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Abstract

We present a signed particle computational approach for the Wigner trans-
port model and use it to analyze the electron state dynamics in quantum
wires focusing on the effect of surface roughness. Usually surface roughness
is considered as a scattering model, accounted for by the Fermi Golden Rule,
which relies on approximations like statistical averaging and in the case of
quantum wires incorporates quantum corrections based on the mode space
approach.

We provide a novel computational approach to enable physical analysis
of these assumptions in terms of phase space and particles. Utilized is the
signed particles model of Wigner evolution, which, besides providing a full
quantum description of the electron dynamics, enables intuitive insights into
the processes of tunneling, which govern the physical evolution.

It is shown that the basic assumptions of the quantum-corrected scatter-
ing model correspond to the quantum behavior of the electron system. Of
particular importance is the distribution of the density: Due to the quantum
confinement, electrons are kept away from the walls, which is in contrast to
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the classical scattering model. Further quantum effects are retardation of
the electron dynamics and quantum reflection. Far from equilibrium the as-
sumption of homogeneous conditions along the wire breaks even in the case
of ideal wire walls.

Keywords: Wigner transport model; Quantum wire; Surface roughness;
Signed particles; Electron state dynamics

1. Introduction

Quantum mechanics progressively captures the physics of modern elec-
tronic nanostructures, designed around the concept of spatial confinement,
where electrons are not any more point-like particles. Processes related to
the superposition property, such as coherence and entanglement, provide a
foundation for novel engineering disciplines, such as entangletronics, while
the finite electron size introduces the need to take the Heisenberg principle
into account for the proper description of the transport processes. Indeed,
the momentum component of the electron in the direction of confinement is
not any more a well-determined physical quantity. This requires to recon-
sider the models of the transport theory derived for a bulk crystal and in
particular the mechanisms for electron interaction with the variety of devia-
tions from the periodicity of the ideal crystal structure, ranging from atom
vibrations to effects introduced by interfaces and edges.

Especially important for the behavior of nanoscale structures is the inter-
face responsible for the confinement in one or more spatial directions , such
as in quantum wires (also frequently referred to as nanowires). Already phe-
nomenological considerations prompt that the properties of such interfaces
should affect the evolution of the electron system in the structure. Surface
roughness (SR) should impede the evolution of the electron system, com-
pared to ideal surfaces. Theoretical and experimental studies show that SR is
a dominant low-field electron mobility limiting mechanism in confined struc-
tures [1]. Models for both, pure bulk and confined structures, usually treat
the electron-SR interaction as a scattering process, causing an instantaneous
change of the electron momentum component (which is local in space) in the
direction of transport: Namely, the usual models assume a decomposition
of the problem into an eigenvalue task due to confinement and a transport
task along the unconfined direction(s), where the electron momentum is well
defined [2].
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Electron evolution processes in quantum wires incorporate a major part
of the transport phenomena governing the operation of actual nanoelectronic
devices like FinFETs and quantum wire transistors [1], [2], [3]. In such struc-
tures the transport is along the wire. The transverse confinement gives rise
to an eigenvalue problem posed in terms of eigenfunctions and energy sub-
bands. Within this approach shape variations are treated as perturbations.
Scattering probability models based on the Fermi Golden Rule depend ex-
plicitly on the transverse eigenfunctions, while the subband energies appear
in the energy conserving delta function. The latter captures the electron
dynamics in the long-time limit of the electron-surface potential interaction
process. The eigenvalue problem can be solved either for an ideal wire or
with account for the rough interface [4]. Statistical averaging is performed,
which gives rise to a model that is roughness-aware, and can be considered
independent of the position along the wire.

In Section 2, we present the main assumptions and approximations in-
herent to this approach. The goal of this work is to use first principle quan-
tum descriptions to analyze the physical effects caused by SR, and then
draw a comparison with the assumptions inherent for a scattering model
approach. The evolution of Wigner states [5] corresponding to minimum
uncertainty wave packets, which are periodically injected through the source
end of the simulation domain, are simulated in the cases of ideal or rough
two-dimensional wire surfaces.

Of central importance is Section 3, which presents the numerical aspects
of the utilized signed particles, computational model. The derivation of the
latter is based on stochastic weights [6] obtained by applying the numerical
Monte Carlo theory to an integral formulation of the Wigner transport prob-
lem. It has been shown that stochastic weights give rise to particles carrying
positive or negative signs [7]. In the stationary transport case the corre-
sponding numerical algorithm has been called pair-generation method [8].
The approach has been generalized recently for evolution problems and has
been termed signed particle method. It has been shown that the continuous
particle acceleration - according to Newton’s second law - can be reproduced
by the generation/annihilation of unaccelerated signed particles [9]: This
may be considered as a major validation of the method, which provides a
transition from a force to a potential description of the electron dynam-
ics. Furthermore, signed particle attributes provide not only a simulation
approach, but a particle picture, which can be regarded as an alternative
formulation of Wigner phase space quantum mechanics. The model offers a
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high level of intuition and offers a profound apparatus for physical analysis.
Simulation results of the most important physical characteristics of semi-

conductor devices, namely the electron density and the current, along with
an analysis of their evolution is presented in Section 4. Section 5 discusses
certain computational aspects.

In summary, this manuscript makes the following three core contributions:
(1) Analysis of the physical factors which make the quantum-corrected

SR scattering model a relevant replacement for the standard scattering model
widely used in classical device simulators;

(2) Novel two-dimensional signed particles, simulation approach based on
injection of coherent states from the boundary;

(3) An advanced view of the signed particle approach as a set of concepts
which may be combined into different methods suitable for both stationary
and transient physical problems in the presence of initial and/or boundary
conditions.

2. Surface roughness scattering model

The Fermi Golden Rule, obtained within the time-dependent perturba-
tion approach is the basic theoretical notion, giving the probability S for a
transition per unit time from an initial state |k〉 defined by quantum numbers
k and energy Ek, to a state k′ under the action of a perturbing Hamiltonian
H ′:

S(k,k′) =
2π

~
|〈k′|H ′|k〉|2 δ(Ek′ − Ek ± ~ω) (1)

Here the δ function is a result of a long time limit of the action of H ′ and ω
is the frequency (if any) of the perturbation. This limit introduces the first
essential assumption for a completed collision, which furthermore poses cer-
tain requirements about the energy and time scales of the electron evolution
[10], which characterize, e.g., the Boltzmann transport model.

To obtain the matrix element 〈k′|H ′|k〉, we need the electron states in
the wire and the perturbing Hamiltonian H ′ corresponding to the SR type
of scattering. For convenience, we consider a two-dimensional wire with a
length L, a transport direction along z, and a direction of confinement in x.
The eigenfunction set is secondly assumed to be:

〈x, z|l, k〉 = ξl(x)
eikz√
L

; El,k = ε(k) + El , (2)
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where ε(k) = ~2k2
2m

is the kinetic energy of the electron, El is the energy
corresponding to the eigensolution ξl(x) of the Schrödinger equation defined
by the potential V , determined by the transverse properties of the wire. In
the ideal case the potential V = V0 is zero inside the wire, between points
x = a and x = b, defining the wire width, and V0(a, z) and V0(b, z) are
straight lines. SR is defined by the stretch ∆(z), along x, so that the potential
becomes V0(x+ ∆, z) The perturbation H ′ is then given by

V0 +H ′ = V0 +
∂V0(x)

∂x
∆ = V0 + eE(x)∆ , (3)

which may be justified by a heuristic, linear response consideration: The per-
turbation of the energy is proportional to the force eE pressing the electron
to the interface, and the deviation from the ideal shape.

The state representation (2) prompts that the electron states correspond
to the ideal case where the potential does not dependent on z. This basic,
second assumption for the mode space approach allows to decompose the
problem into transport and confinement tasks.

Furthermore, it is important to note the character (which is local in space)
of the third assumption given by (3), where the potential variation is replaced
by its unperturbed derivative.

The dependence on z enters the perturbation via the offset ∆, however,
it will be further averaged by taking the stochastic nature of the random
function ∆ into account. The statistically averaged square of the matrix ele-
ment can be expressed after some calculations by the autocorrelation function
∆(z)∆(z′).

|〈l′, k′|H ′|l, k〉|2 = e2|N(l, l′)|2
∫
dz

L

∫
dz′

L
∆(z)∆(z′)ei(k−k

′)(z−z′) (4)

with

N(l, l′) =

∫
dxξ∗l′(x)E(x)ξl(x) . (5)

This result depends on the distribution of the random function ∆. We assume
that the autocorrelation function can be decomposed into a component slowly
depending on the position z, and a component that drops rapidly with the
distance |z − z′|.

∆(z)∆(z′) = D2(z)R(|z − z′|) = D2(z)e−
√
2|z−z′|/λ (6)
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We use D2 to indicate that the autocorrelation becomes the variance for
z = z′. The last equality introduces the fourth assumption about the shape
of R [11]. This leads to the final expression of the averaged matrix element:

|〈l′, k′|H ′|l, k〉|2 = e2|N(l, l′)|2D2 1

L

2
√

2λ

(2 + λ2q2)
; D2 =

∫
dz

L
D2(z) , (7)

where the mean offset, D, is the averaged variance along the wire. The
autocorrelation function has been effectively averaged to

∆(z)∆(z′) = D2e−
√
2|z|/λ . (8)

In this way SR effects are captured by the two parameters D and λ which
do not depend on z. They are usually determined by the methods of reverse
engineering, e.g., by a comparison of experimental and simulation results.

Above assumptions are critical: They allow to consider the interaction
of the electron with the wire surface as a stochastic process of scattering,
described by a model similar to the models used in the case of impurity or
phonon scattering.

We end up with the conclusion that the efforts to account for SR effects,
which characterize inhomogeneous wires, leads to an entirely homogeneous
model, where all involved physical processes are described by two statistical
parameters. It is thus noteworthy to have a more detailed picture of the
underlying physics related to these assumptions. Thus our goal is not to
explore the engineering and application aspects of the above model, which is
actually widely used in device simulations. Indeed, the model can be plugged
into different approaches based on Boltzmann, Wigner, or Non-Equilibrium
Green’s Functions. However, a comparative study of surface roughness-aware
transport approaches is beyond the scope of this work. Here, our goal is to
obtain a deeper understanding of the underlying physical processes which
make the model a feasible add-on to first principle quantum simulations.
In a first principles treatment surface roughness is part of the boundary
conditions. Thus, the above assumptions are explored here by using a Wigner
particle picture in the case of a concrete surface, randomly generated by using
typical values for the two parameters. This surface represents one of the many
possible samples accounted for in the average given by Equation 8.

The associated signed particle picture of the Wigner theory does not only
lead to numerical methods for stochastic simulation, but also to heuristic
models for physical analysis in terms of particles and phase space. It
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has been shown that the signed particle picture provides an independent
formulation of quantum mechanics [12] and has been applied to simulations of
a variety of physical problems including many-body systems [13] and density
functional theory [14].

The concept of signed particles and the numerical aspects of their appli-
cation to the SR aware transport problem are discussed in the next section.

3. Wigner signed particles

We present the main ideas giving rise to different models and algorithms
which have the concept of signed particles in common. Theoretical studies
about the possibility to develop particle approaches for the Wigner equation
were developed in the past [15] and were first implemented for a stationary
transport problem [16]. The core idea is to apply the numerical theory of the
MC method for solving integral equations to different integral forms of the
transport equation. Our presentation follows the historical evolution of the
concepts, which offers a rather heuristic way to introduce the attributes of
the signed particles. The development of these attributes has begun already
15 years ago for the stationary transport problem, defined by boundary con-
ditions: This problem is especially focused on this section, in order to show
that there is not a single, unique signed particle model, but rather a set of
attributes which may be combined into a variety of algorithms suitable for
particular tasks. It is then shown how these concepts can be modified and
completed, as it has been recently done for the transient task of evolution
from an initial condition [9].

In the next section, we first summarize the numerical aspects.

3.1. Numerical aspects

Let us consider a Fredholm integral equation of a second kind, with a
kernel K and a free term f0:

f(Q) =

∫
dQ′f(Q′)K(Q′, Q) + f0(Q)

Q ∈ Ω, Ω is domain from Rn, called simulation domain and K ∈ L2(Ω×Ω),
f0 ∈ L2(Ω) are known functions [17]. The solution f(Q) is given by the series

f(Q) =
∑
i

fi(Q); fi(Q) =

∫
dQ′fi−1(Q

′)K(Q′, Q) (9)
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obtained by the iterative replacement of the equation into itself. The con-
vergence of the Neumann series (9) is analyzed in [18].

A multi-dimensional integral can be presented as the expectation value

fi(Q) =

∫
dQ′P (Q,Q′)

fi−1(Q
′)K(Q′, Q)

P (Q,Q′)

of the random variable given by the term in the fraction distributed by the
term P , called transition probability for any fixed Q, which, except from some
constrains, can be freely chosen. The expansion of this equation presents fi as
a product of probabilities P with the quantity P

K
· P
K i
f0(Qi) called weight. The

consecutive applications of P give rise to a numerical trajectory Q,Q1, · · ·Qi.
The trajectory links the initial point, where the solution is evaluated, with
the point Qi, where the contribution of f0 is evaluated.

As applied to physical problems, where f plays the role of a distribution
function and f0 to the initial or boundary condition [19], the above fun-
damental algorithm is modified to compute mean values 〈A〉 given by the
integral of f with generic physical quantities A, like electron density or ve-
locity. In this case it is convenient to consider the adjoined equation with a
solution

g(Q′) =

∫
dQK(Q′, Q)g(Q) + A(Q′) ,

where A is assumed also from L2(Q). An important result is that physical
averages can be expressed via g.

〈A〉 =

∫
dQ′A(Q′)f(Q′) =

∫
dQf0(Q)g(Q) =

∑
i

〈A〉i (10)

Now, by applying the fundamental algorithm, we obtain a trajectory
which is constructed in the opposite direction: It begins from a point, where
f0 is evaluated and consists of consecutive points Qi, which are used to
evaluate the consecutive weights sampling the terms 〈A〉i. The first point Q
can be chosen by another probability p, called initial probability sampling
the random variable f(Q)/p(Q), which is the first term in the product giving
the consecutive weights.

Finally the value of the physical average is obtained by the statistical
mean of N trajectories giving N independent realizations of 〈A〉.

We conclude that in order to formulate a MC method it is sufficient to
specify the transport equation in terms of variables, kernel, and free term, as
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well as the initial and transition probabilities. Our ambition is spread beyond
the numerical aspects of the stochastic formalism: We intend, by choosing
a proper set of probabilities P and p, to add a physical interpretation of
the process of construction of the numerical trajectories. We begin with the
simpler, stationary task.

3.2. Stationary transport particle attributes

In the stationary case the point Q corresponds to a multi-dimensional
phase space point with coordinates r,k. The kernel is [16]:

K(r′,k′, r,k) =

∫ 0

−∞
dt′Γ(r′,k′,k)e−

∫ 0
t′ γ(r(y))dyδ(r′ − r(t′)) θD(r′) (11)

where the fieldless Newtonian trajectory r(t′) = r + ~k
m
t′ is initialized by r,k

at time 0, m is the effective mass, θD is the spatial indicator of the simulation
domain,

Γ(r,k′,k) = V +
w (r,k′ − k)− V +

w (r,k− k′) + γ(k)δ(k− k′) (12)

V +
w = Vwξ(Vw); γ(r) =

∫
dkV +

w (r,k) (13)

with ξ the Heaviside step function. Finally,

Vw(r,k) =
1

i~(2π)3

∫
dse−ik·s

(
V (r− s

2
)− V (r +

s

2
)
)

(14)

is the Wigner potential, obtained from the electric potential V . The free
term

f0 = fb(r(tb),k(tb))e
−

∫ 0
tb
γ(r(y))dy

(15)

which accounts for the boundary conditions fb via the boundary time tb -
the value of the time for which r(t) becomes a boundary point. fb appears
to be the same as in the Boltzmann transport case [20], which is related to
the fact that classical and Wigner-quantum equilibrium functions coincide.

A reformulation of the problem with the help of the adjoined equation
offers several advantages: The numerical trajectories now begin from the
boundaries, moreover the classical algorithm for injection of particles can be
used for selection of the initial point. Second, the backward parametrization
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of the trajectory r(t′), t′ < 0 becomes a forward one, t′ > 0. The terms in the
series (10) are obtained by the iterative application of the following term:

K̃(r′,k′,k, t) = e−
∫ t
0 γ(r

′(y))dyθD(r′(t))Γ(r′(t),k′(t),k) . (16)

The next step is to decompose (16) into conditional probabilities. By multi-
plying and dividing by γ it is obtained:

K̃(r′,k′,k, t) = pt(t, r
′,k′)θD(r′(t))

{
P+
w − P−w + Pδ

}
(r′(t),k′,k)3 (17)

with
pt = γ(r′(t))e−

∫ t
0 γ(r

′(y))dy; (18)

P±w (r′(t),k′,k) =
V +
w (r′(t),± (k′ − k))

γ(r′(t))
; Pδ = (k′ − k) . (19)

These conditional probabilities can be used to construct the transition proba-
bility P (r′,k′,k, t) from point r′,k′ to point r = r′(t),k. pt coincides with the
Boltzmann probability for finding the next scattering time with the power of
the Wigner potential γ playing the role of a scattering rate. This provides t
and thus the spatial coordinate r = rv′(t) of the next phase space point. At
this step the indicator θD kills the numerical trajectory, if r(t′) is outside the
simulation domain. Here we conclude that a trajectory begins by an event
corresponding to a boundary injection of a classical particle and survives un-
til evolving inside the simulation domain. In the latter case the wave vector
coordinate k is generated by the probabilities enclosed in the curly brackets.

However, we first need to choose which of the terms to be the generator
of the particular point. We have two options:

(a) To associate three probabilities ξi for choosing randomly which one
continues the trajectory. In this case the successive iterations contribute to
the weight by a factor Pi/ξi. For example, if ξi = 1/3, the total weight ac-
cumulated on a trajectory becomes a factor ±3 with any new point added
to the trajectory. Considering computational implementations, this, how-
ever, easily leads to a high memory demand, since the total weight grows
exponentially with the simulation time. The approach works unfortunately
only for electric potentials or simulation domains which are several orders of
magnitude smaller than the values posed by realistic problems.

(b) The second option is to leave part of the weight in the phase space
points, which can be used to initialize novel trajectories aiming to remove
the residual weight. An important property which will be further exploited

10



is that a weight with a given sign can cancel the same amount of weight with
the opposite sign if stored at the same place.

Now the dilemma is what should be the next step after the numerical
trajectory leaves the domain: (i) To begin a new one from the boundaries
or (ii) to take care of the residual weight. The problem has been solved by
an algorithm, where (i) and (ii) are alternating. The algorithm provides an
unbiased estimator of the expectation value of interest [16].

The next step is to abandon the scattering comprehension of the terms
in the curly brackets in favor of a generation comprehension: All three terms
generate a value of k which leads to a maximal randomization of the weight.
At this point we are ready to formulate the basic interpretation of the stochas-
tic algorithm for construction of a numerical trajectory, which introduces the
concept of particle sign:

1 The trajectory begins with a boundary injection of an initial particle
at a point r′,k′ (r′ belongs to the boundary). The particle weight is
set to unity.

2 A free flight over a Newtonian trajectory initialized by r′,k′ at time 0
continues until time t selected according to a scattering rate given by
γ, which determines r = r′(t).

3 A generation of three wave vector values ki follow ed, e.g., by the
scheme: k3 = k′, as determined by Pδ. Then q is generated according
to P+

w (k′,q), so that k2 = k′ − q and k3 = k′ + q.

4 The three phase space points r,ki become initial points for novel nu-
merical trajectories in the next iteration step. The genuine particle
survives and two novel ones are generated: Particle 2 retains the gen-
uine weight, while particle 3 multiplies it by −1. The weights are taken
into account in the computation of the physical averages of interest at
any step of the iterative procedure.

This creates a picture of classical-like particles which are injected from the
boundary with a positive sign and evolve over a Newtonian trajectory until
leaving the simulation domain. According to rules determined by the Wigner
potential they generate couples of secondary particles with ± sign, which,
in turn, continue over their own Newtonian trajectories, generating ternary
particles , and so forth. Positive and negative particles with a common phase
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space coordinates annihilate each other. Here it is important to note the role
of the time integral in (11). After accounting for the delta functions, only
a single time integration survives in the estimator of 〈A〉. It is, however,
sufficient to ensure the ergodicity of the task and to replace the ensemble
average over N trajectories (in the new language: N particles) by a time
average. This means that a single particle is followed during the simulation.
After leaving the simulation domain it is re-injected from the boundary or a
point with a residual weight.

It is important to note that this picture is not unique. There are many
options to modify the probabilities so that, e.g., a positive or negative single
particle is generated at a time. The advantage of the presented method is
that the charge is strictly conserved as it generates particles pairwise with
opposite sign. However, even this method is not unique [21].

3.3. Transient transport particle attributes - Initial condition

In the transient case the time becomes an active variable and the point
Q corresponds to a phase space - time point with coordinates r,k, t. The
kernel is

K(r′,k′, t′, r,k, t) = Γ(r′,k,k′, t′)e−
∫ t
t′ γ(r(y),y)dyθ(t− t′)δ(r′ − r(t′))θD(r′) .

(20)
Integration variables are the primed ones, in particular the time integral is
in the limits 0,∞. The free term f0 involves the initial condition fi which is
defined via the Newtonian trajectory r(t′) at time 0.

f0 = fi(r(0),k)e−
∫ t
0 γ(r(y),t)dy; r(t′) = r +

~k
m

(t− t′) (21)

The functions Γ and γ now depend on time via the electric potential V (r, t).
The general structure of the kernel resembles the stationary counterpart, in
particular the models for free flight selection and the generation of particles
remain the same. However, in this case, we can no more rely on the ergodicity
of the system. The time averaging provided by a single trajectory is now
replaced by an ensemble average. N particles are associated to the initial
condition. Their evolution must be followed synchronously in time. The
ensemble provides the physical averages at certain time fixed for all particles
- initial and generated. As the number of the latter grows exponentially
in time, the particle annihilation continues to be of crucial importance for
reducing the computational burden. However, now annihilation is seriously
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hindered by the lack of ergodicity: It is no more sufficient for two particles
with opposite sign to meet in the phase space in order to annihilate, they
must have evolved to the same evolution time.

The problem has been solved due to the Markovian character of the evo-
lution: At periodic time steps particles are recorded (i.e. summing the signs
which results in annihilation) in phase space, which gives rise to a reduction
of their number. To facilitate this process, a discrete momentum space has
been introduced [22].

From a numerical point of view this considerably reduces the numerical
error, since the iterative action of the kernel onto itself can be viewed as a
forth and back Fourier transform. Discrete momentum is also motivated from
a physical point of view: Physical systems like nanoelectronic structures are
usually bounded by a maximal length where coherence exists. The momen-
tum offset ∆k is directly linked to the coherence length Lc by the relation
∆k = π/Lc. In this way all spatial integrals are bounded by Lc, while the
momentum integration is replaced by a summation

∫
dk→

∑∞
m=−∞m∆k.

Now an important question arises: How can a discrete momentum space
be compatible with Newtonian acceleration? This question has been ad-
dressed as a general test and verification of the particle sign concepts [9].
For convenience a one-dimensional problem is considered. The classical evo-
lution of an initial peak f(x, k, 0) = Nδ(k)δ(x) corresponds to a continuous
acceleration by E of the particles over a Newton trajectory. According
to the quantum model, positive or negative particles are generated and an-
nihilate each other on the discrete momentum space points with a spacing
∆k = π/L.

Simulations show that this happens in such a way, that particles on the
initial node gradually decrease in favor of an increase on the node to be
occupied next. This results in a consecutive translation of the peak between
the adjacent nodes. The instances ∆t of full transfer between the nodes
are consistent with Newton’s law: ~∆k = eE∆t. Certain quantum effects
are observed and associated to the discrete picture. The analysis shows
that they disappear in the limit ∆k → 0 [9]. This is consistent with the
fact that classical and quantum evolution are equivalent for linear potentials
V (x) = Ex, which is expressed by the equality:

∫
dk′Vw(k − k′)f(x, k′, t) =

−eE∂f(x, k, t)/~∂k, obtained with the help of generalized functions and thus
holds in the case L → ∞. This establishes the transient signed particle
concepts as an alternative to the continuous process of Newton acceleration,
which it approaches asymptotically as the resolution of the discrete k-space
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increases.

3.4. Transient transport particle attributes - Boundary conditions

We are finally ready to utilize the developed concepts of signed particles
for constructing an algorithm appropriate for the SR simulation task. We
compare the evolution of current and density in an ideal wire and a wire
characterized by surface potential variations, as dependent on the periodic
injection of electron states from the source contact.

This means that we have to use the evolution concepts from Section 3.3,
while the approach to the boundary conditions must be adopted from Sec-
tion 3.2. As discussed in Section 3.2, adjoined MC trajectories begin from
the boundaries, where fb, (15), is defined. Since fb is zero outside, a trans-
formation from a domain to a boundary integral is possible, which gives rise
to a velocity weighted term fb|vb|, where vb(kb) is the normal component of
the inward-directed velocity.

Within a formal stochastic approach fb|vb| must be used to construct a
probability for the choice of the initial boundary point [16]. Here we use
a peculiarity of the physical task, allowing to replace the boundary term
by an initial term, which ensures indirectly the velocity-weighted boundary
condition. We wish the trajectories initialized on the boundary to correspond
to the process of injection of a minimum uncertainty Wigner state

φw(r,k) = Ce
−(r−r0)

2

σ2 e−(k−k0)22σ2

(22)

with C a normalization constant and σ is the variance, which for simplicity
is assumed the same for both spatial directions x and y.

Now we assume a particle distribution initialized with the help of the two
Gaussian functions in (22). The flux of such particles through any boundary
initially placed outside the region of initialization is fb|vb| with fb given by
the value of φw on that boundary. Therefore any such particle obeys the
distribution corresponding to the velocity-weighted boundary term and be-
comes a legitimate initial point of an adjoined MC trajectory in the moment
of crossing the boundary.

We note that in contrast to Section 3.2 now fb is a time-dependent func-
tion, determined by the distance between r0 and the boundary. Thus if we
wish the injection to begin at time 0, the Wigner state must be detached to
the boundary, which ensures that the first particles penetrate into the domain
without a delay. This consideration must be taken into account especially in

14



the case of consecutive injection of states with varying σ as required, e.g., in
the case of equilibrium.

4. Simulation results and analysis

The aim of the presented simulations of electron transport in quantum
wires is to analyze the physical processes as well as to evaluate the magnitude
of certain characteristic quantities in conjunction with the four assumptions
of the stochastic model (cf. Section 2). The Wigner particle approach ensures
a first principles treatment of quantum transport, which directly challenges
the last three assumptions of Section 2. Indeed, first the mode space rep-
resentation of the electron state (2) is now given by the two-dimensional
evolution of the Wigner equation solution. Furthermore, the local force in
(3) is now replaced by the complete electric potential which determines the
Wigner potential operator in the equation. Finally, the surface roughness
must be considered as a part of the electrostatic boundary conditions, since
stochastic processes cause irreversibility in the system evolution which con-
tradicts the first principle origin of the description. A concrete surface is
randomly generated by using typical values for the two parameters D and
λ. As discussed already, such a surface represents one of the many possible
counterparts accounted for in the average given by Equation (8).

The above considerations concern also the typical equilibrium conditions
commonly applied to semiconductor structures in the injecting contact. They
need to be abandoned in favor of a coherent injection approach: The funda-
mental representation of a particle in the pure state Schrödinger mechanics
is the minimum uncertainty wave packet. The corresponding Wigner pure
state is given by function (22). Injection of states with a constant σ is a nec-
essary condition for a coherent evolution: Indeed, injection of mixed states,
e.g., according to Fermi-Dirac or Maxwell-Boltzmann distributions, already
introduces decoherence in ballistic devices [23]. Thus, in the case of coher-
ent injection, σ does not vary according to a given distribution, but is kept
constant.

The aim is twofold: Firstly, to avoid smearing of the results due to the
thermal averaging which helps to outline the quantum effects, and secondly,
to allow the imposition of conditions far from equilibrium.

Based on our computational approach, we focus on the electron density,
velocity, and current. We note the lack of dissipation processes: The total en-
ergy is conserved in the electron-potential interaction. In general, the chosen
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values of the physical quantities and parameters are typical for semiconductor
electrons.
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Figure 1: The wire is defined by two 0.8eV high and 5nm wide walls, which smoothly drop
to zero within a few nanometers towards the middle of the channel.

Figure 1 shows the simulation domain and the potential profile. The ideal
wire is defined by two 0.8eV high, 5nm wide walls, which smoothly drop to
zero within a few nanometers towards the middle of the channel. Smoothing
is necessary to avoid artificial frequencies which are otherwise introduced
in the system by Fourier transforms of abrupt potential changes. A Tukey
window is used for the smoothing, details are given in [24].

Equivalent Wigner states with σ = 2nm, corresponding to the mean equi-
librium electron energy at room temperature, are regularly injected through
the y = 0 boundary of the wire with a period of 5fs (Figure 1).

They are initialized several σ below the point x = 10, y = 0: Figure 2
shows the density after 50fs evolution, which corresponds to the injection of
10 boundary states with central wave vector values of k0x = 0, k0y = 7∆k.
The square mesh in the momentum space (∆k = π/Lc) is determined by
a coherence length Lc;x,y = 45nm and corresponds to an energy of 1meV
for an effective mass of 0.19. With this choice of the coherence length all
discretization points of the simulation domain are correlated via the Fourier
transform for the Wigner potential kernel. Since the electron density outside
of the device domain is zero, the action of the Wigner kernel is restricted
to the inside of the domain, so that a further augmentation of Lc, besides
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the reduction of ∆k, has no physical effect. On the contrary, a reduction of
Lc causes decoherence and transition to classical behavior: It can be shown
that the effect of a stochastic scattering (e.g by phonons) causes an effective
reduction of the coherence length [26].

We note that the governing physical process is tunneling, as there are no
artificial boundaries to reflect the particles. Additionally, all particles leaving
the simulation domain are absorbed, c.f. Section 3.
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Figure 2: Density (in arbitrary units) after injection of 10 states (left). The potential
walls and the middle of the wire are denoted by white lines. The current just begins to
increase, which outlines the transient regime of the evolution (right).

An initial spread towards the walls is clearly visible, until the potential
redistributes the electron density along the channel. The current, calculated
with the Ramo-Shockley theorem [27], linearly increases due to the periodic
injection of electron states. After 200fs, steady-state conditions are reached,
as suggested by the behavior of the current in Figure 3.

The initial spread of the density near the injecting contact remains until
the quantum repulsion establishes control by squeezing the electron system
away from the walls. One can easily create a reference picture with a classi-
cal evolution, where electrons are reflected only by a contact with the walls
and thus are spread to the white lines marking the walls. Furthermore, the
effect of the contacts is well pronounced, so that the density is homogeneous
along the middle of the wire in y-direction. The abrupt change of the phys-
ical conditions near the injecting and the absorbing contacts modifies the
electron distribution. The simulation provides useful information about the
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Figure 3: Density (in arbitrary unit) after 400fs evolution (left). The system enters into a
stationary regime after 200fs, as seen from the current which remains constant during the
next 200fs (right).

approximate length scale where the density may be considered as piecewise
homogeneous. The effect depends on the boundary conditions and should
vanish near equilibrium, as expected from physical considerations.
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Figure 4: Density (in arbitrary unit) after 400fs evolution of the ideal (left) and the rough
wire (right). Here k0y = 5∆k, corresponding to an energy of 0.25meV.

The assumptions related to the mode space approach are expected to be
seriously challenged in the case of a rough surface. The latter is obtained by
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superimposing variations of the potential with the auto correlation function
(8) on the ideal geometry. Values of mean offset of 0.5nm and a correlation
length of 5nm are chosen. Since the variations are imposed independently on
each wall, the local change of the diameter can reach 1nm. Figure 4 compares
densities of the ideal and the rough wire.

Here we again invoke as a reference the classical electron density, which
follows the pattern of the walls, since the latter rigidly reflect the impinging
electrons. In the quantum case the density smoothly follows the change in
shape of the wire: The scale of local potential and thus of classical density
variations differs from the scale of the quantum density variations. The latter
appears as a distance quantity averaged over a few nanometers. This provides
a strong argument in favor of the mode space approach which may be applied
piecewise on the same scale.

The electron path in the rough wire is longer as compared to the ideal
case, which should be reflected by a reduction of the current.
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Figure 5: Current evolution in the ideal and rough wires for three different values of k0y,
corresponding to kinetic energies of 100meV, 50meV, and 25meV.

This is indeed the case in Figure 5, showing the current evolution in the
ideal and rough wires for three different values of k0y of the injected states,
corresponding to kinetic energies of 100meV, 50meV, and 25meV. It is seen
that states with lower kinetic energy need more time to establish stationary
conditions. Furthermore, the effect of the roughness on such states is more
pronounced, giving rise to a higher reduction of the current.
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These current evolution simulations provide practical information about
the relevance of the stochastic model of Section 2 for surface roughness aware
transient approaches. As discussed, the first assumption requires sufficient
time for establishing the energy conserving delta function. As seen from
Figure 5, the transient time until the establishment of the stationary current
in the simulated structure and injected electrons with kinetic energy at and
above the equilibrium energy kT = 25meV is in the range of 100−200fs. For
a typical semiconductor the time for establishing the energy conserving delta
function is less, but of this order [8]. For faster transitions any stochastic
model based on the Fermi Golden Rule must be replaced by a non-Markovian
approach [25].

Useful information is provided by the comparison of the ky distribution
(which is proportional to the y-component of the electron velocity ~ky/m) in
the rough and in the ideal wires.
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Figure 6: Difference of the ideal and rough marginal k distributions in transport direction

Figure 6 shows a histogram of the difference between the ideal and the
rough marginal ky distributions. Here again the ideal case serves as reference
picture. Since there is no reflection in the transport direction, all velocities
point in the positive direction. The difference of the wave vector probability
distributions shows both a reduction of the probability for high values and
the existence of negative values due to the quantum reflection caused by the
rough potential.
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5. Computational aspects

The simulations discussed in this work have been generated by using the
free open source Wigner Ensemble Monte Carlo (WEMC) simulator shipped
with ViennaWD 1. WEMC is a C-based simulator controlled by a Lua script
frontend for simulator control, supporting quantum transport simulations of
one- and two-dimensional nanoelectronic structures. The simulator solves
the semi-discrete Wigner equation, using the signed particle MC approach.
Access to a development repository is available upon request. The tool sup-
ports single and continuous injection of minimum uncertainty wave packets
as well as arbitrary shapes of potential barriers and other various parameters.
The simulator offers parallel execution in a distributed-memory environment
based on the message passing interface and a domain decomposition ap-
proach.
The simulations were performed on VSC-32 which represents the currently
largest supercomputer in Austria. The system consists of 2020 nodes, each
equipped with 2 Intel Xeon E5-2650v2 (total of 16 physical and 32 logical
processors per node) and 64 GB of main memory. The network is based on a
fat tree topology powered by an Intel QDR-80 dual-link InfiniBand fabric.

6. Conclusions

Wigner signed particles provide both a comprehensive and intuitive com-
putational approach for analyzing the physical effects induced by surface
roughness in quantum wires. The major effects are caused by a combination
of the fluctuation in the surface potential caused by the rough surface, and
the quantum repulsion from the potential walls. This is in contrast with the
classical behavior, and thus explains the failure of surface roughness models
which rely on a classical picture where particles interact with the wall, to ade-
quately describe the electron transport in quantum wires. Advanced models,
such as the one derived in this work, correctly account for this phenomena
via solutions of the Schrödinger equation in the confined direction. Such
models rely on approximations like the mode space approach and statistical
averaging to avoid the problem of having to simulate a statistical ensemble
to gain a meaningful average.

1http://viennawd.sourceforge.net/
2http://vsc.ac.at/systems/
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From a classical point of view these approximations conflict with the
existence of surface roughness. However, the behavior of the quantum density
supports their application: In a numerical treatment the wire is decomposed
into slices considered as homogeneous. In general, the physical conditions
along the wire must vary smoothly in order to both, allow the statistical
treatment of the surface imperfections and to avoid contact effects, which
may be caused, e.g., by highly nonequilibrium conditions along the wire.

Based on the presented simulations we analyze the physical aspects of the
electron transport in rough quantum wires. However, we have also shown
that signed particle algorithms provide a rigorous and convenient approach
for analyzing a variety of engineering problems related to confined electron
transport.
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