems.

4. Barnes et al. (2016): Simulations of binary sys-

tems studying the emission profiles of radioactive

decay products from the merger.

5. Metzger et al. (2015): Blue “precursor” to the kilo-

nova driven by β-decay of the ejecta mass.

6. Metzger (2017): Toy model with grey opacity for

lanthanide-free matter expanding with a range of

velocities with a mass density profile M(< v) =

v−1.

The requirements for “detection” of the electromag-

netic counterparts to gravitational-wave transients are

as follows. We require that the transient appear in

2 images over 2 nights. In each image, the transient

must exceed the limiting magnitude in that image. The

color of the transient is estimated from the filter given

in the configuration file. We simulate the transients at

a variety of locations and distances consistent with the

gravitational-wave probability skymap.

3. PERFORMANCE

In this section, we compare the efficiency of the algo-

rithms based on simulated information about what per-

centage of the events the algorithm can detect. Accord-

ing to the workflow given in Figure 1 and the algorithms

given in the sections above, we will have four options for

tiling algorithms, three options for time allocation algo-

rithms and another three options for scheduling algo-

rithms. This combines to 36 total options for the whole

workflow. We want to know which combination has the

best efficiency and then analyze and compare the algo-

rithms individually. We take as an example the ATLAS

instrument in the following. As all of the instruments

are large aperture, wide-field instruments, the results

will not strongly depend on the instrument chosen and

the way the efficiencies scale will be the same for the level

of detail considered here. Including information such as

slew and readout time of the individual telescopes will

change the results in case of lengthy readout times or

characteristically slow slew times. For telescopes with

either readout or slew times on the order of the typical

length of exposures, the efficiencies could be impacted

by up to a factor of 2. For the survey telescopes we con-

sider in this analysis, they are designed to have short

readout and slew times so as to minimize this overhead,

and so the loss in efficiency will be much smaller.

3.1. Method

We will focus on the model by Metzger (2017) to com-

pare the efficiency. All the efficiency values in the (loga-

rithmically spaced) distance range between 10−1Mpc to

103Mpc are calculated and plotted. Thus we will have

a plot of efficiency versus distance for each of the 36

algorithm combinations. An example efficiency plot is

shown in Figure 5, where different time allocation al-

gorithms are compared. The greedy algorithm is used

for tiling and the PEM algorithm is used for time allo-

cation. It can be seen that greedy and sear scheduling

does better than weighted for long distances.

In Figure 5, we show an example where we hold

the tiling and time allocation algorithms fixed (to dis-

entangle their effects from the scheduling algorithm),

and show the efficiency as a function of distance for

the scheduling algorithms discussed in this paper. We

find that both Greedy and SEAR perform better than

weighted at larger distances. Weighted performs best

at the lowest distances considered because it targets

the highest probability tiles, ensuring that they will be

scheduled for multiple exposures so as to meet the detec-

tion criteria. Greedy and SEAR, both of which sched-

ule tiles to maximize the number of fields imaged, with

SEAR accounting for the rising and setting of the tiles,

perform significantly better at greater distances. This is

because they sacrifice some efficiency for nearby sources

by effectively exploring more fields, but have a more

constant detection efficiency with distance.

In order to compare the 36 efficiencies as plotted in

Figure 5, we use a single statistic to reflect the overall

performance of the algorithms based on the efficiency

for each distance in the range of 10−1Mpc to 103Mpc.

Thus, we come to a metric that reflects what percentage

of events that can be detected in a spherical volume of

radius 103Mpc. The events are evenly distributed in the

volume. Suppose the event density per volume is ρ and

the distance is r. Sampling a distance at r corresponds
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Figure 5. Example plot of efficiency for Metzger (2017)
injections, comparing the scheduling algorithms. The con-
straint for each algorithm was on the total observing time
available. The greedy algorithm is used for the tiling and
PEM algorithm is used for time allocation. The greedy and
the sear algorithms have similar performance for long dis-
tances and both perform better than weighted. This differ-
ence is also reflected in Figure 6. As the algorithm accounts
for observability from a site, including both whether tiles are
visible from the site of interest as well as diurnal effects, ef-
ficiencies are expected to peak at around 25% for an event
which fades quickly and has a probability region with peaks
in both the north and south.

to a shell with volume 4πr2dr. Assuming that the den-

sity is ρ, then the total events on that shell are 4πρr2dr.

Thus, if the efficiency is e, the expected number of de-

tected events on the shell will be 4πρr2edr. From this

we can see that the efficiency at r is weighted by r2. If

we treat the efficiency at each distance as an individ-

ual sample, a weighted average on the squared radius

will then be a good metric of the overall efficiency; it

reflects how well the algorithm detects events uniformly

distributed in a spherical volume of radius 103Mpc. A

consequence of this metric is that the weight of r2 makes

the long range efficiency more important than the short

range efficiency. Under this metric, an algorithm that

performs well at further distances would be better than

an algorithm that does better at short distances but

whose performance deteriorates quickly as the distance

increases.

3.2. Performance and algorithms

For each of the 36 algorithm options, we compute the

efficiency metric as described above, which results in 36

numerical efficiency values. The results are plotted in

Figure 6. On the horizontal axis are the combined op-

tions for the tiling algorithm and scheduling algorithm.

Figure 6. Plot of the weighted efficiency metric for each
of the 36 options. On the horizontal axis are tiling algo-
rithms and scheduling algorithms and on the vertical axis
are the time allocation algorithms. Abbreviations are used
for the algorithms. The first capital letter stands for the
tiling algorithm and the second letter stands for the schedul-
ing algorithm. The abbreviations are the first letters of the
algorithms: G - greedy. H - hierarchical. M - MOC. R -
ranked. S - SEAR. W - weighted. The grids are colors such
that highest efficiency combinations are darker and lower ef-
ficiency ones are lighter, with the highest being completely
blue and the lowest one being completely white.

There are four tiling algorithms and three scheduling al-

gorithm so they combine to 12 columns on the horizon-

tal axis. Abbreviations are used for the algorithms. The

first capital letter stands for the tiling algorithm and the

second letter stands for the scheduling algorithm. On

the vertical axis are the time allocation algorithms. The

color in the 36 boxes shows the efficiency as measured

above. The colors are scaled to the efficiency such that

higher efficiencies are more darkly colored. The highest

efficiency of 0.19 is achieved by a combination of ranked

tiling, powerlaw time allocation and greedy scheduling.

Compared to the lowest efficiency of 0.01, it can detect

approximately 19 times more events within a range of

10−1Mpc and 103Mpc. That corresponds to the darkest

box in the 10th column and the second row in Figure 6.

Also, from Figure 6, we can compare the efficiencies of

the individual algorithms. We concentrate on the SEAR

scheduling algorithm in the following. For example, in

the case of the use of the MOC tiling algorithm, where

all (non-overlapping) tiles are available for allocation,

we can look at the “MS” column. The performance of

PEM and power-law are very similar, and this fact holds

true for all of the configurations. This similarity may

be surprising, given that the powerlaw algorithm does

not use the distance posteriors like PEM does. Instead,

the powerlaw algorithm encodes the way the probabil-

ity should be allocated with distance in its powerlaw

term, and when considering distances where the “shot-

noise” of galaxies disappears, they become equivalent.

WAW suffers somewhat from the lack of the asset that

makes it most valuable: inclusion of the dependence of

lightcurves on the inclination angle of the original bi-

nary. Therefore, it is not surprising that PEM outper-

forms WAW in this instance, as PEM is optimal in the
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presence of distance information, while WAW requires

inclination information in order to be optimal. How-

ever, in case inclination and distance were available in

low latency, WAW may be best. The lower efficiencies

in the case of overlapping tiles of the greedy and hierar-

chical tiling algorithms are due to the upperlimit of the

number of tiles posed (to be returned to in the next sec-

tion), while performing similarly to one another. This is

unsurprising, as both algorithms differ only in the order

in which tiles are determined (greedy optimizes the lo-

cation all at once, while hierarchical places one tile after

the other).

3.3. Performance and the number of tiles

We also study how the number of tiles affects the per-

formance. This study in particular will depend on the

FOV of the instrument in question. It is only relevant

in the hierarchical and greedy tiling algorithm. The hi-

erarchical algorithm is used for this study, which selects

tiles that cover the highest probability and masks the

tiles once they are selected. It stops when a user-defined

number of tiles is selected. The efficiency is computed

based on the simulation of 5000 injections.

From the plot on the left of Figure 7, it can be seen

that efficiency increases at first when we increase the

number of tiles but after a peak is seen around 35 tiles,

the efficiency starts decreasing. The right plot shows

the efficiency curves for different number of tiles. Red

indicates high efficiency; blue indicates low efficiency. It

can be seen from the plot that efficiency at the smallest

distances continues to improve as the number of tiles

is increased. However, as the number of tiles increase,

the efficiency for distant sources first rises and then falls

(starting around 35 tiles). This occurs because as more

tiles are chosen, less overall time can be allocated to the

sources which would otherwise require longer exposure

times. The most distant sources are found when using

approximately 35 tiles and this corresponds to the peak

we see in the left figure. It is important to note that

just because a tile is selected by the tiling algorithm, it

is not assured that time will be allocated to that tile or

it will be scheduled. It is also important to note that the

algorithms presented here do not account for readout or

slew times, which will have some effect on these results.

For an alternative study that accounts for these effects,

please see Chan et al. (2017).

4. CONCLUSION

The detection of GW170817 (Abbott et al. 2017a) has

invigorated the search for improved strategies for associ-

ating gravitational waves with electromagnetic counter-

parts. Due to the large uncertainty footprint, which can

range from 10-1000 square degrees (Abbott et al. 2016d),

efficiently scanning sky areas of this size in search of an

electromagnetic counterpart is challenging. However, in

this paper, we have described and compared a number

of algorithms in the literature available for significantly

improving upon the most naive approaches. We have

shown comparisons between the algorithms, describing

the limits in which they are the most effective.

One potential improvement to the analysis consid-

ered here is using the locations of known galaxies in

the gravitational-wave sensitivity distance, which was

≈ 100 Mpc for GW170817 (Abbott et al. 2017a) and

will extend to ≈ 300 Mpc at design sensitivity (Abbott

et al. 2016d). Recent improvements in galaxy catalog

completeness have made this effort possible. For ex-

ample, the Galaxy List for the Advanced Detector Era

(GLADE) galaxy catalog is complete (with respect to

a Schechter function) out to ≈ 300 Mpc for galaxies

brighter than the median Schechter function galaxy lu-

minosity 3. The Census of the Local Universe (CLU)

catalog (Cook et al. 2017) is complete to 85% in star-

formation and 70% in stellar mass at 200 Mpc. Within

these local volumes, the sky area coverage of galaxies is

≈ 1 % Cook et al. (2017), bringing the sky areas searched

down by a factor of 100, which makes the possibility of

targeted galaxy pointing tractable, especially for small

field of view telescopes (see Arcavi et al. (2017) for an

example).

Unfortunately, it is not immediately clear how the

algorithms presented here will perform relative to the

schemes which use galaxy catalogs. One expects that

there will be two regimes where one technique will be

optimized over the other. For galaxy targeted searches,

nearby sources with small localization volumes are most

optimal, as these dedicated searches will be more sen-

sitive to intrinsically fainter sources than the wide-field

surveys. On the other hand, wide-field surveys will be

more successful across large localization regions where

the distance is not necessarily well constrained. As fu-

ture work, we intend to explore the benefit of combin-

ing the power of both techniques. This may be done by

modifying the probability map to include the effects of a

discrete mass distribution, similar to that proposed by

Arcavi et al. (2017) for assigning priorities to individ-

ual galaxies. Instead, the probability map will become

a sum of the contributions of the galaxies in any given

pixel. For nearby events, this map will likely be very

pixelated, given the limited number of galaxies that will

3 http://aquarius.elte.hu/glade/
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Figure 7. On the left is the plot of efficiency weighted average as a function of the number of tiles considered. On the right is
efficiency as a function of distance for different number of tiles. In the simulation, hierarchical tiling algorithm, powerlaw time
allocation algorithm and greedy scheduling algorithm are used to detect 5000 random injections for number of tiles ranging from
1 to 100. The standard deviation is calculated and the 99% confidence interval is plotted as the grey shaded region in the top
figure. Blue indicates lower efficiency and red indicates higher efficiency. We can see that as the number of tiles increases, low
distance gets better but high distance gets worse. We see the least blue at high distance around 35 tiles, which corresponds to
the peak in the left plot.

contribute significantly. For further away events, this

map will closely resemble the original probability map.

Also not addressed in this work is how to determine

which sources are the best for allocating telescope time

to. This is less of an issue for the wide-field, all-sky

survey instruments, where target of opportunity obser-

vations change the cadence of the survey but are not

strictly time lost to the overall endeavor. On the other

hand, this is an essential question for target of oppor-

tunity observations on narrow field of view telescopes

where the number of sources that can be followed up

is often significantly limited. There have been a num-

ber of studies along these lines recently. For example,

Del Pozzo et al. (2018) showed that the localization vol-

ume depends strongly on the signal-to-noise ratio of the

gravitational-wave event. Therefore, it is likely easier to

make a successful observation of the counterpart asso-

ciated with events with larger signal-to-noise ratio, and

therefore it may be best to wait for the loudest events

Chen & Holz (2016). This was also addressed in Lynch

et al. (2018), where it was pointed out that the rate of

false positives also significantly increases as a function

of signal-to-noise ratio. Going forward, optimizing the

choice of events to follow up will be important.

A code to produce the results in this paper is available

at https://github.com/mcoughlin/gwemopt for public

download.
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