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Abstract 

RBR ligases are an enigmatic class of E3 ubiquitin ligases that combine properties of RING and 

HECT-type E3s and undergo multi-level regulation through autoinhibition, post-translational 

modifications, multimerisation and interaction with binding partners. Here we summarize 

recent progress in RBR structures and function, which has uncovered commonalities in the 

mechanisms by which different family members transfer ubiquitin through a multi-step 

process. However, these studies have also highlighted clear differences in the activity of 

different family members, suggesting that each RBR ligase has evolved specific properties to 

fit the biological process it regulates. 

 

Main text 

Post-translational modification (PTM) of proteins is a crucial mechanism to regulate 

cellular processes without requiring protein synthesis de novo. Ubiquitination is one of the 

most versatile PTMs and target proteins can be modified by attachment of either a single 

ubiquitin (Ub) molecule or by chains of Ub molecules that can be linked in many different 

ways. In addition, ubiquitin itself can be post-translationally modified adding yet another 

layer of complexity. Ubiquitination is catalysed via an enzymatic cascade involving an E1 

activating enzyme, an E2 conjugating enzyme and an E3 ubiquitin ligase. E3 ligases select the 

substrate and promote ubiquitin transfer onto the target either directly from the E2 

conjugating enzyme, a mechanism adopted by Really Interesting New Gene (RING)-type 

ligases, or via an E3-ubiquitin thioester intermediate as observed in Homologous to E6-AP C-

terminus (HECT)-type and RING-Between-RING (RBR)-type ligases1.  
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HECT-type E3s contain a conserved, bilobal HECT domain that recognises the E2~Ub 

conjugate and forms the E3~Ub intermediate. In contrast, RBR ligases contain a tripartite 

domain arrangement, which consists of 3 zinc (Zn)-binding domains: a RING1 domain that is 

similar to the canonical cross-brace RING fold, followed by IBR (In-Between-Ring) and RING2 

domains that adopt highly similar structures, in which the two Zn2+ ions are coordinated in a 

sequential manner2.  

 Substrate ubiquitination by RBR ligases is a multi-step process. It starts with 

recognition of the E2~Ub conjugate by RING1, followed by transfer of the ubiquitin onto the 

catalytic cysteine in RING2 to form the thioester intermediate, and finally transfer onto the 

substrate. The targeted residue can be a lysine residue in a substrate protein to 

monoubiquitinate or a lysine residue or the N-terminal amino group of ubiquitin to build a 

poly-Ub chain (Fig. 1). This process combines mechanistic features of RING and HECT-type 

ligases that are performed by specific sub-domains of the RBR motif: the E2~Ub-recognizing 

RING1 and the thioester-forming RING2 domain. These domains are separated by the IBR 

domain and two adjacent flexible linker regions that enable the 3 RBR sub-domains to adopt 

multiple conformations with respect to one another, which together with intramolecular 

interactions with regions outside the RBR allow for highly variable mechanisms of inhibition 

and activation to occur.  

Of the 14 RBRs present in humans3, only 3 have been studied in detail, Parkin, HHARI 

and HOIP, and these will be the focus of this Perspective. While they share commonalities in 

their mechanism of action, there are also clear differences suggesting that the mechanism of 

ubiquitin transfer and regulation of RBRs should be regarded as a common catalytic process 

with many twists to accommodate specific requirements of a given system employing an RBR 

E3 ligase. 
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Inhibition  

As soon as RBRs were discovered to have a catalytic cysteine, similar to the HECT-type 

E3 ligases4, it was quickly established that most RBRs restrain the enzymatic activity through 

inhibitory mechanisms5-9(Fig. 2a). However, these modes of inhibition differ between 

members of the family. For example, in Parkin the proposed E2-binding site is blocked by a 

small helix (Repressor Element of Parkin-REP), disruption of which promotes enhanced E2 

binding10. However, blocking the E2 binding site is not a universal mechanism for regulating 

RBR activity, as HHARI is able to recruit UbcH7 with submicromolar affinity, even in its 

inhibited conformation (Fig. 2a)8. Recent structures of HHARI11-13, and HOIP in complex with 

E2 loaded with ubiquitin (E2~Ub)14, confirm that the predicted E2 binding site on the first helix 

of the RING1 domain is indeed where E2 sits within these complexes (Fig. 2b-d). Thus, in the 

case of Parkin, it seems likely that some conformational rearrangements occur to expose this 

site in the productive Parkin-E2 complex.  

 In the structures of autoinhibited Parkin and HHARI, the catalytic cysteine (C431 and 

C357 respectively) is occluded by secondary structure elements unique to each RBR (Fig. 

2a)8,10,15,16. In the case of Parkin, this is the RING0 domain. Deletion of RING0, or point 

mutations in residues securing the RING0:RING2 interface, lead to increased Parkin activity, 

likely through enhanced access to the catalytic cysteine10,15,17. In HHARI, the catalytic cysteine 

is more completely occluded by a pair of charged residues in the Ariadne domain (Glu510-

Arg511)8. However, recent structures of HHARI in complex with E2~Ub show that binding of 

the Ub-loaded E2 is not sufficient to expose the catalytic cysteine, suggesting that further 

modifications are needed to release the Ariadne domain from the catalytic site (Fig. 2c)11,13.  
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 The first evidence that the RBRs were regulated at the molecular level by regions 

outside the RBR module came from the finding that the N-terminal ubiquitin-like (Ubl) domain 

of Parkin maintained an inhibited conformation, and that removal or disruption of this 

domain leads to Parkin activation5,18,19.  Similarly, removal of domains N-terminal to the RBR 

from the LUBAC subunit HOIP leads to increased activity of HOIP6,7 (however, the multisubunit 

E3 ligase LUBAC is more complex, because HOIP has not yet been found to exist without HOIL-

1 or SHARPIN, which release these autoinhibitory effects within the complex6,7,20-22). 

Together, these findings suggest that domains outside the RBR module, unique to each family 

member, play a key role in regulating ligase activity.  

Activation 

Elucidating how RBRs are activated is key to a mechanistic understanding of these 

enzymes. Parkin can be activated by binding a ubiquitin moiety that carries a phosphate group 

at serine 65 (phosphorylation catalysed by the kinase PINK1)23-25. Activation of Parkin also 

requires phosphorylation of the equivalent serine in the inhibitory Ubl domain of Parkin itself 

(also catalysed by PINK1)26. Intriguingly, in the cases of both Parkin and HHARI, structures of 

Parkin bound to its cognate activator phosphoubiquitin (pUb) and of HHARI bound to its 

cognate E2 do not seem to capture the active forms of the proteins. For example, in both 

structures of phosphoubiquitin-bound Parkin (one containing the C-terminal RING0-RBR, one 

containing the Ubl-RING0RBR), the RING0 position remains unaltered, and still partially 

occludes the catalytic cysteine, while the REP is still occluding the proposed E2 binding 

site27,28. Similarly, when HHARI is bound to E2~Ub, the Ariadne domain still occludes the 

catalytic cysteine of HHARI (Fig. 2c)11,13. Therefore, it seems likely that further conformational 

changes are induced by other mechanisms, likely the phosphorylation of the Ubl domain in 

Parkin, and/or by substrate binding for other RBRs, however, these states are yet to be 
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captured. Indeed, full-length NMR analysis of phosphoParkin reveals an extended, less 

globular conformation, but only in the presence of pUb. This suggests that neither pUb, nor 

phosphorylation of the Ubl alone are sufficient for Parkin activation, but rather both 

activation mechanisms are necessary. 

The role of ubiquitin and ubiquitin-like proteins 

An intriguing observation from the multiple structures of RBRs now available are the 

apparent multiple binding sites for ubiquitin and ubiquitin-like proteins, and the potential for 

regulation of activity. For example, in the case of HOIP, a structure of the catalytic RING2-LDD 

(Linear ubiquitin chain Determining Domain) in complex with ubiquitin clearly shows separate 

binding sites for both acceptor and donor ubiquitin molecules (Fig. 3a)30. HHARI forms 

additional interactions with ubiquitin via the loop linking the IBR-RING2 domains12. The HOIP-

E2~Ub structure14 provides details of the docking site for donor ubiquitin (Fig.3b), a site also 

predicted by the structure of a Parkin-pUb complex to bind ubiquitin (Fig. 3c)28. This site is 

along the outside of the helix leading into the IBR domain of each protein.  

Intriguingly, the opposite side of the same helix seems to mediate various regulatory 

interactions in the three best studied RBRs. In Parkin, it is the site of pUb binding27,28. In HOIP, 

it is where additional ubiquitin moieties, suggested to play an allosteric role, are found in the 

crystal packing of the HOIP-E2~Ub structure14. In HHARI, this site is occupied by the UBA-like 

(UBA-L) domain, suggesting a potential regulation by either blocking this site or recruiting a 

Ubl (Fig. 3d). Two recent structures of HHARI complexed with E2~Ub show contacts between 

the ubiquitin moiety and the UBA-like domain. The interaction mode however is different in 

the two structures, suggesting multiple locations can be sampled by the E2~Ub conjugate. 

Finally, a recent study reports activation of Parkin by the ubiquitin-like protein (UBL) ISG15, 

through covalent attachment to a lysine in the immediate vicinity of the pUb binding site31. 
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In combination, these studies suggest a role for covalent and noncovalent ubiquitin and 

UBL binding in the activation and regulation of RBRs (Fig. 3e). Furthermore, the surfaces 

identified to bind Ub and UBLs, may constitute more general protein-protein interaction sites 

that could be recognised by other as yet unidentified regulators. 

Activation by other proteins 

In addition to the ubiquitin-like interactors, several other proteins influence the activity 

of RBR ligases. This is particularly pertinent in the case of HOIP. In contrast to Parkin and 

HHARI, the autoinhibited state of HOIP is constitutively released through interaction with its 

LUBAC partners HOIL-1 and SHARPIN. In effect, HOIP activity is regulated through association 

with the deubiquitinases (DUBs) OTULIN and CYLD32-35. At present, it is not clear why this 

fundamental difference between the regulation of activity of LUBAC and Parkin/HHARI exists. 

However, there are reports of additional interacting partners stimulating activity of Parkin 

and HHARI. For example, interaction with Eps15 and endophilin A via the Ubl domain of Parkin 

point towards a possible substrate-induced relief of inhibition5,36,37. Furthermore, the Ariadne 

domain of HHARI binds to Cullin-RING ligases (CRLs), and this interaction greatly enhances 

HHARI activity 38,39.  

Finally, perturbing the intricate domain-domain associations within RBR ligases can lead 

to activation. For example, it is known that tagging the N-terminus of Parkin with either large 

globular proteins, or small unstructured epitope tags leads to activation, and in some cases 

changes substrate preference5,40,41.  

 

The ubiquitin transfer cycle 

Over 30 ubiquitin-specific E2 conjugating enzymes exist, most of which carry out both 

aminolysis and transthiolation reactions and hence work with RING as well as HECT and RBR 
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ligases42. In contrast, UBE2L3 (UbcH7) is strictly cysteine-reactive and unable to transfer 

ubiquitin in conjunction with RING ligases (though curiously can form stable complexes with 

some of them). A number of reports suggest that UbcH7 is the physiologically relevant E2 for 

HOIP and HHARI43,44, yet for most RBR ligases the cognate E2(s) remain unknown and in vitro 

studies often use UBE2D (UbcH5) isoforms, promiscuous E2s that are active with many 

different E3s .  

Interaction with cognate E2 and prevention of accidental ubiquitin discharge  

Isolated E2~conjugates undergo aminolysis only slowly and require a mechanism to 

increase the rate of ubiquitin transfer. This is achieved by complex formation with canonical 

RING domains that stabilise the otherwise dynamic and flexible conjugate in a closed 

conformation, in which the I44 hydrophobic patch of ubiquitin contacts the 2 helix of the 

E245-48. Given the high structural similarity of RING1 domains to canonical RINGs this raises 

the question how ubiquitin discharge onto a lysine residue is prevented upon engagement of 

E2~Ub conjugates (other than UbcH7) by RBR E3s. Recent structural and biochemical studies 

provided an explanation for this behaviour: RING1 domains stabilise an open E2~Ub 

conformation in which lysine reactivity is supressed, and instead transthiolation, an 

equilibrium reaction that does not require activation, is promoted12. Interestingly, the 

stabilisation of an open E2~Ub conformation is observed for complexes of RBR domains with 

both UbcH5 and UbcH7, despite the inability of UbcH7 to transfer ubiquitin onto lysine 

residues. This observation indicates that the prevention of unproductive, and possibly 

detrimental discharge of ubiquitin onto nearby lysine residues is a key feature determining 

the mode of the RING1-E2~Ub interaction. Structures of HHARI/UbcH7~Ub complexes show 

that the RBR-E2~Ub interaction is dominated by the RING1-E2 interface, with minor contacts 

between ubiquitin and the UBA-like domain of HHARI which is located N-terminal to the RBR 
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domain (Fig. 2c)11,13. However, these additional contacts do not appear to be functionally 

important as the isolated RING1 domain is sufficient to engage the E2~Ub in an open 

conformation11 and the presence of the UBA, IBR and RING2 domains does not increase the 

affinity of the E2~Ub conjugate for HHARI49.  

Recognition of UbcH7 by RING1 occurs in a similar manner to canonical E2/E3 complexes and 

includes residues from loops 4 and 7 of the E2 and from two Zn2+-coordinating loops and the 

central helix of HHARI RING1. However, the second Zn2+ loop of most RING1 domains is longer 

than in canonical RINGs2 (by two residues in HHARI) and acts as a steric wedge to prevent 

UbcH7~Ub from adopting a closed conformation (Fig. 2c)11,13. Furthermore, RING1 domains 

lack the conserved “linchpin”, a basic residue in canonical RINGs that simultaneously contacts 

the E2 and ubiquitin. Interestingly, HOIP does not contain an extended Zn2+ loop but also binds 

an UbcH5~Ub conjugate in the open conformation (Fig. 2d)14. However, in contrast to the 

predominantly E2/RING1-driven HHARI/UbcH7~Ub interaction, HOIP makes extensive non-

covalent contacts with ubiquitin along the entire RBR domain14.  These contacts are crucial 

for complex formation as the affinity of the HOIP RBR for isolated UbcH5 is very low and 

ubiquitin conjugation is required to form a stable complex. A similar behaviour is observed 

with HHARI, suggesting that there might be differences in the manner by which UbcH5 and 

UbcH7, which only transfers Ub onto cysteine, are recognised by RBRs49.  

In the case of Parkin, there is no appreciable affinity between wild-type Parkin and any 

E2 enzyme18,19. Removal of the Ubl domain does not lead to a close association with E2s, 

neither does mutation of the repressor element of Parkin. However, phosphorylation of 

Parkin enables binding to UbcH7 with a dissociation constant of ~160 µM19 and addition of 

pUb increases the affinity ~5-fold to a Kd of 20-30 µM18,19,28. Yet, these are still low affinity 

interactions, and only when the UbcH7 is loaded with ubiquitin, pUb is present, and Parkin is 
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phosphorylated does the interaction become sub micromolar18,28, in the same range as the 

HHARI-UbcH7 interaction. The Parkin/E2~Ub complex is yet to be defined structurally, and 

therefore it is unclear what conformation will be supported by RING1 of Parkin. However, in 

contrast to HHARI, Parkin can function with multiple E2s5, and in contrast to HOIP, Parkin can 

catalyse the formation of multiple chain types, suggesting there may be further layers of 

regulation. 

Transfer of ubiquitin from E2 to RBRs 

Transfer of ubiquitin from E2 to E3 requires the active site cysteines of both proteins 

to come into close proximity. The HOIP/UbcH5~Ub complex provides a first glance at how this 

transthiolation step may occur14. The crystallised complex shows two molecules of the E2~Ub 

conjugate bound to two molecules of the RBR such that ubiquitin transfer would occur in 

trans (Fig. 2d). However, the authors argue that this arrangement is an artefact due to a 

domain swap and instead ubiquitin transfer occurs in cis within a single RBR chain, which 

makes extensive contacts with ubiquitin to guide RING2 towards the E2~Ub conjugate. 

Intriguingly, SAXS analysis of RBR/E2~Ub complexes does not support the existence of a stable 

compact species, in which the RBR is tightly wrapped around the E2~Ub conjugate, suggesting 

that this species is highly transient49. It is tempting to speculate that the elongated 

conformation of HOIP-RBR observed in the crystal structure (Fig. 2b) and the domain-

swapped compact conformation (Fig. 2d) may represent two species at opposite ends of the 

reaction pathway: the initial encounter complex and the E2/E3 ubiquitin transfer complex.  

An intriguing feature of the compact complex is the occlusion of the acceptor ubiquitin 

binding site on RING2 by the bound E2 (Fig. 2d). This could suggest that linear ubiquitin chain 

synthesis by HOIP is not processive as the growing chain will need to dissociate for each round 

of ubiquitin transfer. The advantage of such a mechanism is not clear at present, but it may 
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provide a regulatory mechanism to limit activity. In this respect, it is interesting that binding 

of ubiquitin chains to an allosteric ubiquitin-binding site formed by the IBR domain and 

preceding linker, opposite the donor ubiquitin-binding site, has been suggested to act as an 

activator, implying that linear chain synthesis might be tightly controlled by opposing positive 

and negative regulatory signals.   

 

Cooperation between RBR modules 

LUBAC functions as at least a dimer of 2 RBR ligases, HOIP and HOIL-1, with an 

additional subunit, SHARPIN. HOIP has also been reported to function with Parkin under 

cellular stress, with Parkin increasing LUBAC activity50. In the structure of the HOIP RBR 

module bound to E2~Ub, the donor ubiquitin carried by the E2 bound to one molecule of 

HOIP, interacts with the RING2 domain of a second molecule of HOIP14, meaning that the 

RING2 of one RBR completes the second RBR moiety (Fig. 2d). It is tempting to speculate that 

this arrangement may mimic a potential interaction between the RBR modules of HOIP and 

HOIL-1, thereby adding yet another layer of regulation. Intriguingly, the crystal structure of 

Parkin in complex with pUb also shows a potential coupling of multiple RBR modules, whereby 

the IBR domain cradling the donor ubiquitin in one molecule of Parkin could transfer that 

ubiquitin to the RING2 domain of a second Parkin molecule28. Rescue experiments mixing RBR 

mutants lend some support to this notion. RNF144, which is an RBR ligase that contains only 

the RBR module and a short transmembrane domain, has been suggested to function only as 

a dimer, with oligomerisation through the transmembrane domain, further supporting the 

notion that RBR domains may regulate each other51. However, this does not seem to be the 

case in HHARI11,13 where transfer from E2 to E3 occurs in cis. Whether RBRs can cooperate in 

trans, perhaps through the multiple ubiquitin docking sites, remains an open question.  
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Substrate selection and chain linkage specificity 

Our knowledge of the structural features underlying substrate selection by RBR ligases 

is currently limited to ubiquitin itself during linear chain synthesis by HOIP, which is bound by 

RING2 and a C-terminal region referred to as the linear chain determining domain (LDD)(Fig. 

3a)30. In contrast, nothing is known about how the hundreds of proposed Parkin substrates 

may be recognised52 or how HHARI may select CRL substrates to prime them by 

monoubiquitination39. Substrate selection by HHARI may be driven by recognition of 

neddylated CRLs38.  

 Linkage specificity of the polyubiquitin chain is generally believed to be determined 

by the last thioester-forming enzyme of the ubiquitination cascade, implying that E2 enzymes 

adopt this role in conjunction with RING E3s whereas HECT and RBR ligases themselves 

control chain type. At present, HOIP is the only RBR member which strictly follows this rule 

and only synthesises linear (M1-linked) chains. This activity requires a specific region of HOIP 

that binds the acceptor ubiquitin, the LDD, which is partially integrated within RING2 (Fig. 2b). 

In contrast, Parkin forms multiple types of polyUb chains, whereas HHARI primarily 

monoubiquitinates its substrates to work with Cullin E3s, but can also mediate polyUb chain 

synthesis in autoubiquitination assays. For other RBR family members details of linkage 

specificity are still largely unexplored. This apparent lack of chain linkage specificity, at least 

with Parkin, raises the question why the reaction would need to proceed via an E3-thioester 

intermediate, which is generally assumed to provide linkage specificity.  

 

We speculate that the multi-step mechanism adopted by RBR ligases, using 3 domains 

tethered to one another by flexible linkers may be important to allow the E3 to retain 
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selection of the lysine residues (or the N-terminal methionine) to be modified during the 

initiation and chain extension process, regardless of the E2 they are working with. 

Furthermore, the flexible tripartite domain structure of RBRs allows multiple levels of 

regulation including post-translational modifications, interaction with ubiquitin, pUb, UBLs 

and other binding partners or association with membranes.  

Future directions 

At present, we only have a very incomplete picture of the dynamic range of these 

proteins and many questions remain unanswered, particularly with respect to substrate 

selection, chain linkage specificity, possible cooperation between RBR modules and 

regulation of activity in vivo. There are undoubtedly many more twists in the RBR tale to be 

uncovered!  
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Box 1: 

14 RBRs are present in humans, but only 3 have been studied in any detail so far: Parkin, 

HHARI and HOIP. Parkin is important for the maintenance of mitochondrial homeostasis and 

mutations in the Parkin genes are associated with autosomal juvenile Parkinsonism53,54. 

HHARI (and its homologs in other species) have been associated with a number of cellular 

functions including the regulation of developmental processes, of protein translation and of 

cellular proliferation44,55,56. In contrast to Parkin and HHARI that function as single 

polypeptides, HOIP is a subunit of the linear ubiquitin chain assembly complex (LUBAC), a 

constitutive complex of two RBR-domain containing proteins, HOIP and HOIL-1, plus SHARPIN. 

LUBAC was initially shown to play a crucial role in the regulation of immune and inflammatory 

signalling, but has since been linked to the regulation of multiple cellular functions including 

apoptosis and cancer20-22,57. 
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Figure Legends 

Figure 1. The catalytic cycle of RBR ligases 

Schematic representation of ubiquitin transfer mediated by RBR ligases starting with binding 

of an E2~Ub conjugate by the RING1 (red), followed by transfer of the ubiquitin from the E2 

(yellow) to the catalytic cysteine in RING2 (blue) and onto a substrate, (here a ubiquitin 

molecule to form a ubiquitin chain; the donor ubiquitin is highlighted in purple and the 

acceptor ubiquitin in cyan). Arrows indicate the likely flexibility of the linkers connecting the 

RBR subdomains. Regions outside the RBR are indicated in grey. 

 

Figure 2. Domain arrangement during autoinhibition and in the active state of RBRs 

(a) The autoinhibited structures of Parkin (left, PDB 5C1Z) and HHARI (right, PDB 4KBL) in the 

same orientation, aligned via helix 1 of  RING1 (red), with IBR in green, RING2 in blue and 

regions outside the RBR in grey. The relative domain arrangement of the RBR subdomains is 

shown beneath to illustrate the differences in the position of the RING2 domains. The 

positions of the catalytic cysteine in RING2 is indicated. (b) The RBR domain of a single 

polypeptide of HOIP as seen in the active HOIP/UbcH5-Ub-bound structure (PDB 5EDV) in the 

same orientation as Parkin and HHARI.  The LDD is highlighted in cyan. (a,b) The composition 

of domains outside the RBR modules is shown as schematics underneath the crystal 

structures. HOIP contains a PUB domain, 3 zinc finger domains and a UBA domain N-terminal 

to the RBR (“PUB-NZFs-UBA”). (c) Structure of the HHARI/UbcH7~Ub complex (PDB 5UDH), 

showing that RING2 does not contact the donor ubiquitin (purple) and that the catalytic 

cysteine is still occluded after E2~Ub binding. (d) Structure of the HOIP RBR module in its 

closed, domain-swapped form, bound to UbcH5-Ub. The RING1 (red) and IBR (green) domains 

are contributed by molecule 1 and RING2 (blue) and LDD (grey) by molecule 2. The acceptor 
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ubiquitin binding site that is occluded by the E2 (yellow) is highlighted in cyan. The proposed 

allosteric ubiquitin is shown in orange. 

 

Figure 3. Multiple Ub and Ubl-binding sites determine the activity of RBRs 

(a) Complex between the HOIP RING2/LDD fragment and a donor (purple) and acceptor (cyan) 

ubiquitin (PDB 4LJO) showing how HOIP recognizes the acceptor ubiquitin in such a manner 

that only a linear (M1-linked) chain can be built. (b) Complex of HOIP RBR with E2~Ub (PDB 

5EDV), with RING1 (red), linker helix (grey) and IBR (green) shown. E2 (yellow) positions the 

donor ubiquitin (purple), and the proposed allosteric ubiquitin (orange) binds to the linker 

helix and IBR domain. The schematic above is coloured accordingly. (c) Parkin-pUb complex 

(PDB 5N2W) with RING1 (red), linker helix (grey) and IBR (green) shown. Phosphoubiquitin 

(orange) binds to the linker helix, and the proposed donor ubiquitin binding site, occupied by 

a Ubl domain in the structure, is shown in purple. The schematic above is coloured 

accordingly. (d)  HHARI structure (PDB 5UDh) with RING1 (red), linker helix (grey) and IBR 

(green) shown. The UBA-like domain (orange) packs against the linker helix. The schematic 

above is coloured accordingly.  (e) Schematic of the positions in RBR domains identified so far 

that can binding ubiquitin or ubiquitin-like molecules. The donor ubiquitin is shown in purple 

with multiple shaded molecules indicating that the donor ubiquitin can make contacts across 

all domains of the RBR. The acceptor ubiquitin identified in HOIP is shown in cyan and the 

position of allosteric ubiquitin and ubiquitin-like binders is indicated in orange. 
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