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Synopsis By using Soft X-ray transmission microscopy with magnetic contrast (magnetic circular 

dichroism) it is possible to get valuable magnetic information from the studied systems. In this work 

we go a step further presenting a method to use Magnetic Soft X-ray transmission tomography as an 

ideal tool to reconstruct the 3D magnetization configuration of arbitrary magnetic samples.  
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Abstract The development of magnetic nanostructures for applications in spintronics requires 

methods capable of visualizing their magnetization. Soft X-ray magnetic imaging combined with 

circular magnetic dichroism allows to probe nanostructures up to 100-300 nm in thickness with 

resolutions of 20-40 nm. Here we present a new iterative tomographic reconstruction method to 

extract the three-dimensional (3D) magnetization configuration from tomographic projections. The 

vector field is reconstructed by using a modified algebraic reconstruction approach based on solving a 

set of linear equations in an iterative manner. The application of this method is illustrated with two 

examples (magnetic nano-disc and micro-square heterostructure) along with comparison of error in 

reconstructions, and convergence of the algorithm. 

Keywords: Soft X-ray Transmission Microscopy; X-Ray Transmission Tomography; Vector 
Field Tomography; Magnetization Configuration Reconstruction 

1. Introduction  

Advances in nanomagnetism towards applications in spintronics involve magnetic heterogeneous 

systems with increasing complexity including multiple materials, and complex geometries. 

Spectroscopic methods and imaging tools are required to characterize and visualize the local magnetic 

properties at different regions throughout the heterostructures. Several tools for magnetic imaging 

have been developed in the past years. Using visible light photons, Kerr microscopy and Vector 

Magnetometry provide, via magneto-optical effects, mappings of the magnetization with lateral 

resolutions around ~1 µm limited by the photon wavelengths [1-3]. Their probing depth is of few nm 

in metallic samples. Higher lateral resolution is achieved with electron-based techniques by using 

secondary or photo emitted electrons. Scanning electron microscopy with polarization analysis and X-

ray photoemission electron microscopy provide very good lateral resolution (~10 nm) but they also 

have shallow probing depths (1-2 nm) due to strong inelastic scattering of low energy electrons [4-7]. 

This limitation is circumvented for high energy electrons that traverse samples. Lorentz Transmission 

Electron Microscopy (Lorentz TEM) [8, 9] has an excellent lateral resolution (~1 nm) and is sensitive 

to the magnetization of the whole sample in systems up to ~100 nm thickness. Because the technique 

probes the magnetization perpendicular to the direction of the propagation of electrons, it is highly 

sensitive to in-plane magnetization. A further development of Lorentz TEM, which is called the 

Vector Field Electron Tomography, is especially interesting [10, 11]. It combines both, the excellent 

lateral resolution and the in-depth magnetic sensitivity of Lorentz TEM, with the 3D volume 

reconstruction capabilities of tomography to obtain the potential vector A and from it, the full 

magnetization configuration in 3D magnetic systems. Besides these methods, two X-ray based 

techniques are being used to probe magnetization with high sensitivity and spatial resolution. Soft X-

ray transmission microscopy using circularly polarized X-rays of energies typically below 1 keV with 

a 100-300 nm penetration depth, has been used to image buried magnetic layers by exploiting the 

large magnetic dichroism occurring at specific electronic transitions in magnetic atoms [12, 13]. More 
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recently, hard X-rays (photon energies of about 6-10 keV) that have larger penetration depths (~µm), 

have been successfully used to reconstruct 3D magnetization. In this case, as the magnetic dichroic 

absorption is very small compared to soft X-rays, the method uses transversally coherent X-rays to 

exploit diffraction and phase contrast in ptychography mode, which involves the acquisition of several 

thousands (~105) of diffraction images, allowing to resolve the magnetization of the sample with 

lateral resolution around 100 nm typically [14]. 

Here we present the development of a new iterative algorithm to obtain quantitative 3D vector 

magnetization reconstruction using soft X-ray microscopy [12, 15, 16]. This is achieved by taking X-

ray transmission images with opposite dichroism (positive and negative), for two tomogram series by 

rotating the object around two orthogonal tilt axes. The total number of images required is around 500 

or less. The reconstructions are based on a joint processing of both tomogram series for obtaining the 

reconstructed magnetic configuration. Section 2 presents the forward problem of magnetic soft X-ray 

transmission microscopy by introducing the equations that describe the projected images. In section 3, 

we analyze scalar and vector field reconstruction problems solving them by using a modified iterative 

algebraic reconstruction technique. The algorithm will be made openly available under TomoPy, 

which is a library for tomographic image reconstruction [17] and the simulated tomograms will be 

accessible through TomoBank [18]. Section 4 illustrates the application of the method by 

reconstructing two simulated magnetic microstructures and evaluating its accuracy. Finally, the 

conclusions of the work are presented in section 5.  

2. Magnetic Soft X-ray Transmission Microscopy 

In an X-ray transmission microscope, the transmitted X-ray intensity through the sample under 

investigation is recorded at each pixel of a 2D detector forming a transmission image. In what 

follows, we assume a simplified geometry with incoming parallel beam, although the condenser optics 

of the Soft X-ray microscope focuses the beam onto the sample, and the objective Fresnel Zone plate 

lens (FZP) collects the transmitted beam producing a magnified image (x1500) at the charged-coupled 

detector (CCD) [19]. The FZP has a limited depth of field that will affect the projections while 

rotating, if the sample size exceeds it. This has to be taken into account for samples with relatively 

large lateral dimensions. Exploiting the broad photon energy spectrum emitted by synchrotron light-

sources, it is possible to tune the X-ray wavelength in order to match atom-specific absorption edges 

leading also to resonant atom-specific images [19, 20]. Moreover, if the polarization of the incident 

beam is circular (right or left handed), atom-specific magnetic images can be recorded by taking 

advantage of Magnetic Dichroism effect [20, 21]. In this framework, the X-ray intensity after passing 

through the sample can be described as follows: 

( ) ( )1
0 exp 1 1I I L k m dtδ−⎛ ⎞⎡ ⎤= +⎜ ⎟⎣ ⎦⎝ ⎠

∫ i  
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In equation 1, I and I0 are the transmitted and incident intensities of the X-ray beam respectively; L-1 

is the inverse of the attenuation length for the X-rays. It depends on the photon energy and on electron 

density of the sample which will be variable in heterogeneous systems; δ  is the dichroic coefficient 

for the magnetic material under analysis. It is the scale factor of the magnetic sensitivity and depends 

on the electronic levels of the absorbing atoms; k•m is the dot product of X-ray wave vector and 

magnetization. It provides the sensitivity of the dichroism at different relative orientations of the 

sample and the photon beam; m is the reduced magnetization vector (m = M/MS, with M the 

magnetization vector and MS the saturation magnetization); and dt is the elementary path along the X-

ray linear trajectory spanned by the line integral. The latter runs along the entire beam path, from its 

source to the detector, passing through the sample space. Thus, it is clear that, L-1, δ and m are implicit 

functions of t as they are sampled by the X-ray beam. The transmittance (T = I/I0) is separated in two 

terms: 

( ) ( ) ( ) ( ) ( )1 1
exp 2T L t dt L t t k m t dtδ− −⎛ ⎞

⎡ ⎤= +⎜ ⎟⎣ ⎦
⎝ ⎠
∫ ∫ i  

The first integral does not depend on the magnetism but only on the charge distribution in the sample 

whereas the second one includes the magnetic contributions. For practical convenience and to 

separate the magnetic and nonmagnetic parts we take the logarithms of the transmittance for right 

handed (+δ, Eq. 3a) and left handed polarizations (-δ, Eq. 3b). 

 

[ ] ( ) ( ) ( ) ( ) ( )

[ ] ( ) ( ) ( ) ( ) ( )

1 1

1 1

log 3

log 3

T L t dt L t t k m t dt a

T L t dt L t t k m t dt b

δ

δ

δ

δ

− −
+

− −
−

⎡ ⎤= + ⎣ ⎦

⎡ ⎤= − ⎣ ⎦

∫ ∫

∫ ∫

i

i
  

Hence, by simply adding and subtracting equations 3a and 3b, separate expressions for the non-

magnetic (Eq. 4a) and magnetic (Eq. 4b) contributions are obtained. 

 [ ] [ ] ( ) ( )1
log log 2 4T T L t dt aδ δ

−
+ −+ = ∫   

 [ ] [ ] ( ) ( ) ( ) ( )1
log log 2 4T T L t t k m t dt bδ δ δ−

+ −
⎡ ⎤− = ⎣ ⎦∫ i   

Equation 4a will be used to obtain the values of the attenuation length (L), which is a scalar field 

while equation 4b will allow extracting the magnetization configuration (m) of the system. 

3. Scalar and Vector Field Tomographic Reconstruction 
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Figure 1 (a) Scheme of the tomography problem showing the X-ray beam, the sample, the rotation 

axes, the detector and a volume model for the reconstruction. Two projections at 0 (b) and 60 (c) 

degrees rotated around the Y axis (plane XZ) on a 1D detector are also presented. 

Let’s call “x” the property that we want to reconstruct, thus each voxel of the model will contain a 

value for this parameter. In order to get the x field by using the volume model, the images recorded 

with the detector at different projection angles (measured data) are compared with the mathematic 

projection of the model at the same tilt angles. In this way, the problem to reconstruct the x field can 

be written as a system of linear equations in the following form: 

 ( )0 5y A xφ φ− =   

 

,1,1 ,1,1 ,1,1
1,1,1 1,1,1 , , , ,1,1

, , , , , ,
, , 1,1,1 , , , ,,

, , , , , ,
, , 1,1,1 , , , ,,

, ,

i j k I J K

n m n m n m
i j k i j k I J Kn m

N M N M N M
I J K i j k I J KN M

x l l ly

xy x A l l ly

x l l ly

φ φ φφ

φ φ φ φ φφ

φ φ φφ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢⎢ ⎥ ⎢ ⎥= = =
⎢⎢ ⎥ ⎢ ⎥
⎢⎢ ⎥ ⎢ ⎥
⎢⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

⎥
⎥
⎥
⎥

  

The column vector yφ represents the transmittance at each pixel of the detector arranged in raster order 

(concatenated stacking of all the rows of the detector) for a certain projection φ. The detector has N x 

M pixels. The column vector x is composed by the values for the x field stored in the volume model 

arranged also in raster order [concatenated stacking of volume model data ordered by running the 

rows (j index), the columns (i index) and finally the layers (k index)]. The general volume model has I 

x J x K voxels, indicating the number of rows, columns and layers respectively. The matrix Aφ is the 

projection matrix which allows to obtain the values of each detector pixel yφ as a function of the 

model parameters x for a certain projection angle φ. This matrix has size (NM x IJK) and is sparse. Its 

elements ( , ,, , ) are indexed indicating to which detector pixel (n,m) and at which tilt angle (φ) the 

volume is being projected, and also what cell of the model (i,j,k) is involved. The main point here is 

that for different projections, different linear combinations of the voxels contribute to the integrated 

intensity in the same detector pixel. Thus, the value of each element of Aφ is calculated as the length 

of a specific ray through each voxel at a projection angle φ. These lengths are the “weights” of the 

physical property enclosed in the voxels (x) to form the linear combination determined by the beam. It 

is important to mention here that an efficient implementation of the calculation of these elements is 

crucial for the performance of the final reconstruction algorithm [23,24]. 

To further clarify this point, we analyse a simple example of two different projections in the Ytilt 

configuration at 0 (Fig.1b) and 60 (Fig.1c) degrees. The presented situation is reduced to a single row 

(1D) of the detector with 3 pixels (y1, y2, y3) and a 2D slice (x1,1, … ,xi,j, … ,x3,3) in the XZ plane (Ytilt) 

of the volume model. The length of the X-ray beam inside each cell ( , , ) is indexed using the 
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previous convention. Thus, for instance the linear combination resulting in the signal integrated by 

pixel 2 for 0 and 60 degrees projection can be written as = ,, , + ,, , + ,, ,  , and = , , , + , , , + , , , + , , , + , , , .  

It is clear now that the line integral appearing in equation 4a is numerically reproduced by this linear 

combination along the X-ray path. The L-1 values are considered homogeneous inside each voxel and 

the infinitesimal line integral element (dt) is substituted by the length of the ray through the involved 

model cell. The resulting equations system has as many equations as the number of detector pixels 

times the number of different projection angles. For instance, a 256 x 256 pixels detector and 100 

projections leads to a system with more than 6.5 million equations. To solve this problem we use the 

Algebraic Reconstruction Technique (ART) [22]. First, an initial value (it can be 0) is assigned to the 

parameters contained in the model voxels. After this, the volume model is projected into the detector 

space by using Aφ for the initial tilt angle of the tomogram. By calculating the difference between the 

experimental data (yφ) and the numerically projected one, an error vector (eφ) is obtained as depicted 

in equation 6. 

 ( )6e y A xφ φ φ= −   

The model parameters are updated as indicated in equation 7. Vectors xnew and xold represent the 

model parameters after and before of update respectively. Cφ and Rφ are diagonal matrices where each 

one of their elements is calculated as the inverse of the sum of all column and row elements in matrix 

Aφ respectively. For their calculation, indices “c” and “r” indicate the column and row index of the 

projection matrix Aφ respectively, thus they run from 1 to IJK for index c and from 1 to NM for index 

r. These matrices are included in order to compensate for the number of beams interacting with the 

same voxel, and for the number of pixels which are hit by the same ray, thus they prevent for 

overweighting. Finally, [Aφ]T represents the transposed Aφ matrix. 

( )7
Tnew oldx x C A R eφ φ φ φ⎡ ⎤⎡ ⎤= + ⎣ ⎦⎢ ⎥⎣ ⎦

 

 

1,1

,,
,

,

0 0

0
1

,

0

0 0

c cc c
r c

r

IJK IJK

c

C cc
l

c

φ

φ φφ
φ

φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑
  

 

1,1

,,
,

,

0 0

0
1

,

0

0 0

r rr r
r c

c

NM NM

r

R rr
l

r

φ

φ φφ
φ

φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑
  

Page 7

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076



RE
VI

EW
 D

O
CU

M
EN

T

Journal of Synchrotron Radiation    research papers 

8 

 

Note here that an iteration is completed when all the recorded projections are taken into account to 

update the model, thus to complete an iteration by using the scheme shown in equation 7 we apply the 

following protocol: 1) calculate the Aφ matrix for the 1st projection angle and calculate the error vector 

eφ for that angle, 2) update the model using equation 7. After this, go back to step 1) but using the 2nd 

projection angle instead of the first one and calculate the error using the previously updated model, 

update the model again with the new error and continue repeating the protocol until the last projection 

is taken into account. One iteration is said to be complete, when all the projection angles have been 

processed once. By performing several iterations the solution for the reconstructed field converges, 

which is common to ART. We have chosen ART for the iterative reconstruction due to the fast 

convergence (8 – 10 iterations usually lead to convergence) and because the method does not assumes   

any a priori  information related with the noise or object model. 

This method can be directly applied in order to reconstruct scalar fields for the situation shown in 

equation 4a to reconstruct the attenuation length in 3D. In order to apply the protocol to reconstruct 

vector field as in the case of equation 4b, it is only necessary to calculate a different projection matrix 

which takes into account the signal recorded with magnetic contrast due to the dot product. To do this 

we express the X-ray wave vector in spherical coordinates (kx = sinθ cosϕ, ky = sinθ sinϕ, kz = cosθ ) 

and perform the dot product (Eq. 8). 

[ ] [ ] ( ) ( ) ( ) ( ) ( ) ( )1
log log 2 sin cos sin sin cos 8x y zT T L t t m t m t m t dtδ δ δ θ ϕ θ ϕ θ−

+ − ⎡ ⎤− = + +⎣ ⎦∫
 

Note here that the previously used projection angle defined as φ is the same as θ in spherical 

coordinates. In the reference frame as sketched in figure 1, Ytilt series implies a rotation of an angle θ 

with a fixed angle ϕ = 0 degrees (defining the XZ plane). In the case of Xtilt series, the fixed ϕ angle 

is 90 degrees and the rotation angle is equally θ (defining the YZ plane). This means that with only 

one tilt series it is not possible to reconstruct all the components of the magnetization vector, thus to 

get the necessary information, we acquire two tomogram series: one around the Y axis (Ytilt), and 

other around the X axis (Xtilt). The first one will give information about mx and mz components (Eq. 

9a), while the second one contains information from my and mz (Eq. 9b). 

 

[ ] [ ] ( ) ( ) ( ) ( ) ( )

[ ] [ ] ( ) ( ) ( ) ( ) ( )

1

1

log log 2 sin cos 9

log log 2 sin cos 9

x z

y z

Ytilt T T L t t m t m t dt a

Xtilt T T L t t m t m t dt b

δ δ

δ δ

δ θ θ

δ θ θ

−
+ −

−
+ −

⎯⎯→ − = +⎡ ⎤⎣ ⎦

⎡ ⎤⎯⎯→ − = +⎣ ⎦

∫

∫
  

The vector field reconstruction projection matrix will need to take into account now, not only the 

length of the ray through each voxel, but also the projection angle sine and cosine due to the magnetic 

contrast. As we are working now with two different tilt series; for the same projection angle θ we 
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have two different images acquired (one from Ytilt and other from Xtilt). We can arrange the data in 

the form of a column vector as in the scalar case, but now concatenating the Xtilt data after the Ytilt 

one. Also it is necessary to create a volume model where now, each voxel contains three parameters 

which are the three magnetization vector components. In this way, the linear equations system for the 

vector field case can be written as follows. 

 ( ), , 0 10y A xϕ θ ϕ θ− =   

 

1,1,1

, ,0,
1,1

, ,0,
,

1,1,1

0,
,,

, ,90,
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, ,

, ,
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i j k

X
I J K

n m Y

N M Y
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I J K

n m Z
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θ
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⎢ ⎥
⎢ ⎥
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⎢ ⎥ ⎢ ⎥
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⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
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⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
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The elements of the yϕ,θ column vector are indexed as , , where ϕ and θ indicate if the data is related 

to the Ytilt  (ϕ = 0) or Xtilt (ϕ = 90) series, and the value of the projection angle respectively. The sub-

indices n and m specify the pixel in the detector as in the scalar case. Now, this column vector has 2(N 

x M) elements. The column vector containing the volume model parameters has 3(I x J x K) elements 

and is arranged by concatenating the X, Y and Z components of the vector property to be 

reconstructed. Their elements are labelled indicating the voxel index (i,j,k) and the vector component 

(X,Y or Z). Due to these new sizes for detector and volume model vectors, the projection matrix Aϕ,θ 

has 2(NM) x 3(IJK) elements, and due to the selected arrangement of yϕ,θ and x vectors, its 
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arrangement is different from the scalar case. The matrix can be separated in six different blocks 

arranged in two rows and three columns. Each block is a sub-matrix of size NM x IJK and allows for 

the projection of a different vector component in the Ytilt or Xtilt situation. The first row is referred to 

the Ytilt projection and the second one to the Xtilt. The three columns are related with X, Y and Z 

vector field components respectively. Thus, by using equations 9a and 9b, the first row supports for 

the reconstruction of X and Z components of the vector field, while the second one deals with Y and Z. 

This means that first-row second-column and second-row first-column blocks are zeros. First-row 

first-column and second-row second-column blocks are multiplied by sinθ to project mx and my 

respectively and both row block-elements of the third-column project mz and are multiplied by cosθ. 

The base sub-matrices are indicated as B0,θ and B90,θ. They are calculated as the projection matrix in 

the scalar case and contain the lengths of the analysed ray passing through the model voxels in the 

Ytilt and Xtilt configurations respectively. The elements of matrices B0,θ and B90,θ are labelled as 

, ,, , , and , ,, , , indicating the Ytilt (ϕ = 0) or Xtilt (ϕ = 90) configuration, the detector pixel (n,m), 

and the voxel index in the volume model (i,j,k). 

ART can be directly applied to the equation system described in Eq. 10 as it was applied for the 

reconstruction of a scalar field; the only difference is that matrices C and R must be calculated with 

Aϕ,θ without multiplying its sub-matrix elements (B0,θ and B90,θ) by sinθ and cosθ. This is because C 

and R matrices only compensate for the number of beams interacting with the same voxel and for the 

number of pixels which are hit by the same ray. Finally, it is important to note, that we are not directly 

reconstructing the reduced magnetization vector; we are reconstructing 2L(t)-1δ(t)m(t) (Eq. 4b). The 

contribution of the attenuation length can be easily accounted for by using the scalar field 

reconstruction using equation 4(a), and then using those values in the model to isolate δ(t)m(t). The 

latter is proportional to the magnetization configuration. 

4. Reconstruction of Magnetic Micro/Nanoparticles 

Two different magnetic particles have been simulated in order to test the capabilities of the 

aforementioned reconstruction approach: a Permalloy (Ni80Fe20, Py) nano-disc and a Py/Al/Py micro-

square heterostructructure (Fig. 2).  
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present. By projecting these models using the equation 4b, we simulate the X-ray transmission 

tomography data which will be used to test the reconstruction algorithm. 

 

Figure 3  Ground truth [mx (a), my (b), mz (c)], full projection [mx (d), my (e), mz (f)] and missing 

wedge [mx (g), my (h), mz (i)] reconstructions of the disc particle. Images correspond to Z layer 32 of 

the volume model. Normalized root mean square error is indicated for the specific images. 

In order to completely validate the reconstruction method, we investigate tomograms with data from 

the full projection (FP) range (-90 to 90 degrees, 1 degree step), and tilt series with a limited number 

of projections (Missing Wedge, MW). We have chosen for the latter a range from -60 to 60 degrees 

with 1 degree step. This limitation is typical of X-ray transmission tomography set-ups [18, 20]. The 

nano-disc and micro-square particles have been reconstructed taking 64 and 46 Z layers in the volume 

model respectively. Figure 3 presents the comparison between ground truth and the reconstructed data 

for the nano-disc particle in the 32nd Z layer of the volume. Components X, Y and Z of the 
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reconstructed vector field are shown for the FP and MW situations. Moreover, in order to quantify the 

quality of the reconstructions, the Normalized Root Mean Square Error (NRMSE) of the 

reconstruction compared with the ground truth is presented. This parameter is calculated as follows: 

 ( ) ( )2

1max min

1 1
11

N

GT
i

NRMSE X X
X X N =

= −
− ∑   

X represents the data contained in the reconstructed model slice to be analysed; XGT is the ground truth 

data; Xmin and Xmax are the minimum and maximum values of the pixels in the analysed slice 

respectively; and N is the total number of pixels involved. The high quality of the reconstructions is 

directly observed for MW and FP situations. However, the latter presents an excellent agreement with 

the ground truth data, while the value of all vector components in the MW case is smaller than the 

original one (5 – 20%).  

 

Figure 4  Normalized root mean square error from the reconstructed mx (a), my (b) and mz (c) of the 

nano-disc as a function of the Z layer. Full projection (FP, black squares) and missing wedge (MW, 
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red dots) situations are analysed. Dashed vertical lines indicate where the disc is located. NRMSE for 

the whole volume model as function of iterations in the FP (d) and MW (e) situations. Components 

mx (black squares) and my (red dots) present almost the same behaviour and appear superimposed. 

We have analysed also the NRMSE for all the Z slices of the reconstruction volume to observe the 

MW effects along the thickness in the reconstructed solution (Fig. 4). Vertical dashed lines have been 

superimposed in the graphs where the edges of the disc are present. The results for the estimated error 

of X [Fig. 4(a)] and Y [Fig. 4(b)] components are almost equal, while the Z [Fig. 4(a)] one presents a 

different behaviour. This occurs because the information for the reconstruction of the Z component is 

present in Xtilt and Ytilt series, while the others components are reconstructed from the information of 

individual series. The evolution of the NRMSE calculated for the whole reconstructed volume model 

instead of by Z layer is presented for FP [Fig. 3(d)] and MW [Fig. 3(e)] situations. The MW case 

presents in general larger error than the full projection one. The reconstruction of the nanodisc top and 

bottom surfaces is also affected by the MW configuration leading to an ambiguity at the borders. It is 

important to mention here that the increased error associated to the MW series is manly associated to 

X and Y components. The out-of-plane component presents almost the same error in FP (NRMSE = 

0.02) and MW (NRMSE = 0.03) situations; the only difference here is a small oscillation in the 

NRMSE vs iterations. In any case, both reconstructions clearly allow identifying the disc structure at 

the centre of the model volume and its magnetic configuration. 

In the case of the magnetic micro-square heterostructure, the direct comparison between ground truth 

and reconstructions is presented in figures 5 and 6. The first one shows the 16th Z slice (thick Py 

region), while the second represents the 38th Z slice (thin Py region). 
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Figure 5  Ground truth [mx (a), my (b), mz (c)], full projection [mx (d), my (e), mz (f)] and missing 

wedge [mx (g), my (h), mz (i)] reconstructions of the square particle. Images correspond to Z layer 16 

of the volume model. NRMSE is indicated for the specific images. 
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Figure 6  Ground truth [mx (a), my (b), mz (c)], full projection [mx (d), my (e), mz (f)] and missing 

wedge [mx (g), my (h), mz (i)] reconstructions of the square particle. Images correspond to Z layer 38 

of the volume model. NRMSE is indicated for the specific images. 

Again, FP and MW situations are studied. The latter presents a smaller intensity in all the 

reconstructed components and the agreement of the FP range reconstruction is much better than the 

MW one. It is important to mention here that the NRMSE for the Z component of the vector presents 

almost the same value for MW and FP reconstructions in the out-of-plane dominated area of the 

magnetic structure. 
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Figure 7  Normalized root mean square error from the reconstructed mx (a), my (b) and mz (c) of 

the micro-square as a function of the Z layer. Full projection (FP, black squares) and missing wedge 

(MW, red dots) situations are analysed. Dashed vertical lines indicate where different materials are 

located. NRMSE for the whole volume model as function of iterations in the FP (d) and MW (e) 

situations. Components mx (black squares) and my (red dots) present almost the same behaviour and 

appear superimposed. 

The aforementioned effect in the error is clearly observed in the NRMSE representation as a function 

of the Z slice of the volume model for all the vector components (Fig. 7). The Z component presents a 

maximum in the error for the region where the out-of-plane magnetization dominates (thick Py 

region), and in the range dominated by mx and my, the NRMSE decreases. This implies that it is harder 

to reconstruct the Z component despite the redundancy in the tomographic data (Z component 

reconstructed from both tilt series). This can be also observed in the convergence plots showing the 

NRMSE calculated for the whole reconstructed model as a function of the iteration number [Fig. 7(d) 
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and (e)]. Again, the main difference between MW and FP is an important increase in the error 

associated to the in-plane components while the value for the Z component is almost the same. It is 

also observed that the MW induces artifacts at the interfaces inside the object between different layers 

of the heterostructure. These artifacts are due to the missing data and conventional tomography also 

experiences such artefacts, especially for in situ imaging studies where the sample is in a chamber or 

cell and not all views are accessible with X-rays. However, the trend of the reconstructed vector field 

is qualitatively and in some cases quantitatively in agreement with the original magnetization 

configuration, indicating that the algorithm is capable of successfully reconstructing the 3D 

magnetization from Magnetic Soft X-ray Transmission Tomograms. 

5. Conclusions 

A new method to reconstruct the magnetization vector field of arbitrary magnetic systems using Soft 

X-ray Transmission Tomography has been described. The method takes advantage of the natural high 

dichroic contrast of magnetic materials at soft X-ray energies which leads in practice to acquisition 

times of only a few hours to achieve expected resolutions around 40 nm or better. The technique is 

useful to characterize magnetic samples with thicknesses up to ~300 nm and up to several µm of 

lateral dimensions. Both, scalar and vector reconstruction problems have been analysed in detail and 

solved by using ART. The vector case requires two differently oriented tilt series to obtain the three 

components of the magnetization. To test the method, two different magnetic particles have been 

simulated, and their respective tomograms calculated. We have studied both, full projections and also 

incomplete series due to missing wedges to mimic actual experimental limitations. The results for the 

full projections are always better than for the missing wedge  as expected; however, both approaches 

provide qualitative and even quantitative descriptions of the magnetic structures. The method is well 

suited for providing detailed information of the magnetization of buried magnetic structures or 

interfaces, and consequently appears to be a valid characterization technique of 3D magnetism in 

spintronic devices. 
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