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Abstract 8 

Fluid/melt inclusions in diamonds, which were encapsulated during a metasomatic event and 9 

over a short period of time, are isolated from their surrounding mantle, offering the opportunity 10 

to constrain changes in the sub-continental lithospheric mantle (SCLM) that occurred during 11 

individual thermo-chemical events, as well as the composition of the fluids involved and their 12 

sources.  We have analyzed a suite of 8 microinclusion-bearing diamonds from the Group I 13 

DeBeers-Pool kimberlites, South Africa, using FTIR, EPMA and LA-ICP-MS.  Seven of the 14 

diamonds trapped incompatible element enriched saline high density fluids (HDFs), carry 15 

peridotitic mineral microinclusions, and interstitial nitrogen almost exclusively in A-centers 16 

(Type-IaA IR spectrum).  The low-aggregated nitrogen of these diamonds, indicates a short 17 

mantle residence times and/or low temperatures.  As during and following the Karoo flood basalt 18 

volcanism, elevated thermal conditions prevailed in the South African lithosphere, the saline 19 

metasomatism must have occurred in proximity to kimberlite eruptions at ~85 Ma.  Another 20 

diamond encapsulated incompatible element enriched silicic HDFs and exhibits an aggregated 21 
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nitrogen Type IaAB spectrum with 25% B-centers, implying formation during an earlier and 22 

different metasomatic event that likely relates to the Karoo magmatism ca. 180 Ma.   23 

Thermometry of mineral microinclusions in the diamonds carrying saline HDFs, based on Mg–24 

Fe exchange between garnet–orthopyroxene (Opx)/clinopyroxene (Cpx)/olivine and Opx–Cpx, 25 

yield temperatures between 875-1080 ºC at 5 GPa.  These temperatures overlap with conditions 26 

recorded by touching inclusion pairs in diamonds from the DeBeers-Pool kimberlites, which 27 

represent the mantle ambient conditions just before eruption, and are altogether lower by 150-28 

250 °C compared to P–T gradients recorded by peridotite xenoliths from the same locality.  29 

Oxygen fugacity (𝑓O2) differs as well.  The 𝑓O2 calculated for the saline HDF compositions 30 

(∆log𝑓O2(FMQ) = -2.55 to -1.43) are higher by about a log unit compared to xenolith 𝑓O2 values at 31 

4-7 GPa.  We suggest that enriched saline HDFs mediated the metasomatism that preceded 32 

Group I kimberlite eruptions in the southwestern Kaapvaal craton, and that their ‘cold and 33 

oxidized’ nature reflects their derivation from a deep subducting slab.  This event had little 34 

impact on the temperature and redox state of the Kaapvaal lithosphere as a reservoir, however, it 35 

likely affected its properties along limited metasomatised veins and noodles.  To reconcile the 36 

temperature and oxygen fugacity discrepancy between inclusions in diamonds and associated 37 

xenoliths, we argue that xenoliths did not equilibrate during the last saline metasomatic event 38 

and/or kimberlite eruption.  Thus the P-T-𝑓O2 gradients they record express pre-existing 39 

lithospheric conditions that were likely established during the last major thermal event in the 40 

Kaapvaal craton (i.e. the Karoo magmatism ca. 180 Ma).   41 

1. Introduction 42 

Constraining thermo-chemical changes in the sub continental lithospheric mantle (SCLM), 43 

which influence its density and stability (e.g. Baptiste and Tommasi, 2014; Carlson et al., 2005; 44 
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Deen et al., 2006), rheology (e.g. Eaton et al., 2009) and oxidation state (e.g. Luth and Stachel, 45 

2014; Tappe, et al. 2007), is an on-going fundamental challenge in mantle geodynamics.  Direct 46 

samples of the mantle (xenoliths and xenocrysts) provide information on the timing of such 47 

temporal modifications, the depth within the lithosphere where changes take place, and the 48 

temperature and chemical/mineralogical modifications that occur during such events (e.g. 49 

Lazarov et al., 2009a, 2012; Simon et al., 2007).  In most cases fluid-rock interaction during 50 

metasomatism is the driving force for alteration, but remnants of the metasomatic agent involved 51 

are only rarely observed (i.e. van Achterbergh et al., 2002).  The nature of mantle metasomatic 52 

fluids must therefore be inferred indirectly, from geochemical proxies or calculated using 53 

mineral/melt partition coefficients.  Also, the possible chemical overprinting of mantle rocks by 54 

multiple alteration/enrichment events over cratonic histories permits debate on whether 55 

metasomatism was accomplished by interaction with fluid or melt, and of what type? For 56 

example, silicic or carbonatitic, oxidizing or reduced? what are the effects such interactions have 57 

on the rock lithologies and chemical compositions?  And in addition, what linkages exist 58 

between the mantle sources of the fluids/melts involved in metasomatism and regional tectonic 59 

episodes?   60 

The SCLM of the southwestern part of the Kaapvaal Craton in South Africa has been studied 61 

intensively.  Mantle derived xenoliths and xenocrysts from this area document intensive Archean 62 

depletion by melting, with up to >40% melt extraction (e.g. Griffin et al., 2003; Kelemen et al., 63 

1998; Pearson et al., 1995), followed by a complex metasomatic history that is related to several 64 

tectonic and magmatic events.  Archean enrichment in SiO2, light rare earth elements (LREEs) 65 

and large ion lithophile elements (LILE; K, Ba, Ca, Sr) is attributed to hydrous fluids and silicate 66 

and carbonatitic melts released from subducting slabs during and after amalgamation of the 67 
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Kimberley and Witwatersrand blocks, at ca. 2.9 Ga (e.g. Bell et al., 2005; Shirey et al., 2004; 68 

Simon et al., 2007), and until the final stabilization of the craton at ~2.6 Ga (Lazarov et al., 69 

2009a, 2012).  During the Proterozoic and early Phanerozoic three phases of metasomatism, 70 

thought to be induced by subduction-derived aqueous fluids and/or silicic-carbonatitic melts that 71 

formed in-situ within a previously metasomatised SCLM, are recorded at 1.9±0.2 Ga, 1.3±0.4 Ga 72 

and 0.4±0.12 Ga (e.g. Lazarov et al., 2009a, 2012).  The timings of alteration coincide with the 73 

Kheis-Magondi orogeny at 1.93–1.89 Ga (Armstrong, 1987), the Namaqua–Natal orogeny at 74 

1.2–1 Ga (Pettersson et al., 2007) and the formation of the Damara belts and their attachment to 75 

the craton at ~500 Ma (Gray et al., 2008).  ‘Young’ metasomatism, which involved enrichment 76 

of the SCLM in high-field-strength elements (HFSE; Ti, Zr, Hf, Nb), LILE and LREE and the 77 

formation of pyroxene, phlogopite, amphibole, Fe-Ti Oxides and LIMA (lindsleyite–mathiasite) 78 

phases, has been attributed to Mesozoic magmatism (e.g. Giuliani et al., 2014; Simon et al., 79 

2007), of both the Karoo flood basalt event (175-185 Ma, Jourdan et al., 2007) and the eruptions 80 

of Group II and Group I kimberlites (mainly at ~125±10 and 85±5 Ma, respectively) (Field et al., 81 

2008 and references therein).   82 

Along with the chemical modifications, mantle metasomatism is responsible for thermal 83 

perturbations and changes in the oxygen fugacity (𝑓O2) of the SCLM.  Mantle xenoliths and 84 

xenocrysts are likely to record changes mainly due to the last metasomatic event, before their 85 

sampling and ascent in kimberlitic magmas.  For example, xenoliths from the Kaapvaal 86 

lithosphere mostly cluster along a temperature-depth calculated geotherm for continental shield 87 

regions (40-42 mW/m2, e.g. Rudnick, 1999); while thermally perturbed xenoliths from depths 88 

greater than 150 km (>5 GPa) are displaced to higher temperatures, away from the general P-T 89 

gradient, and are characterized by textural deformation and incompatible element enrichment 90 
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(Bell et al., 2003; Boyd and Gurney, 1986).  These thermal variations in the Kaapvaal SCLM are 91 

interpreted as the result of Cretaceous metasomatism in the time frame between the eruption 92 

episodes of Group II and Group I kimberlites (Bell et al., 2003; Griffin et al., 2003; Kobussen et 93 

al., 2009).  Associated garnet peridotite xenoliths provide evidence for an 𝑓O2 increase during 94 

metasomatism, by up to ~2 ∆log units in the most incompatible element enriched samples from 95 

the southwestern province of the Kaapvaal (e.g. Creighton et al., 2009; Woodland and Koch, 96 

2003).  Among these, the recorded increase in 𝑓O2 along compositional changes from core to rim 97 

in some xenolithic zoned garnets is estimated to take place within <1 Ma of kimberlite eruption 98 

(Griffin et al., 1999; McCammon et al., 2001; Berry, et al. 2013).  The change in 𝑓O2, 99 

approaches the enstatite+magnesite=forsterite+graphite/diamond+O2 (EMOG/D) reaction curve 100 

(Eggler and Baker, 1982), suggesting the involvement of oxidized fluid/melt during 101 

metasomatism.    102 

Here we focus on the recent metasomatic events that took place at the southwestern Kaapvaal 103 

SCLM, prior to, and between, the Mesozoic kimberlite eruption episodes.  However rather than 104 

investigating the chemical changes of lithospheric rocks and inferring the metasomatic agent 105 

involved, we look directly at the fluids and melts responsible for alteration, by analyzing the 106 

composition of micrometer-size inclusions in fluid-rich diamonds.  We report the major- and 107 

trace-element data for a suite of eight such microinclusion-bearing diamonds from the DeBeers-108 

Pool kimberlites (a cluster of four kimberlites in Kimberley, South Africa).  These diamonds 109 

encapsulate both high-density fluid (HDF) and mineral microinclusions, allowing us to constrain 110 

the composition of the metasomatic agent, the nature of the diamond host rock and the thermal 111 

and 𝑓O2 conditions during fluid-rock interaction.  Combining our data and results on mineral 112 

inclusions in monocrystalline diamonds and garnet-bearing peridotite xenoliths from DeBeers-113 
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Pool and related kimberlites in the southwestern Kaapvaal region, we discuss the source and 114 

evolution of the metasomatic agent, constrain the timing of alteration and fluid-rich diamond 115 

growth and, evaluate the impact of Mesozoic metasomatism and volcanism on the thermal and 116 

redox state of the provenance lithosphere. 117 

2. Samples and analytical techniques 118 

A suite of eight diamonds from the DeBeers-Pool kimberlites, South Africa, was selected for the 119 

present study.  The diamonds have large range in size with weight varying between 14–120 mg.  120 

Seven diamonds show cube-like morphology and one (ON-DBP-338) is a coated diamond.  The 121 

samples vary in color (white-gray-black-green) and carry abundant microinclusions.  Three of 122 

the diamonds (ON-DBP-330, 335, 337) show a clear distinction between an inner and outer part, 123 

characterized with different hue and cathodoluminescence (CL) intensities (Figure 1 and 124 

Supplementary Figure S1).  Each diamond was laser-cut twice to create a thin slab that was 125 

polished on both sides.  It was then cleaned ultrasonically in a mixture of HF 60% and HNO3 126 

69% for 2 h and washed with ethanol and distilled water before analysis.  Electron probe 127 

microanalyzer (EPMA), Fourier-transform infrared (FTIR) and laser ablation ICP-MS analyses 128 

were performed for collecting data on the nitrogen concentration and aggregation states in the 129 

different diamonds, and the major and trace element composition and volatile content of the 130 

microinclusions they carry.  Full analytical techniques are presented in Supplementary Material – 131 

Analytical Methods.    132 

3. Results 133 

3.1. Nitrogen impurities and included material – FTIR spectroscopy 134 

The DeBeers-Pool diamonds carry 0 to 660 ppm nitrogen in their lattice (Table 1), similar to 135 

concentrations detected in other South African fluid-rich diamonds (e.g. Izraeli et al., 2001).  136 
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Diamond ON-DBP-336 is a Type IIa diamond; this is the first report of a fluid-rich diamond 137 

carrying no nitrogen impurities (Supplementary Figure S2).  Four diamonds (ON-DBP-330, 335, 138 

337, 338) exhibit pure Type IaA spectrum and carry nitrogen in A-centers solely, while diamond 139 

ON-DBP-332 reveals a Type IaAB with 25% of its nitrogen in B-centers.  It also has an 140 

associated platelet band at 1373 cm-1 (Figure 2 and Supplementary Figure S2, Table 1).  This 141 

difference indicates a longer mantle residence time or higher ambient temperature for ON-DBP-142 

332 (Taylor et al., 1990).  Diamonds ON-DBP-331 and ON-DBP-339 are opaque and no IR 143 

spectrum could be collected.  144 

Previous studies have shown that both primary mineral microinclusions and HDF 145 

microinclusions (including various daughter mineral phases and a residual low-density hydrous 146 

solution) contribute to the IR absorbance in fluid-rich diamonds (e.g. Navon et al., 1988; 147 

Tomlinson et al., 2006).  In diamonds ON-DBP-337, ON-DBP-338 and the outer parts of ON-148 

DBP-330 and ON-DBP-335, HDF microinclusions show the absorbance of water (IR bands 149 

center at ~3440 and 1650 cm-1), carbonate (~1450, 880 and 750 cm-1) and apatite (~1095, 1060 150 

and 605 cm-1) (Figure 2 and Supplementary Figure S2).  The microinclusions are rich in water 151 

compared to carbonate, and their calculated carbonate/(carbonate+water) molar ratio (CMF) 152 

ranges between 0.12 and 0.22 (Table 2).  A small band/shoulder at ~1000 cm-1, in some of the 153 

spectra collected, is due to the presence of a daughter mica phase in these microinclusions.  HDF 154 

microinclusions in diamond ON-DBP-332 are different, they show the IR bands of water and 155 

strong absorbance due to the daughter mica phase (central peak at ~1000 cm-1) and quartz (1092, 156 

~810 and 785 cm-1); carbonate IR bands were not detected in this diamond (Figure 2 and 157 

Supplementary Figure 2).   158 
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The absorbance caused by pyroxene (multiple peaks in the range between 600-1150 cm-1, Figure 159 

2 and Supplementary Figure S2) is observed in the inner part of diamond ON-DBP-330, but the 160 

characteristic peaks are all displaced to higher wavenumbers by 5-12 cm-1.  No carbonate or 161 

water bands were detected in this part of the diamond, in agreement with EPMA analysis 162 

(section 3.2.1.), which revealed only orthopyroxene associated with olivine microinclusions 163 

(Figure 1), confirming that the inner zone is mostly free of HDF microinclusions.  In diamond 164 

ON-DBP-335, the inner part showed strong carbonate absorbance at 1450, 881 and 750 cm-1 but 165 

no significant water absorbance was detected, indicating the presence of magnesite rather than 166 

HDF microinclusions.  Peaks at 1080, 983 and 900 cm-1, which are also observed in the inner 167 

part of this diamond, can be related to the presence of pyroxene.  Absorbance by both a mica 168 

phase and magnesite dominate the spectrum collected in the inner part of diamond ON-DBP-336, 169 

while olivine absorbance (~995, 956, 891 and 841 cm-1), with no significant mica or carbonate 170 

phases, is observed in the outer regions of this diamond.  The absence of water bands in the 171 

spectra collected in both zones of this diamond indicate a lack of, or very small amount of HDF 172 

microinclusions in this specific diamond, in agreement with EPMA analyses (Supplementary 173 

Figure S1 and S2, Supplementary Table A, B).   174 

3.2. High-density fluids and mineral microinclusions – major and trace element compositions 175 

Three hundred and forty-seven HDF microinclusions and one hundred and ninety mineral 176 

microinclusions were analyzed in the inclusion-rich zones of the eight diamonds from DeBeers-177 

Pool kimberlites (Figure 1, 3 and Supplementary Figure S1).  Seven of these diamonds (ON-178 

DBP-330, 331, 335-339) are rich in saline HDFs; among those, five carry mineral 179 

microinclusions: olivine (Ol), orthopyroxene (Opx), clinopyroxene (Cpx), garnet (Grt), 180 

phlogopite (Phl) and magnesite (Mgs) were identified, (Table 2).  The microinclusions in the 181 
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eighth diamond, ON-DBP-332, contains only silicic HDF.  In general, all HDFs have elevated 182 

concentrations of incompatible elements relative to primitive mantle (PM), with the most 183 

incompatible elements (Cs–Pr) reaching levels of a few hundred to a few thousand times the PM 184 

values (Figure 4).  Variations between individual diamonds, and between saline and silicic 185 

HDFs, are described below.  The average major element composition of the HDFs in each 186 

diamond and the minerals are presented in Table 2 and 3, respectively, with individual 187 

microinclusion analyses tabulated in Supplementary Table A and B; trace element analyses are 188 

presented in Supplementary Table C. 189 

3.2.1. Mineral inclusions 190 

Mineral microinclusions were found in five of the seven diamonds carrying saline HDFs.  In 191 

backscattered-electron imaging, these inclusions appear similar in shape to HDF microinclusions 192 

and are comparable in size, but their EPMA analysis totals are on average higher (Supplementary 193 

Table B).  Mixing between mineral and HDF occur in some microinclusions (Figure 3a).  The 194 

analyzed mineral microinclusions are all of the peridotite paragenesis and always found in 195 

association with saline HDFs, but different assemblages are observed, for example, Ol, Ol+Opx, 196 

Ol+Opx+Grt, Ol+Opx+Phl+Mgs and Cpx+Mgs (Table 2).  Olivine and orthopyroxene are the 197 

most abundant mineral microinclusions in the analyzed DeBeers-Pool diamonds, in agreement 198 

with the predominance of these two phases in the deep lithosphere of the DeBeers-Pool region 199 

(Phillips et al., 2004 and references therein).  We used linear regression of the mixing lines 200 

between mineral and HDF microinclusions, which are best manifested by oxide (e.g. MgO, SiO2) 201 

vs. Cl wt.% variation diagrams (not shown), to determine the compositions of Ol, Opx, Cpx, Grt 202 

and Mgs at Cl=0 wt.% (Table 3).  The composition of phlogopite was determined by averaging 203 
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the 3 inclusions that were found in diamond ON-DBP-336.  Below, the compositional variability 204 

of HDF-free mineral phases is described. 205 

The Mg# (100×Mg/(Mg+Fe) molar ratio) of olivine microinclusions is 93.0±0.2 (1 SE on the 206 

regression intercept at Cl=0 wt.%) while that of orthopyroxene is 93.5±0.6, typical for Kaapvaal 207 

craton mantle peridotites (e.g. Lazarov et al., 2009a).  Orthopyroxene microinclusions have 208 

0.4±0.1 wt.% Cr2O3, 0.9±0.1 Al2O3 and 0.7±0.2 Na2O (one inclusion has a relatively high Na2O 209 

value of 2.9 wt.%); in most cases TiO2 was not detected.  Clinopyroxene microinclusions were 210 

only found in the central part of diamond ON-DBP-335.  They have Mg#=93.2±0.9 and Cr# 211 

(100×Cr/(Cr+Al) molar ratio) of 47.1±2.0.  Both Cr2O3 and Na2O content are elevated, with 212 

values reaching up to 7.0 wt.% and 7.7 wt.%, respectively, indicating a high Na-Cr kosmochlore 213 

component end-member (up to 17 molar%).  Al2O3=3.6±0.2 wt.%, TiO2=0.4±0.2 and K2O show 214 

minor amounts (0.1±0.1 wt.%) in these Cpx inclusions.  Garnet inclusions are Cr-pyrope with 215 

Mg#=83.8±1.1, Cr#=17.6±0.8, and Cr2O3=5.7±0.3 wt.% and CaO=3.5±0.3 wt.%.  They plot in 216 

the harzburgitic depleted subcalcic garnet field of Grütter et al. (2004) and are all classified as 217 

G10 garnets, similar to many subcalcic garnet inclusions in DeBeers-Pool diamonds (Phillips et 218 

al., 2004).  An Mg-rich phase was found in two diamonds (ON-DBP-335 and 336), having 219 

Mg#=95.8±0.2, MgO=88.3±0.6 wt.%, FeO=6.9±0.2 and CaO=1.3±0.1.  SiO2, Al2O3, Cr2O3, 220 

MnO, TiO2, K2O and Na2O are all <1 wt.% each and sum up to ~3 wt.%.  The detection of peaks 221 

at 1450, 881 and 750 cm-1 in the FTIR spectra collected at the inner region of these two 222 

diamonds indicates that this phase is an Mg-rich carbonate phase (i.e. magnesite).  Three 223 

inclusions of low-Ti phlogopite were also analyzed in diamond ON-DBP-336, having an average 224 

composition of Mg#=95±1, 12.8±0.9 wt.% Al2O3, 0.9±0.1 wt.% Cr2O3 and a Si/Al and 225 
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Si/(Al+Cr) (cation ratio) of 3.1±0.4 and 3.0±0.3, respectively.  In addition, small amounts of 226 

0.3±0.1 wt.% Na2O and 0.2±0.1 wt.% Cl were detected. 227 

The central part of diamond ON-DBP-330 contains olivine and Opx microinclusions but no 228 

HDFs (Figure 1, Supplementary Figure 2).  We therefore analyzed this part by LA-ICP-MS, with 229 

the aim of determining the trace element composition of the peridotite host.  However, most of 230 

the elements were below the analyses LOD (except K, Sr, Nb, Ba, La and Ce; Supplementary 231 

Table C).  Thus, we could reach no conclusions about the trace element composition or pattern of 232 

these mineral microinclusions. 233 

3.2.2. Saline HDFs 234 

The HDFs in all seven saline diamonds show similar chemical compositions, varying between 235 

the saline end-member and the carbonatitic end-member when projected on a SiO2+Al2O3, 236 

CaO+MgO+FeO and Na2O+K2O ternary diagram (Figure 3b).  On a carbonate- and water-free 237 

basis, the average saline fluid is primarily rich in Cl (36.2±5.6 (1σ=STDEV) wt.%), K2O 238 

(27.6±7.5 wt.%) and Na2O (22.3±7.8 wt.%).  Other major oxides make up about 22 wt.% 239 

altogether: SiO2=2.0±1.4, CaO=8.4±3.8, MgO=2.3±2.0, FeO=5.7±3.2, BaO=1.6±2.5, 240 

Al2O3=1.0±0.9, P2O5=0.7±0.9 and TiO2=0.4±0.7 wt.% (as these saline fluids carry Cl- as a major 241 

anion, the total Cl+oxides sum up to >100% due to excess calculated oxygen).  The molar 242 

proportions of carbonate in the HDF can be estimated assuming cations with positive charge in 243 

the fluid are balanced by either carbonate, chloride, phosphate or silicate ions, which then gives 244 

CO3=(Mg+Fe)/2+Ca+Ba+(Na+K−Al−Cl)/2−5P/3 (Klein-BenDavid et al., 2009).  Once the CO2 245 

is calculated, the water content is determined based on the FTIR CMF ratio (Table 2).  When 246 

both water and carbonate are included and the total is re-normalized to 100% by weight, the 247 

saline HDFs have an average molar proportion of 248 
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Si0.7Ti0.1Al0.4Fe1.6Mg1.1Ca3.0Ba0.2Na14.2K11.6P0.2Cl20.2(CO2)6.8(H2O)40.1.  Assuming that all K and 249 

part of the Na are associated with the Cl, the chlorides make up 48% of the saline HDF by 250 

weight (31% KCl and 17% NaCl), H2O and CO2 make up 26 and 11 wt.%, respectively, and the 251 

rest (15 wt.%) is taken by oxides bound in carbonates, silicates and phosphates. 252 

The major element composition of the saline HDFs show intra- and inter-diamond relationships.  253 

In all diamonds K2O and Na2O show a negative correlation (Figure 3c), K2O+Na2O exhibit a 254 

clear positive correlation with Cl and the Cl/(Cl+K+Na) increase with increasing K/(K+Na).  255 

MgO correlate negatively with Cl, as do FeO and CaO but with a wider scatter.  In addition, in 256 

diamond ON-DBP-335 CaO and P2O5 correlates positively and in ON-DBP-330 SiO2 correlates 257 

negatively with Cl.  The inner and outer zones of diamond ON-DBP-337 (Supplementary Figure 258 

S1) show slightly different saline compositions, that is, HDF microinclusions in the outer zone 259 

have on average higher MgO, FeO, CaO, BaO and K2O, and lower Na2O and Cl.  The molar 260 

(K+Na)/Cl ratio in diamonds ON-DBP-338 and 337 varies between 1.01±0.09 (1σ) and 261 

1.24±0.09, respectively, while it increases up to (K+Na)/Cl=1.33±0.12, 1.37±0.17 and 1.55±0.31 262 

in diamonds ON-DBP-336, 335 and 339, respectively. These variations to higher (K+Na)/Cl 263 

values correlate with a general increase of MgO, SiO2 and Na2O of the HDF microinclusions in 264 

the different diamonds (Figure 3d-f).  In addition, CaO, Al2O3 and P2O3 also increase to some 265 

extent with increasing (K+Na)/Cl (not shown).  Consequently the calculated molar CO2 contents 266 

of the HDFs increase by 39%, from CO2=11.1 wt.% in diamond ON-DBP-338 to CO2=18.3 267 

wt.% in diamond ON-DBP-339 (Table 2).  This increase in CO2 correlates with increase in 268 

(K+Na)/Cl and with increase in the Mg# of the HDFs.  We note that the variations in the saline 269 

HDFs, towards somewhat more carbonatitic compositions, appear between diamonds where no 270 

mineral microinclusions were found (i.e. ON-DBP-337 and ON-DBP-338) and diamonds 271 
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containing both HDFs and mineral microinclusions (e.g. ON-DBP-336 and ON-DBP-339), and 272 

likely represent increasing fluid-rock interaction. 273 

The trace element compositions of the two diamonds where only saline HDF microinclusions 274 

were found (ON-DBP-337 and 338) are very similar (Figure 4a).  They have high alkalis (K, Rb 275 

and Cs), Ba and LREEs compared to Th, U, Nb and Ta levels, and are characterized by 276 

conspicuous Ti, Zr, Hf and Y negative anomalies.  Variations from these patterns are observed in 277 

diamonds where HDF microinclusions reside within an outer growth zone, apparently separated 278 

from the mineral microinclusions in an inner part (i.e. diamond ON-DBP-330 and 335), as well 279 

as in diamonds containing a mixture of HDF and mineral microinclusions (ON-DBP-331 and 280 

339) (Figure 1, Figure 4 and Supplementary Figure S1).  In these diamonds the differences in 281 

enrichment between the most incompatible elements (Th, U, Nb and Ta compared to the alkalis, 282 

Ba and LREEs) are reduced, as well as the magnitude of the negative anomalies of Ti, Zr, Hf and 283 

Y.  These compositional changes are manifested as correlative variations between trace elements 284 

ratios and the average amount of Cl and MgO (and carbonate), which correlate negatively in the 285 

saline HDFs (Figure 5).  In general, with decreasing Cl and increasing MgO, the La/Pr ratio 286 

increases and Eu/Sm and Ba/Nb ratios decrease; Sr/Rb, Th/Rb and Zr/Hf ratios increase and 287 

Eu/Ti ratio decrease, due to higher amounts of Sr, Th, Zr and Ti.  There are some outliers for the 288 

different trace element ratios, but these do not change the general trends observed in most 289 

diamonds. 290 

3.2.3. Silicic HDFs 291 

The HDF microinclusions in diamond ON-DBP-332 have well defined chemical compositions, 292 

close to the silicic end-member in fluid-rich diamonds (Figure 3b).  On a carbonate- and water-293 

free basis, its average composition is primarily rich in SiO2 (48±4.5 (1σ) wt.%) and K2O 294 
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(18.5±1.8 wt.%).  Other major oxides make up about 35 wt.% altogether (Table 2).  SiO2 exhibits 295 

a negative correlation with CaO and P2O5.  Carbonate absorbance was not detected by FTIR 296 

analyses in this diamond (Supplementary Figure S2) and thus, the CMF ratio of the included 297 

HDFs could not be determined, nor could the molar proportions of water and carbonate be 298 

estimated.  299 

The trace element compositions of the silicic HDFs are comparable to the saline fluids in 300 

diamond ON-DBP-337 and 338, however a few key discrepancies exist (Figure 4d).  Normalized 301 

to primitive mantle values, Th, U and Ba in the silicic fluids are similarly enriched and are 302 

elevated compared to the alkalis (K, Rb and Cs).  Zr and Hf show positive anomalies compared 303 

to elements of similar compatibility during mantle melting, in contrast to the DeBeers-Pool 304 

saline HDFs, while the negative anomaly of Ti is relatively small.  Ta and Nb show comparable 305 

depletion compared to LREEs in both silicic and saline compositions.   306 

3.3.Thermometry, barometry and oxygen fugacity 307 

Temperature conditions during saline metasomatism and fluid-rich diamond formation were 308 

calculated using the composition of HDF-free peridotitic mineral microinclusion in the saline 309 

HDF-bearing diamonds (Table 3).  Equilibrium temperatures were determined with preset 310 

pressures between 3-8 GPa using the two-pyroxene thermometer (Brey and Kӧhler, 1990) and 311 

the Mg–Fe exchange thermometers between garnet–clinopyroxene (Krogh, 2000), garnet–olivine 312 

(O'Neill and Wood, 1979) and garnet–orthopyroxene (Harley, 1984; Nimis and Grütter, 2010).  313 

Pressure conditions were calculated for a 40 mW/m2 geothermal gradient (at 3-8 GPa) using 314 

various barometers: Al in orthopyroxene (Macgregor, 1974), Cr in clinopyroxene (Nimis and 315 

Taylor, 2000) and the garnet-orthopyroxene barometer (Nickel and Green, 1985) with modified 316 

Mg-Tschermaks according to (Taylor, 1998).  Results are presented in Table 3.   317 
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Below the graphite-diamond stability line the different thermometers and barometers define a 318 

slanted rhomb shape (Figure 6a), varying over ~500 °C between 4–8 GPa, as the possible 319 

temperature conditions for saline metasomatism and the formation of the DeBeers-Pool 320 

diamonds that carry saline HDF microinclusions.  However at any given pressure the variation in 321 

temperature is ~200 °C, so that, for example at 5 GPa, the possible range of temperature is 322 

between 875–1080 °C and at 6 GPa lies between 930–1155 °C.  Mineral microinclusions of both 323 

peridotite and eclogite lithologies in diamonds carrying saline HDFs from the neighboring 324 

Koffiefontein kimberlite suggest similar temperature and pressure conditions (Izraeli et al., 325 

2004).  In addition, the saline HDFs-bearing diamonds from the two localities (DeBeers-Pool 326 

and Koffiefontein) carry nitrogen almost exclusively in A-centers (Table 1 and Supplementary 327 

Figure S2; (Izraeli et al., 2004)), indicating formation temperatures of less than 1200 °C (Taylor 328 

et al., 1990).   329 

Oxygen fugacities (𝑓O2) for the saline HDFs were calculated using the mole fraction of CO2 330 

(XCO2) in the HDFs (Table 2) and over the range of temperature and pressure presented in Figure 331 

6a, using the calibration of Stagno and Frost (2010) for melt 𝑓O2 in a Ca-bearing peridotite 332 

system.  The calculated range of log𝑓O2 for saline HDFs between 4.5–7 GPa, relative to the 333 

FMQ buffer, is ∆log𝑓O2(FMQ) = -2.55 to -1.43, but the variation at a given pressure is <0.37 ∆log 334 

units (Figure 6b).  These 𝑓O2 values plot mostly along the stability of carbonate-bearing melts 335 

having XCO2=0.1-0.2 between 4 to 5.5 GPa, and XCO2=0.1=0.4 between 5.5 to 7 GPa (Stagno and 336 

Frost, 2010).   337 

4. Discussion 338 

4.1.High-density fluids (HDFs) in DeBeers-Pool diamonds – mantle source, lithospheric host 339 

rock and fluid evolution.  340 
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The chemical compositions of HDF microinclusions in fluid-rich diamonds reflect the various 341 

mantle sources of deep mantle metasomatic fluids, which impact the lithosphere and form 342 

diamonds.  Investigations of the nature of HDFs trapped in fluid-rich diamonds have revealed 343 

four compositional end-members globally: saline HDFs that carry mostly K, Na, Cl and water 344 

with some carbonates and silicates; high-Mg carbonatitic HDFs characterized by high MgO and 345 

carbonate, and low silica, alumina and water; and a continuous array between silicic and low-Mg 346 

carbonatitic HDFs with varying amounts of silicates, carbonates and water (e.g. Klein-BenDavid 347 

et al., 2009; Navon et al., 1988; Skuzovatov et al., 2016; Smith et al., 2012; Tomlinson et al., 348 

2006; Weiss et al., 2009).  Within this framework, Weiss et al. (2015) reported the first 349 

conclusive trace-element (i.e. strong and correlative positive anomalies of Eu and Sr) and Sr 350 

isotope evidence for seawater-altered subducting slabs as the source of saline HDFs in a set of 351 

diamonds from the Northwest Territories, Canada.  Saline HDFs in the analyzed DeBeers-Pool 352 

diamonds are not characterized with pronounced positive anomalies of Eu and Sr; in most cases 353 

they show small positive or no anomalies for Sr and Eu/Sm<1 (Figure 4, 5g).  These features by 354 

themselves do not require an explicit relationship to recycled oceanic crust.  However, the 355 

thermal conditions of saline metasomatism in the Kaapvaal SCLM, as determined by 356 

geothermobarometry of non-touching mineral microinclusions in the DeBeers-Pool diamonds, 357 

reflect the interaction of low temperature saline HDFs with lithospheric rocks (Figure 6a; see 358 

section 4.3. below for details and discussion).  In addition, the redox states of these saline HDFs 359 

are higher compared to the local SCLM, and approach the EMOD reaction curve (Figure 6b).  360 

These two lines of evidence indicate that the saline metasomatic agent that altered the 361 

southwestern Kaapvaaal SCLM were ‘cold and oxidized’ in nature, and could not originate from 362 

the ambient lithosphere nor from the underlying ‘hotter’ asthenosphere.  We therefore suggest 363 
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that the saline HDFs in DeBeers-Pool diamonds are linked to a subducting slab, feasibly through 364 

a relationship to early Mesozoic flat-plate subduction under the southwestern margin of 365 

Gondwanaland (Lock, 1980).  366 

Weiss et al. (2015) showed a chemical evolutionary trend indicating that silicic HDFs in 367 

diamonds from the Northwest Territories formed through fluid-rock interaction of parental saline 368 

fluids with eclogitic lithologies in the lithospheric mantle.  In the case of the DeBeers-Pool 369 

diamonds that were analyzed for the present study, we preclude a direct relationship between the 370 

saline and silicic HDFs on the basis of differences between the nitrogen aggregation states of 371 

their host diamonds (Figure 2 and Supplementary Figure S2), which translate to differences in 372 

time of metasomatism and diamond formation (Section 4.2.).  In addition, the lack of mineral 373 

microinclusions in diamond ON-DBP-332 does not allow a direct link between the silicic HDFs 374 

in this diamond and an eclogite.  However, the high silica content of these HDFs (48±4.5 wt.%; 375 

Table 2) is consistent with the composition of near-solidus silicic melts/fluids in equilibrium 376 

with eclogite (Hammouda 2003; Kessel, et al. 2005), rather than peridotite (e.g. Kessel, et al. 377 

2015).  Such compositional HDF-lithology relationship is also supported by the finding of 378 

omphacitic pyroxene in association with silicic-to-low Mg carbonatitic HDFs in diamonds from 379 

Canada, Guinea and Siberia (Klein-BenDavid et al., 2009; Tomlinson et al., 2006; Weiss et al., 380 

2009; Weiss et al., 2015).   381 

Saline HDFs in DeBeers-Pool diamonds invaded lithospheric peridotite, based on their 382 

microinclusions of olivine, orthopyroxene and Cr-pyrope.  The appearance of associated 383 

magnesite, phlogopite and kosmochlor-bearing diopside microinclusions in the inner part of 384 

diamonds ON-DBP-335 and ON-DBP-336 (Supplementary Figure S1) indicate that this 385 

lithosphere was previously altered, likely by enriched Na-bearing carbonatite melt (Ikehata and 386 
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Arai, 2004).  Interaction between saline HDFs and carbonated-peridotite potentially leads to 387 

melting and formation of high-Mg carbonatitic HDFs (Weiss et al., 2009; Weiss et al., 2015).  388 

Indeed, the possible P-T conditions for saline metasomatism intersect the lherzolite+H2O±CO2 389 

solidus (Figure 6a).  However, high-Mg carbonatite compositions were not found as HDF 390 

microinclusions in DeBeers-Pool diamonds that were analyzed in the present study, nor in fluid-391 

rich diamonds from the neighboring Koffiefontein kimberlite (Izraeli et al., 2001).  Mineral 392 

inclusions in monocrystalline diamonds from DeBeers-Pool, Koffiefontein and Jagersfontein 393 

(Rickard et al., 1989; Phillips et al., 2004; Tappert et al., 2005) indicate that the local peridotite 394 

SCLM is dominated by harzburgite lithology, and the P-T conditions of saline metasomatism 395 

does not intersect the harzburgite+H2O+CO2 solidus (Figure 6a).  We therefore suggest that the 396 

refractory nature of harzburgite in the southwestern Kaapvaal SCLM, although containing 397 

carbonate metasomes, prevented melting and formation of high-Mg carbonatite during saline 398 

metasomatism, and that such interaction is reflected by moderate increases of SiO2, MgO and 399 

Na2O and decreases of Cl in the saline HDFs (Figure 3c-f and 5a).  Increasing fluid-rock 400 

interaction also led to higher La/Pr, Sr/Rb, Th/Rb and Zr/Hf ratios and lower Eu/Sm, Eu/Ti and 401 

Ba/Nb ratios as the fluid evolved (Figure 5), and diamonds could form by isochemical 402 

precipitation (Stachel and Luth 2015) or redox processes (Jacob, et al. 2014) due to strong 403 

disequilibrium between saline HDFs and the local SCLM (Figure 6). 404 

4.2.Timing of metasomatism and fluid-rich diamond formation. 405 

The overall absence of large silicate and sulfide inclusions in fluid-rich diamonds does not allow 406 

for their absolute age determination, i.e. the age of the metasomatic event in which they formed.  407 

Therefore, temporal information is commonly drawn from the kinetics of nitrogen aggregation in 408 

the diamond lattice, which is a function of the diamond ‘mantle residence time’ (i.e. from 409 
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diamond formation until it ascended with the kimberlite), the diamond ‘mantle residence 410 

temperature’ (average temperature over mantle residence time) and the diamond nitrogen 411 

concentration (Evans, 1992; Taylor et al., 1990, 1996).    412 

The saline HDF-bearing diamonds from DeBeers-Pool kimberlites show pure Type IaA 413 

spectrum (Supplementary Figure S2 and Table 1), with no detectable signals of B-centers or C-414 

centers.  Using the kinetics of C- to A-centers and A- to B-centers (Taylor et al., 1990, 1996) the 415 

diamond ‘mantle residence time’ can be constrained (Navon, 1999).  However, it is hard to 416 

resolve the presence of nitrogen centers (C, A or B) when they account to less than 1% of the 417 

nitrogen.  Figure 7 shows that at the conditions where 99.9% of the nitrogen reside in A-centers, 418 

both C- and B-centers are present at levels of <0.1%.  Diamonds that carry 70-700 ppm nitrogen 419 

and show pure Type IaA spectrum (A-centers>99.9%) can reside only a few million years at 420 

1150 °C, but this time grows up to 1000s of Myr at 1000 °C and to longer than the age of the 421 

earth at 900 °C (See also Table 1).  Age determinations of Type IaA diamonds should therefore 422 

be viewed with caution. 423 

In the case of the saline HDF-bearing diamonds from DeBeers-Pool kimberlites, several lines of 424 

evidence suggest their formation in proximity to the kimberlitic eruptions. 1) The compositional 425 

similarities of the trapped HDFs in these diamonds suggest they all formed during a single 426 

metasomatic event and over a short period in time.  2) The temperature of equilibration of 427 

touching inclusion pairs in monocrystalline diamonds from DeBeers-Pool, which allowed 428 

chemical exchange and equilibration at depth, represent the final mantle ambient temperatures in 429 

which diamonds resided (Phillips et al., 2004); they overlap with possible saline metasomatism 430 

conditions between 1000-1150 °C and 4.5-7 GPa (Figure 6a).  3) The Karoo magmatism 431 

involved a major increase in the temperature of the South African lithosphere (Bell et al., 2003; 432 
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Janney et al., 2010), followed by slow adjustment of temperature and low cooling rates (Bedini 433 

et al., 2004; Michaut and Jaupart, 2007).  These arguments, together with the low-aggregated 434 

nature of nitrogen in the saline HDF-bearing diamonds, suggest the timing of their formation is 435 

younger than the Karoo flood basalt volcanism at 180±5 Ma (Jourdan et al., 2007).  At 1150 °C 436 

and <0.1% of both B- and C-centers, the mantle residence time of the saline HDF-bearing 437 

diamonds is only a few million years (Figure 7).  At 1000 °C the estimated residence time is 438 

longer (on the order of hundreds of millions of years), but if we allow a higher concentration of 439 

C-centers (up to 1%) with less than 0.1% of B-centers, shorter residence times of the order of 440 

tens of millions of years are also possible. 441 

Diamond ON-DBP-332, carrying silicic HDFs, is a Type IaAB diamond with 25% B-centers 442 

(Figure 2).  Two scenarios can explain the differences in nitrogen aggregation and HDF 443 

compositions between ON-DBP-332 and the saline HDF-bearing diamonds from DeBeers-Pool 444 

kimberlites.  1) Assuming all fluid-rich diamonds from DeBeers-Pool formed at a similar 445 

timeframe before kimberlite emplacement, then the nitrogen aggregation differences can be 446 

explained by a 100-150 °C variation in the diamonds mantle residence temperatures, which 447 

translates to a pressure difference of ~1 GPa along the 36–38 mW/m2 geotherms (Figure 6a).  448 

While not unreasonable, this scenario restricts diamond formation by saline metasomatism to 449 

shallower depth compared to diamond formation by silicic metasomatism.  2) Considering the 450 

metasomatic events taking place over a short period of time (as mentioned above), the nitrogen 451 

aggregated nature of diamond ON-DBP-332 restricts its formation to an earlier and different 452 

metasomatic event than the one responsible for the formation of saline HDF-bearing diamonds.  453 

We prefer this scenario as it provides a simple explanation for both the nitrogen and HDF 454 

compositional variations within the DeBeers-Pool fluid-rich diamonds, and allows their 455 
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formation at similar lithospheric depth.  The lack of mineral microinclusions in diamond ON-456 

DBP-332 offers no temperature constraints on its formation.  Therefore, the timing of ‘earlier’ 457 

silicic metasomatism, based on nitrogen aggregation, is hard to evaluate.  However considering a 458 

residence temperature of 1170-1180 °C to explain the aggregated nature of nitrogen in this 459 

diamond, and the accompanying silicic affinity of HDF microinclusions, a relation to silica-rich 460 

melts that invaded the southwestern Kaapvaal SCLM during the Karoo magmatism ca. 180 Ma 461 

(Giuliani et al., 2014; Rehfeldt et al., 2008), is plausible.  462 

4.3.Thermal and oxygen fugacity variations during Mesozoic metasomatism at the southwestern 463 

Kaapvaal lithosphere.  464 

Thermobarometry and oxythermobarometry of xenoliths and xenocrysts carried by kimberlites 465 

allow both the reconstruction of palaeogeotherms (e.g. Griffin et al., 2003; Rudnick, 1999) and 466 

oxidation profiles with depth (e.g. Frost and McCammon, 2008; Woodland and Koch, 2003), 467 

thus providing direct information on the thermal structure and redox state of the lithosphere of 468 

different geographical provenances and at different points in time.   469 

Garnet peridotite xenoliths from Cretaceous Group I kimberlites at the southwestern Kaapvaal 470 

craton record temperatures that fall predominantly along a conductive continental geotherm of 471 

40–42 mW/m2 (Figure 6a).  In comparison, xenoliths from the neighboring Finsch kimberlite, a 472 

Group II kimberlite that erupted ~30 Ma prior to Group I kimberlites and is located ~130 km to 473 

the northwest, record lower temperatures which plot mainly along a geotherm of 38–40 mW/m2.  474 

Similarly, garnet xenocrysts carried by Cretaceous Group I kimberlites record higher lithospheric 475 

temperatures compared to xenocrysts from Group II kimberlites (Griffin et al., 2003; Kobussen 476 

et al., 2009).  These temperature differences between lithospheric samples closely related in 477 

space and time were argued as indicating a local perturbation from a ‘cratonic-like’ steady state 478 
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condition, represented by the P-T gradient of xenoliths from Finsch, to higher thermal gradients, 479 

as observed by xenoliths from Group I kimberlites, due to Cretaceous metasomatism and 480 

volcanism (Bell et al., 2003; Griffin et al., 2003; Kobussen et al., 2009; Lazarov et al., 2009b).  481 

The xenoliths reveal a general decrease in 𝑓O2 with depth (Figure 6b), which results principally 482 

from the increase of Fe3+/∑Fe in garnet with increasing pressure (Gudmundsson and Wood, 483 

1995; Woodland and Oneill, 1993).  On the other hand, Luth and Stachel (2014) modeled the 484 

oxidizing effect of fluid-rock interaction on mantle peridotite, and concluded that ppm levels of 485 

fluid can potentially shift the 𝑓O2 signature of lithospheric peridotite from very reduced (i.e. the 486 

iron–wüstite buffer reaction, IW) to oxidized (EMOD/G) conditions.  Consequently, it was 487 

suggested that the 𝑓O2 profile of xenoliths from the Kaapvaal Craton (Figure 6b) merely reflects 488 

the redox state of the last metasomatic interaction (Luth and Stachel 2014; Stachel and Luth 489 

2015).   490 

The geothermobarometry of non-touching mineral microinclusions in the saline HDF-bearing 491 

diamonds from DeBeers-Pool (Figure 6a) constrain the possible thermal conditions during saline 492 

metasomatism, which preceded the Cretaceous Group I kimberlite event.  These conditions 493 

overlap with equilibration temperatures of touching inclusion pairs in monocrystalline diamonds 494 

from DeBeers-Pool, and on average are altogether lower by 150–250 °C compared to the 495 

observed P-T gradient of peridotite xenoliths from both Group II and Group I kimberlites.  A 496 

significant temperature difference persists, even when a possible underestimation of ~60 °C is 497 

taken into account, due to differences between the garnet-orthopyroxene thermometer (used for 498 

the inclusions) and the two-pyroxene thermometer (used for the xenoliths) (Brey and Kӧhler, 499 

1990; Harley, 1984).  If mantle-derived xenoliths from the southwestern Kaapvaal lithosphere 500 

record a snapshot of thermal advection during the last event of metasomatism and/or kimberlite 501 
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eruption (e.g. Bell et al., 2003), then the P-T conditions of non-touching mineral microinclusions 502 

in fluid-rich diamonds, touching inclusion pairs in monocrystalline diamonds, and from the 503 

xenoliths, should all plot along a similar P-T gradient; however, this is not the case.  To reconcile 504 

the temperature discrepancy between inclusions in diamond and xenoliths, we suggest that 505 

xenoliths did not equilibrate during the last metasomatic event and/or kimberlite eruption, and 506 

that the P-T gradients they record represent older lithospheric conditions.  Moreover, we observe 507 

a gap between the 𝑓O2 conditions of saline HDFs and peridotitic xenoliths (Figure 6b).  It implies 508 

that the redox states recorded by peridotitic xenoliths from the southwestern Kaapvaal 509 

lithosphere, similar to their P-T gradients, do not represent the interaction with saline HDFs 510 

during the last metasomatic event, but rather a reflection of the pre-existing lithospheric 𝑓O2 511 

conditions.   512 

Combining the xenolith data with results for HDF microinclusions and mineral inclusions in 513 

diamonds provides a better constraint for the thermal and redox history of the southwestern 514 

Kaapvaal lithosphere with respect to Mesozoic metasomatism and volcanism.  The last major 515 

thermal event in the Kaapvaal craton is the Karoo magmatism ca. 180 Ma, expressed by 516 

extensive volcanism of flood basalts and related giant sills and dike swarms over an area of more 517 

than 3×106 km2, which includes the entire southern African region (Jourdan et al., 2007).  The P-518 

T gradient of xenoliths from the southwestern Kaapvaal lithosphere, along a continental 519 

geotherm of 40±2 mW/m2 (Figure 6a), and their redox state (Figure 6b), is likely a remnant of 520 

this event.  Modal metasomatism in dunite and wehrlite xenoliths from DeBeers-Pool (Rehfeldt 521 

et al., 2008), U-Pb ages of LIMA mineral and zircon (170-190 Ma) in associated phlogopite and 522 

clinopyroxene-rich peridotite xenoliths (Giuliani et al., 2014), as well as the apparent relation 523 

between the formation of diamond ON-DBP-332 and the Karoo magmatism (discussed above), 524 
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all suggest that the related metasomatism involved silicic melts.  The other two volcanic events 525 

at the southwestern Kaapvaal craton are the eruption of Group II and Group I kimberlites at 526 

125±10 Ma and 85±5 Ma (Field et al., 2008 and references therein), respectively.  Compared to 527 

the Karoo magmatism, kimberlitic eruptions are local and of small volume, and likely had 528 

limited thermal influence on the lithosphere.  This suggestion is supported by the non-touching 529 

mineral inclusions in the fluid-rich diamonds, formed in proximity to the kimberlite eruption, 530 

and touching inclusions in monocrystalline diamonds, representing equilibration temperatures 531 

during the last metasomatic and/or kimberlitic event, which show overlapping temperatures that 532 

are lower compared to thermal gradients of peridotitic xenoliths from the same kimberlites 533 

(Figure 6a).  Likewise, the last metasomatic event by saline HDFs, that preceded Group I 534 

kimberlite eruptions, had little impact on the temperature and redox conditions of the Kaapvaal 535 

lithosphere as a reservoir.  However, it likely affected its properties along limited metasomatised 536 

veins and noodles, as indicated by the chemical and redox zoning between core and 537 

metasomatised rim in some individual xenolithic garnets from DeBeers-Pool kimberlites (Griffin 538 

et al., 1999; McCammon et al., 2001; Berry et al., 2013).   539 

5. Summary and conclusions  540 

The DeBeers-Pool diamonds encapsulate both mineral and high-density fluid (HDF) 541 

microinclusions, which help constrain the diamond host rock lithology, the composition of 542 

metasomatic agents that impact on this mantle lithology, and the thermal and 𝑓O2 conditions 543 

during fluid-rock interaction.  Seven of the eight diamonds contains saline HDFs associated with 544 

carbonated-peridotite on the basis of their microinclusions of olivine, orthopyroxene, Cr-pyrope, 545 

kosmochlore-bearing diopside, magnesite and phlogopite.  Their trace-element patterns show 546 

high alkalis (K, Rb and Cs), Ba and LREEs compared to Th, U, Nb and Ta, and are characterized 547 



25 
 

by Ti, Zr, Hf and Y negative anomalies relative to REEs of similar compatibility.  Given the low 548 

aggregation of the nitrogen of these diamonds (pure Type-IaA IR spectrum), the compositional 549 

similarities of their trapped HDFs, and the timing of the Karoo magmatism which elevated the 550 

thermal regime of the South African lithosphere, we argue that saline metasomatism and 551 

diamond formation took place in proximity to the Group I kimberlite event (~85 Ma), probably 552 

within few million years of eruption.   553 

Another diamond trapped silicic HDFs.  Comparison of the silicic HDFs trace-element pattern to 554 

those of saline fluids reveals similar levels of Th, U and Ba, which are all elevated compared to 555 

alkalis, a smaller negative Ti anomaly, and positive Zr and Hf anomalies.  The nitrogen 556 

aggregated nature of this diamond (Type IaAB with 25% of the nitrogen in B-centers) restricts 557 

its formation to an earlier and different metasomatic event than that responsible for the formation 558 

of saline HDF-bearing diamonds.  The state of the nitrogen aggregation in this diamond and the 559 

silicic nature of the HDF microinclusions suggest a relation to silica-rich melts that invaded the 560 

southwestern Kaapvaal SCLM prior to, or during, the Karoo magmatism ca. 180 Ma.  561 

Thermometry and oxythermobarometry for saline metasomatism, based on Mg–Fe exchange 562 

between Grt–Opx/Cpx/Ol and Opx–Cpx and the saline HDF compositions, yield temperatures 563 

between 875–1080 ºC and ∆log𝑓O2(FMQ) of -2.0 to -1.7 at 5 GPa.  They overlap with 564 

temperatures recorded by touching inclusion pairs in diamonds from the DeBeers-Pool 565 

kimberlites, which represent the mantle ambient conditions just before eruption, and 𝑓O2 stability 566 

of carbonate-bearing melts having a mole fraction of CO2 between 0.1 and 0.2.  These conditions 567 

are lower by 150–250 °C and higher by about 1 log𝑓O2 unit compared to P-T-𝑓O2 gradients 568 

recorded by peridotite xenoliths from the same locality.  We suggest that incompatible element 569 

enriched saline HDFs mediated the metasomatism that preceded Group I kimberlite eruptions in 570 
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the southwestern Kaapvaal craton, and that their ‘cold and oxidized’ nature reflects their 571 

derivation from a deep subducting slab.  This metasomatic event had little impact on the thermal 572 

and redox state of the Kaapvaal lithosphere as a reservoir.  However, it likely affected its 573 

properties along limited metasomatised veins and noodles, in which diamonds could form by 574 

isochemical precipitation or redox processes due to strong disequilibrium between saline HDFs 575 

and the local SCLM (Figure 6).  To reconcile the temperature and oxygen fugacity discrepancy 576 

between inclusions in diamond and xenoliths, we suggest that the xenoliths did not equilibrate 577 

during the last saline metasomatic event and/or kimberlite eruption.  Thus the P-T-𝑓O2 gradients 578 

recorded by the xenoliths represent pre-existing lithospheric conditions, expressing the last major 579 

thermal event in the Kaapvaal craton (i.e the Karoo magmatism ca. 180 Ma).   580 
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 819 

Figure captions  820 

Figure 1: Two microinclusion-bearing diamonds from the DeBeers-Pool kimberlites.  (a) 821 

Diamond ON-DBP-330 showing distinction between a white and translucent inner part and an 822 

outer part that is opaque with black-gray-white colors and a sugary texture; the transition 823 
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between the two parts is sharp.  (b) Cathodoluminescence (CL) image of ON-DBP-330 showing 824 

the location and type of microinclusions that were analyzed by EPMA.  Olivine and 825 

orthopyroxne microinclusions were found only at the inner part of this diamond, while the outer 826 

part exclusively contains high-density fluid (HDF) microinclusions of saline composition.  (c) 827 

Diamond ON-DBP-332.  (d) CL image of ON-DBP-332 showing the location of HDF 828 

microinclusions of silicic composition.  Pits in (a) and (c) were excavated during laser ablation 829 

ICP-MS analysis.  Additional photomicrograph and CL images of DeBeers-Pool diamonds, that 830 

were analyzed in the present study, are presented in Supplementary Figure S1. 831 

Figure 2: Infrared absorbance spectra between 1000-1400 cm-1 of: (a) the inner part of diamond 832 

ON-DBP-330 and, (b) diamond ON-DBP-332 (same diamonds as in Figure 1).  Diamond ON-833 

DBP-330 show nitrogen absorption in A-centers only (A component; main absorbance at 1282 834 

cm−1); ON-DBP-332 has both A- and B-centers, with 25% of the nitrogen in B-centers (B 835 

component; main absorbance at 1332 and 1170 cm-1).  The spectrum also show absorbance due 836 

to nitrogen platelets at 1373 cm−1.  Orthopyroxene related absorbance peaks at 1137, 1074, 1045 837 

and 1018 cm-1 are observed in the inner part of ON-DBP-330.  In ON-DBP-332, the absorbance 838 

peaks at 1093 and 997 cm-1 are related to quartz and mica phases, respectively.  See 839 

Supplementary Figure S2 for the full spectra of DeBeers-Pool diamonds analyzed, and text for 840 

additional information. 841 

Figure 3: Composition of mineral and HDF microinclusions in diamonds from DeBeers-Pool 842 

kimberlites.  (a) SiO2+Al2O3 vs. MgO (in wt.%) showing the different mineral microinclusions 843 

(Ol-olivine, Opx-orthopyroxene, Cpx-clinopyroxene, Grt-garnet, Phl-phlogopite, Mgs-844 

magnesite) and HDF microinclusions associated with specific DeBeers-Pool diamonds coded by 845 

color.  Some microinclusions trapped both mineral and HDF indicated as mixing lines.  (b) 846 
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SiO2+Al2O3–Na2O+K2O–MgO+FeO+CaO ternary diagram (in wt.%) showing the HDFs 847 

composition in DeBeers-Pool diamonds compared to the global compositional HDF end-848 

members varying between silicic to carbonatitic to saline (shaded area, delineated by average 849 

compositions for individual diamonds).  (c) K2O vs. Na2O (in wt.%) showing the negative 850 

correlation between K and Na in saline HDFs in DeBeers-Pool diamonds (silicic HDFs are 851 

shown for comparison).  (d-f) Na2O, MgO and SiO2 (in wt.%) vs. K+Na/Cl (in moles) of saline 852 

HDFs in DeBeers-Pool diamonds. These oxides increase (as well as CaO, Al2O3 and P2O3 to 853 

some extend) with increasing K+Na/Cl of the saline HDFs; the change towards somewhat more 854 

carbonatitic compositions, appear between diamond where no mineral microinclusions were 855 

found and diamonds containing both HDFs and mineral microinclusions.  856 

Figure 4: Primitive-mantle-normalized incompatible-element patterns of HDFs trapped in 857 

DeBeers-Pool diamonds.  (a) Diamonds ON-DBP-337 and 338; only HDF microinclusions were 858 

found in these diamonds. (b) Diamond ON-DBP-330 and 335; both mineral microinclusions and 859 

fluid microinclusions were identified, but they reside in different growth zones of the diamonds.  860 

Laser ablation was conducted at the outer part of these two diamonds that carry HDF 861 

microinclusions.  (c) Diamond ON-DBP-331 and 339; mineral microinclusions and HDF 862 

microinclusions reside in the same growth zone in these diamonds.  The ablated diamond volume 863 

likely contained a mixture of mineral and HDF microinclusions.  (d) Diamond ON-DBP-332; 864 

only HDF microinclusions were found in this diamond.  The average incompatible element 865 

pattern of saline HDF of ON-DBP-337 and 338 is plotted for comparison. In all panels (a–d), 866 

small symbols – individual LA-ICP-MS analyses, large symbols – HDF average composition in 867 

a single diamond.  The uncertainties on the values of Yb and Lu are large and they can be 868 

regarded as qualitative only.  Primitive mantle values are from (McDonough and Sun, 1995).    869 



35 
 

Figure 5: Relationships between trace element ratios, MgO (in wt.%), the carbonate calculated 870 

content (CO3 in moles) and the Cl amount (in wt.%) in saline HDFs in DeBeers-Pool diamonds.  871 

The MgO and carbonate content which represent the carbonatitic end-member component in the 872 

saline HDFs correlate negatively with increasing Cl (a-b).  With increasing carbonatitic 873 

component, La/Pr ratio increases and Eu/Sm and Ba/Nb ratios decrease in the saline HDF, while 874 

Sr/Rb, Th/Rb and Zr/Hf ratios increase and Eu/Ti ratio decrease, due to higher Sr, Th, Zr and Ti 875 

concentrations (c-i).   876 

Figure 6: Temperature-pressure-𝑓O2 conditions of peridotite diamond inclusions and xenoliths 877 

from the southwestern Kaapvaal craton. (a) The green area represents the possible P-T conditions 878 

of saline metasomatism as recorded by non-touching mineral microinclusions in saline HDF-879 

bearing diamonds from DeBeers-Pool (this study), the inset show the different thermometers and 880 

barometers which were used to define these conditions (see text for additional information).  881 

Also shown are P-T conditions of mineral inclusions in monocrystalline diamonds (touching 882 

pairs – red diamonds, non-touching – yellow circles; Phillips et al., 2004); 36–44 mW/m2 883 

continental geotherms (black dotted lines; Hasterok and Chapman, 2011); graphite–diamond 884 

transition (black solid line; Day, 2012); the solidus for lherzolite+H2O+CO2 (green dashed line) 885 

and for lherzolite+H2O (green dotted-dashed line; Wyllie and Ryabchikov, 2000), and the solidus 886 

for harzburgite+H2O+CO2 (blue dashed line; Wyllie, 1987).  (b) 𝑓O2 variations of saline HDFs 887 

as a function of pressure (green area), 𝑓O2 was calculated using the possible P-T conditions of 888 

mineral microinclusions in (a), the composition of HDFs in the different diamonds (Table 2) and 889 

the calibration of Stagno and Frost (2010).  Also shown are the iron–wüstite buffer reaction (IW; 890 

Ballhaus et al., 1991), graphite–diamond transition reaction and 891 

enstatite+magnesite=olivine+graphite/diamond reaction (EMOG/EMOD; Holland and Powell, 892 
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2011), and the 𝑓O2 stability of carbonate-bearing melts (blue lines with molar fraction of CO2 on 893 

top; Stagno and Frost, 2010).  Xenoliths P-T data (gray diamonds, triangles and circles) are from 894 

Woodland and Koch (2003), Creighton et al. (2009) and Lazarov et al. (2009b); their 𝑓O2 values 895 

are calculated based on Stagno et al. (2013).  The depth of the Kaapvaal lithospheric Keel is 896 

estimated based on Rayleigh waves tomography (Chevrot and Zhao, 2007), seismic anisotropy 897 

(Fouch and Rondenay, 2006) and electrical-conductivity measurements (Miensopust et al., 898 

2006). 899 

Figure 7: The aggregation of nitrogen from C-centers (single nitrogen atom) to A-centers 900 

(paired nitrogen atoms), and from A-centers to B-centers (aggregates of four nitrogen atoms) as a 901 

function of time and temperature, using the calibration of Taylor et al. (1990, 1996).  The 902 

proportions of nitrogen in A-centers increase with time and temperature as single nitrogen atoms 903 

combine to nitrogen pairs (solid red contours), and decrease as nitrogen pairs aggregate to form 904 

larger aggregates of four atoms (dashed black contours).  Diamonds showing ‘pure’ Type IaA 905 

spectrum contain unresolved B-centers or C-centers, that are account to less than 1% of the total 906 

nitrogen (middle white field).  The low-aggregated nature of nitrogen in the DeBeers-Pool 907 

diamonds suggest the timing of their formation is younger than the Karoo flood basalt volcanism 908 

at 180±5 Ma, which involved a major increase in the temperature of the South African 909 

lithosphere.  At 1150 °C and <0.1% of both B- and C-centers (A-centers>99.9%), the mantle 910 

residence time of the saline HDF-bearing diamonds, with nitrogen concentrations varying 911 

between 70-700 ppm, is only a few million years before kimberlite eruption.  At 1000 °C the 912 

estimated residence time for these diamonds is longer (on the order of hundreds of millions of 913 

years), but if we allow a higher concentration of C-centers (up to 1%) with less than 0.1% of B-914 

centers, shorter residence times of the order of tens of millions of years are also possible. 915 
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 933 

Figure 1: Two microinclusion-bearing diamonds from the DeBeers-Pool kimberlites.  (a) Diamond ON-DBP-330 showing distinction between a 934 

white and translucent inner part and an outer part that is opaque with black-gray-white colors and a sugary texture; the transition between the 935 

two parts is sharp.  (b) Cathodoluminescence (CL) image of ON-DBP-330 showing the location and type of microinclusions that were analyzed by 936 

EPMA.  Olivine and orthopyroxne microinclusions were found only at the inner part of this diamond, while the outer part exclusively contains 937 

high-density fluid (HDF) microinclusions of saline composition.  (c) Diamond ON-DBP-332.  (d) CL image of ON-DBP-332 showing the location of 938 

HDF microinclusions of silicic composition.  Pits in (a) and (c) were excavated during laser ablation ICP-MS analysis.  Additional photomicrograph 939 

and CL images of DeBeers-Pool diamonds, that were analyzed in the present study, are presented in Supplementary Figure S1. 940 

 941 

 942 

 943 
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 944 

Figure 2: Infrared absorbance spectra between 1000-1400 cm-1 of: (a) the inner part of diamond ON-DBP-330 and, (b) diamond ON-DBP-332 945 

(same diamonds as in Figure 1).  Diamond ON-DBP-330 show nitrogen absorption in A-centers only (A component; main absorbance at 1282 946 

cm−1); ON-DBP-332 has both A- and B-centers, with 25% of the nitrogen in B-centers (B component; main absorbance at 1332 and 1170 cm-1).  947 

The spectrum also show absorbance due to nitrogen platelets at 1373 cm−1.  Orthopyroxene related absorbance peaks at 1137, 1074, 1045 and 948 

1018 cm-1 are observed in the inner part of ON-DBP-330.  In ON-DBP-332, the absorbance peaks at 1093 and 997 cm-1 are related to quartz and 949 

mica phases, respectively.  See Supplementary Figure S2 for the full spectra of DeBeers-Pool diamonds analyzed, and text for additional 950 

information. 951 

 952 

 953 
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 954 

Figure 3: Composition of mineral and HDF microinclusions in diamonds from DeBeers-Pool kimberlites.  (a) SiO2+Al2O3 vs. MgO (in wt.%) 955 

showing the different mineral microinclusions (Ol-olivine, Opx-orthopyroxene, Cpx-clinopyroxene, Grt-garnet, Phl-phlogopite, Mgs-magnesite) 956 

and HDF microinclusions associated with specific DeBeers-Pool diamonds coded by color.  Some microinclusions trapped both mineral and HDF 957 

indicated as mixing lines.  (b) SiO2+Al2O3–Na2O+K2O–MgO+FeO+CaO ternary diagram (in wt.%) showing the HDFs composition in DeBeers-Pool 958 

diamonds compared to the global compositional HDF end-members varying between silicic to carbonatitic to saline (shaded area, delineated by 959 

average compositions for individual diamonds).  (c) K2O vs. Na2O (in wt.%) showing the negative correlation between K and Na in saline HDFs in 960 

DeBeers-Pool diamonds (silicic HDFs are shown for comparison).  (d-f) Na2O, MgO and SiO2 (in wt.%) vs. K+Na/Cl (in moles) of saline HDFs in 961 

DeBeers-Pool diamonds. These oxides increase (as well as CaO, Al2O3 and P2O3 to some extend) with increasing K+Na/Cl of the saline HDFs; the 962 

change towards somewhat more carbonatitic compositions, appear between diamond where no mineral microinclusions were found and 963 

diamonds containing both HDFs and mineral microinclusions.  964 
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 965 

Figure 4: Primitive-mantle-normalized incompatible-element patterns of HDFs trapped in DeBeers-Pool diamonds.  (a) Diamonds ON-DBP-337 966 

and 338; only HDF microinclusions were found in these diamonds. (b) Diamond ON-DBP-330 and 335; both mineral microinclusions and fluid 967 

microinclusions were identified, but they reside in different growth zones of the diamonds.  Laser ablation was conducted at the outer part of 968 

these two diamonds that carry HDF microinclusions.  (c) Diamond ON-DBP-331 and 339; mineral microinclusions and HDF microinclusions 969 

reside in the same growth zone in these diamonds.  The ablated diamond volume likely contained a mixture of mineral and HDF 970 

microinclusions.  (d) Diamond ON-DBP-332; only HDF microinclusions were found in this diamond.  The average incompatible element pattern 971 

of saline HDF of ON-DBP-337 and 338 is plotted for comparison. In all panels (a–d), small symbols – individual LA-ICP-MS analyses, large 972 

symbols – HDF average composition in a single diamond.  The uncertainties on the values of Yb and Lu are large and they can be regarded as 973 

qualitative only.  Primitive mantle values are from (McDonough and Sun, 1995).    974 
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 975 

Figure 5: Relationships between trace element ratios, MgO (in wt.%), the carbonate calculated content (CO3 in moles) and the Cl amount (in 976 

wt.%) in saline HDFs in DeBeers-Pool diamonds.  The MgO and carbonate content which represent the carbonatitic end-member component in 977 

the saline HDFs correlate negatively with increasing Cl (a-b).  With increasing carbonatitic component, La/Pr ratio increases and Eu/Sm and 978 

Ba/Nb ratios decrease in the saline HDF, while Sr/Rb, Th/Rb and Zr/Hf ratios increase and Eu/Ti ratio decrease, due to higher Sr, Th, Zr and Ti 979 

concentrations (c-i).   980 
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 981 

Figure 6: Temperature-pressure-𝑓O2 conditions of peridotite diamond inclusions and xenoliths from the southwestern Kaapvaal craton. (a) The 982 

green area represents the possible P-T conditions of saline metasomatism as recorded by non-touching mineral microinclusions in saline HDF-983 

bearing diamonds from DeBeers-Pool (this study), the inset show the different thermometers and barometers which were used to define these 984 

conditions (see text for additional information).  Also shown are P-T conditions of mineral inclusions in monocrystalline diamonds (touching 985 

pairs – red diamonds, non-touching – yellow circles; Phillips et al., 2004); 36–44 mW/m2 continental geotherms (black dotted lines; Hasterok 986 

and Chapman, 2011); graphite–diamond transition (black solid line; Day, 2012); the solidus for lherzolite+H2O+CO2 (green dashed line) and for 987 

lherzolite+H2O (green dotted-dashed line; Wyllie and Ryabchikov, 2000), and the solidus for harzburgite+H2O+CO2 (blue dashed line; Wyllie, 988 

1987).  (b) 𝑓O2 variations of saline HDFs as a function of pressure (green area), 𝑓O2 was calculated using the possible P-T conditions of mineral 989 

microinclusions in (a), the composition of HDFs in the different diamonds (Table 2) and the calibration of Stagno and Frost (2010).  Also shown 990 

are the iron–wüstite buffer reaction (IW; Ballhaus et al., 1991), graphite–diamond transition reaction and 991 

enstatite+magnesite=olivine+graphite/diamond reaction (EMOG/EMOD; Holland and Powell, 2011), and the 𝑓O2 stability of carbonate-bearing 992 

melts (blue lines with molar fraction of CO2 on top; Stagno and Frost, 2010).  Xenoliths P-T data (gray diamonds, triangles and circles) are from 993 

Woodland and Koch (2003), Creighton et al. (2009) and Lazarov et al. (2009b); their 𝑓O2 values are calculated based on Stagno et al. (2013).  994 

The depth of the Kaapvaal lithospheric Keel is estimated based on Rayleigh waves tomography (Chevrot and Zhao, 2007), seismic anisotropy 995 

(Fouch and Rondenay, 2006) and electrical-conductivity measurements (Miensopust et al., 2006). 996 
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 997 

Figure 7: The aggregation of nitrogen from C-centers (single nitrogen atom) to A-centers (paired nitrogen atoms), and from A-centers to B-998 

centers (aggregates of four nitrogen atoms) as a function of time and temperature, using the calibration of Taylor et al. (1990, 1996).  The 999 

proportions of nitrogen in A-centers increase with time and temperature as single nitrogen atoms combine to nitrogen pairs (solid red 1000 

contours), and decrease as nitrogen pairs aggregate to form larger aggregates of four atoms (dashed black contours).  Diamonds showing ‘pure’ 1001 

Type IaA spectrum contain unresolved B-centers or C-centers, that are account to less than 1% of the total nitrogen (middle white field).  The 1002 

low-aggregated nature of nitrogen in the DeBeers-Pool diamonds suggest the timing of their formation is younger than the Karoo flood basalt 1003 

volcanism at 180±5 Ma, which involved a major increase in the temperature of the South African lithosphere.  At 1150 °C and <0.1% of both B- 1004 

and C-centers (A-centers>99.9%), the mantle residence time of the saline HDF-bearing diamonds, with nitrogen concentrations varying 1005 

between 70-700 ppm, is only a few million years before kimberlite eruption.  At 1000 °C the estimated residence time for these diamonds is 1006 

longer (on the order of hundreds of millions of years), but if we allow a higher concentration of C-centers (up to 1%) with less than 0.1% of B-1007 

centers, shorter residence times of the order of tens of millions of years are also possible. 1008 

 1009 

 1010 

 1011 
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Supplementary Material  1012 

Analytical Methods 1013 

Fourier-transform infrared (FTIR) spectroscopy 1014 

Infrared spectra were collected using a Bruker IRscope II microscope coupled to a Nicolet 740 1015 

FTIR spectrometer (Globar source, KBr beamsplitter, MCT detector, He–Ne laser) at the 1016 

Institute of Earth Sciences, the Hebrew University of Jerusalem, Israel (HUJI).  Spectra were 1017 

taken in the range of 550–4000 cm-1 with resolution of 2 cm-1.  Nitrogen concentration and 1018 

aggregation states (Table 1) were determined with the DiaMap freeware (Howell et al., 2012), 1019 

using the absorption coefficients of A-centers (double substitution of carbon atoms by two 1020 

nitrogen atoms, Type IaA spectrum), B-centers (clusters of 4 nitrogen atoms and an atomic 1021 

vacancy substituting 5 carbon atoms, Type IaB spectrum) and C-centers (single nitrogen 1022 

replacing a carbon atom, Type Ib spectrum) (Boyd et al., 1994, 1995; Kiflawi et al., 1994; 1023 

Zaitsev, 2001).  Prior to deconvolution, the DiaMap program subtracts the intrinsic diamond 1024 

absorption spectrum (Type IIa spectrum) and baseline corrects the raw data automatically (using 1025 

a spline fit to the lowest points).  The infra-red spectra obtained are complicated by the partial 1026 

overlapping absorbances of silicates, carbonates and apatite from the microinclusions (Figure 2 1027 

and Supplementary Figure S2).  As a consequence, deconvolution of the low-nitrogen IR 1028 

absorbance to determine nitrogen concentrations and aggregation states was made more difficult, 1029 

in particular resulting in over-estimation mainly of the percentage of nitrogen in the B-centers.  1030 

To correct for the over-estimation, we manually set the spectral fitting range of the DiaMap 1031 

program, which minimized the effects on the deconvolution process and resulted in very good 1032 

fits to these data (Figure 2).  The uncertainties on the A- and B-centers concentrations were 1033 

determined to be <5%. This was achieved by increasing and decreasing the amount of IaA and 1034 
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IaB that are subtracted until a clear peak or a ‘negative’ peak were observed at 1282 cm-1 (A-1035 

centers) and 1332 cm-1 (B-centers).  After baseline correction and subtraction of both diamond 1036 

and nitrogen bands, the concentrations of water and carbonate (Table 2) were determined using 1037 

the maximum absorbance of water and carbonate and their absorption coefficients (Weiss et al., 1038 

2010).  These concentrations were used to calculate the carbonate mole fraction (CMF) of the 1039 

trapped fluids (CMF=carbonate/(water+carbonate) molar ratio).  Absorption peaks, known to be 1040 

caused by primary mineral microinclusions trapped by the diamond during its growth, as well as 1041 

daughter mineral phases that grew from the trapped HDFs within the microinclusions, were 1042 

documented and used to confirm the general characteristics of the host rock mineralogy and the 1043 

nature of the diamond-forming fluids. 1044 

Cathodoluminescence (CL) imaging and Electron probe microanalyzer (EPMA) analyses  1045 

Cathodoluminescence imaging (total intensity at 400–700 nm) of the diamonds was recorded 1046 

using a Gatan MiniCL attached to a JEOL JXA 8600 EPMA at the Institute of Earth Sciences, 1047 

HUJI.  The acceleration voltage was 25 kV and the beam current was 75 nA.  These images 1048 

provide the internal structure of the diamond and allow the determination of the exact location of 1049 

the microinclusions relative to the growth history of the diamond (Figure 1 and Supplementary 1050 

Figure S1).   1051 

The major element compositions of the microinclusions were determined using a JEOL JXA 1052 

8600 EPMA equipped with a Pioneer-Norvar EDS (133 eV) detector at the Institute of Earth 1053 

Sciences, HUJI.  Backscattered electron imaging was used to detect shallow, subsurface 1054 

microinclusions (<2 µm depth).  Each inclusion was analyzed for 100 s using an acceleration 1055 

voltage of 15 kV and a beam current of 10 nA.  The spectral data were reduced using the 1056 

ZAF/PROZA correction procedure software supplied by Noran (Bastin and Heijligers, 1991).  1057 
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The total amount of oxides and Cl in each analysis varied between 1.2 and 29 wt.% with an 1058 

average of 7.7 wt.% for all 347 analyzed HDF microinclusions and between 1.9 and 61 wt.% 1059 

with an average of 14 wt.% for 190 analyzed mineral microinclusions (Supplementary Table A, 1060 

B).  The low and variable sums reflect the small size of the inclusions, their depth and their high 1061 

content of undetected water and carbonates.  Precision approximately follows: 2σ (%) = 2/oxide 1062 

in wt.% (Jablon and Navon, 2016), and is <20% for oxide concentrations of 0.05 wt%, <10% for 1063 

0.25 wt%, <6% for 0.5 wt% and <2% for 1 wt%.  The ZAF/PROZA processing assumed that the 1064 

difference from 100 wt.% is comprised of pure carbon.  Later, all oxide and chlorine 1065 

concentrations were normalized to 100 wt.% on a carbon-free and volatiles-free basis (where Cl 1066 

is present, excess calculated oxygen leads to a normalized total of more than 100%) and the 1067 

average composition of the HDF in the diamond was calculated.   1068 

Laser ablation ICP-MS analyses  1069 

Trace element concentrations were determined using a Quantel Brilliant 266 nm Nd:YAG pulsed 1070 

laser with a beam diameter of 100 µm coupled to an Agilent 7500 ICP-MS at GEMOC, 1071 

Macquarie University, NSW, Australia.  Background was measured for 100 s followed by 130 s 1072 

of diamond ablation.  Data were reduced using the GLITTER 4.4 software.  A doped cellulose 1073 

external standard and the diamond carbon were used as internal standards (Rege et al., 2010; 1074 

Rege et al., 2005).  Only the most homogeneous and stable portions of the time-resolved signals 1075 

were selected for each diamond.  For the high impurity content of the diamond, blank corrections 1076 

(Rege et al., 2005 Table S3) are less than 1–2%, except for Ca where it is equivalent to 12±5 1077 

ppm or 10% of the typical measured concentrations.  The method limit of detection (LOD) is 1078 

defined as 3.25 times the uncertainty on the background counts and the limit of quantitation 1079 

(LOQ) is defined as 10 times the uncertainty on the background (Rege et al., 2010).  The 1080 
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precision (expressed as %rsd) is 10% for concentrations between 1 and 100 ppm, 20% for 0.1–1 1081 

ppm, 30% for 0.01–0.1 ppm and 40% for values <0.01 ppm.  These analyses yield the 1082 

concentrations of elements in the diamond host.  In order to obtain the trace element 1083 

concentrations of the trapped fluids, all values were corrected to the average K content of the 1084 

microinclusions of each diamond as measured by EPMA (on water+carbonate free basis). 1085 
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 1115 

 1116 

Supplementary Figure S1: Photomicrograph and Cathodoluminescence (CL) images of microinclusion-bearing diamonds from the DeBeers-Pool 1117 

kimberlites. (a) and (b) Diamond ON-DBP-331; (c) and (d) Diamond ON-DBP-335; (e) and (f) Diamond ON-DBP-336; (g) and (h) Diamond ON-1118 



50 
 

DBP-337; (i) and (j) Diamond ON-DBP-338; (k) and (l) Diamond ON-DBP-339.  The location and type (i.e. mineral or HDF) of the microinclusions 1119 

that were analyzed by EPMA in each diamond is superimposed on its CL image.  Pits were excavated during laser ablation ICP-MS analysis.   1120 

 1121 

Supplementary Figure S1 (continued): Photomicrograph and Cathodoluminescence (CL) images of microinclusion-bearing diamonds from the 1122 

DeBeers-Pool kimberlites. (a) and (b) Diamond ON-DBP-331; (c) and (d) Diamond ON-DBP-335; (e) and (f) Diamond ON-DBP-336; (g) and (h) 1123 

Diamond ON-DBP-337; (i) and (j) Diamond ON-DBP-338; (k) and (l) Diamond ON-DBP-339.  The location and type (i.e. mineral or HDF) of the 1124 
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microinclusions that were analyzed by EPMA in each diamond is superimposed on its CL image. Pits were excavated during laser ablation ICP-1125 

MS analysis.   1126 

 1127 

Supplementary Figure S2: Original infrared absorbance spectra of six different diamonds from DeBeers-Pool kimberlites (a-h). The intrinsic 1128 

diamond bands at 1800–3800 cm-1, without CO2 and water overlapping absorbance, is best shown in (h).  Nitrogen-related substitutions in the 1129 

diamond lattice show absorbance in the rage of 1150–1400 cm-1; diamonds ON-DBP-330, 335, 337, 338 (a-f) show nitrogen absorbance due to 1130 

A-centers only (Type IaA spectrum); diamond ON-DBP-332 (g) show absorbance of both A- and B-centers (Type IaB spectrum) and nitrogen 1131 

platelets peak; diamond ON-DBP-336 (h) is a type IIb diamond, carrying no nitrogen impurities.  Absorbance due to mineral microinclusions and 1132 

daughter phased within HDF microinclusions are also observed: bands at ~1450 and ~880 and ~750 cm-1 are typical of carbonate absorption.  1133 

The broad band at ~3440 cm-1 and the peak at ~1650 are due to the presence of liquid water.  Mica main peak is observed at ~1000 cm-1.  1134 

Apatite main peak is at 1065 cm-1, and have two additional peaks at 1060 and 605 cm-1.  Quartz main peak is at 1092 cm-1, and have two small 1135 

characteristic peaks at ~810 and ~785 cm-1.  Multiple peaks of olivine and pyroxene were also identified between 600–1150 cm-1.  The inset in 1136 

(c-g) show in details the absorbance range between 600–1800 cm-1 of the full spectrum presented.  The inset in (h) represents absorbance in 1137 
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the range between 600–1800 cm-1 of a spectrum taken at the inner part of diamond ON-DBP-336, while the full spectrum represents 1138 

absorbance at the outer part of this diamond, differences are due to different mineral microinclusions characteristics in the inner and outer 1139 

parts of this diamond (see also supplementary Figure S1). 1140 


