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 

Abstract—Growing life expectancy and increasing incidence of 

multiple chronic health conditions are significant societal 

challenges. Different technologies have been proposed to address 

these issues, to detect critical events such as stroke or falls, and to 

monitor automatically human activities for health condition 

inference and anomalies detection. This paper aims to investigate 

two types of sensing technologies proposed for assisted living: 

wearable and radar sensors. First, different feature selection 

methods are validated and compared in terms of accuracy and 

computational loads. Then, information fusion is applied to 

enhance activity classification accuracy combining the two 

sensors. Improvements in classification accuracy of approximately 

12% using feature level fusion is achieved with both Support 

Vector Machine and K Nearest Neighbor classifiers. Decision-level 

fusion schemes are also investigated, yielding classification 

accuracy in the order of 97-98%.  

 
Index Terms— Human activity classification, Fall Detection, 

Ambient Assisted Living, Inertial sensors, Magnetic sensors, 

Radar sensors, Multisensory Data Fusion, Feature Selection.  

I. INTRODUCTION 

HE  increase in life expectancy has posed new healthcare 

challenges in recent years. People wish to keep their quality 

of life and independence for as long as possible. However, 

living longer is also characterized by an increasing incidence of 

multiple chronic conditions and critical events such as falls or 

strokes. These have societal costs in terms of increasing 

expenditure for health provision, but also obvious 

consequences on the wellbeing of the older people in our 

societies and their families [1-3]. Evidence from medical 

studies shows that prompt help and intervention can 

significantly reduce the negative consequences of critical 

events (such as falls). Furthermore, it has been shown that 

subtle changes in the daily activities pattern and behavior may 

help with the diagnostic of health problems.  

Different technologies have been proposed in this context to 

achieve these two objectives, fall detection [4-8] and daily 

activity monitoring [3]. These include video and depth cameras, 

acoustic and Passive Infrared (PIR) sensors, smart floors, 

inertial sensors such as accelerometers and gyroscopes [5,9-10], 

magnetic sensors, and Radio-Frequency (RF) sensors that use 
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active or passive radar principles [11-15]. Each sensing 

technology presents advantages and disadvantages inherent to 

its implementation and in aspects related to the required users’ 

compliance or perception. For example, cameras can provide 

very high activity classification accuracy, but they may raise 

privacy objections. Wearable sensors tend to be cost-effective 

and easily miniaturized, but users may need to remember to 

wear and use them properly, which can be an issue for older 

people and people with cognitive impairments [16]. Radar 

sensors are a relatively new technology in this context, and their 

effectiveness in realistic scenarios beyond “proof of concept” 

cases is still being validated [17]. Simple sensors such as PIRs 

may have a limited detection range and do not provide enough 

information for fine activity classification. 

In this paper, we expand our preliminary work in [18] and 

present a detailed analysis of feature selection and information 

fusion methods when using simultaneous information from 

wearable sensors and radar sensor, for a new dataset comprised 

of new subjects. Inertial sensors are attractive for their compact 

form, low cost, relatively simple signal processing, and 

possibility of embedding into everyday objects such as phones 

or watches, which users may naturally take with them. Radar 

sensors are attractive for their contactless and non-cooperative 

monitoring capabilities, no reliance on users’ compliance, and 

detection/classification ranges of tens of meters. They are 

expected to be perceived as more privacy-oriented, as no plain 

images of the monitored people are recorded [19]. The 

simultaneous use of heterogeneous sensors allows overcoming 

the performance limitations of each sensor considered 

individually, or possible malfunctions of one of them (for 

example “drift problem” inherent to accelerometers [13], or 

classification accuracy reduction for radar sensors relying on 

Doppler-based classification for tangential views of the person 

monitored [17]). This multi-sensory approach could fit well 

with future realistic scenarios, where a variety of monitoring 

smart sensors are deployed and used simultaneously in home 

environments, supported by developments in the Internet of 

Things and advanced 5G communications.  

Although information fusion for different inertial sensors has 

been proposed [13], their combination and experimental 

verification with radar sensing presented here is to the best of 
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our knowledge, innovative. Furthermore, fusion approaches 

classically used for inertial sensors focus on signal level fusion, 

employing methods such as Vector Observation, Kalman 

filtering or other forms of signal filtering [13], whereas in our 

work we propose simpler fusion at feature and decision level, 

combined with effective feature selection approaches.  

Compared with the preliminary results presented in [18], this 

work considers additional features extracted from the wearable 

and radar sensor data, investigates three different methods to 

perform feature selection for each of these sensors, and presents 

different approaches for decision fusion. These include a 

voting-based system comprised of two SVM classifiers and two 

KNN classifiers, to exploit strengths from different classifiers 

and sensors in the decision process. The aim is to improve the 

classification accuracy and minimize false alarms when 

detecting fall events, the main activity of interest, for which 

misdetections or false alarms must be avoided.  

   The paper is organized as follows: Section II describes the 

data collection, and section III the extraction of features. 

Section IV evaluates the classifiers used in this work and the 

different feature selection methods. Section V presents the 

methods for decision level fusion and the subsequent 

improvements in classification accuracy. Finally, conclusions 

and future work are discussed in section VI. 

II. DATA COLLECTION AND PRE-PROCESSING 

Data were collected using a nine degrees of freedom inertial 

sensor within a smartphone, and a frequency modulated 

continuous wave radar system. The inertial sensor includes a 

tri-axial accelerometer, gyroscope, and magnetometer, and is 

capable of simultaneously recording the acceleration, angular 

velocity and magnetic-field strength at approximately 100 Hz 

sampling rate. The radar sensor operates at a carrier frequency 

of 5.8 GHz, with the transmitted signal having 400 MHz 

instantaneous bandwidth and 1 ms duration. Transmitted power 

of the radar is in the order of +19 dBm, with the gain of the 

transmitting and receiving Yagi antennas approximately equal 

to 17 dB.  

Fig. 1 shows a sketch of the measurement environment (an 

office room/laboratory for the Communication, Sensing and 

Imaging group at the University of Glasgow), with the antennas 

and a processing laptop located on the table near the subject and 

a token participant in the activity zone. The smartphone was 

held with a Velcro-strap on the wrist of the participating 

subject’s dominant hand while recording data, whereas the 

radar system and antennas were placed on a box facing the 

activity zone. The separation between the antennas was 

approximately 30 cm (quasi-monostatic setup), and the distance 

from them to the subjects was approximately 1.5m. Vertical 

polarisation was used for these measurements.  

Ten different activities were recorded as depicted in the top 

part of Fig. 1, involving 9 volunteers aged 23 to 31 years old. 

The activities were described in our previous work [18]. Three 

repetitions for each activity for each subject were recorded, 

generating a set of 270 sample measurements with 

simultaneous readings from the wearable sensor, the radar 

sensor, as well as a Microsoft Kinect recording for ground truth.  

Although not large, the number of selected subjects and 

activities is still significant when compared to other studies 

published in this field, such as the review presented in [13] 

(where only 14% of the 37 studies reviewed on wearables 

considered more than 10 subjects). Variety in the forms of 

gender (two participants were female), body shapes and 

dominant hand (participants with both left and right dominant 

hands) are also present in our dataset, making it more 

representative than others analyzed in other papers (for example 

[8] had only 3 male subjects).   Furthermore, the experiment is 

designed to include deliberately “confusers”, that is activities 

that can be similar to fall events – such as sitting and bending 

down, which have a strong acceleration component towards the 

floor. There are also activities that are similar in pairs, such as 

‘walking’ A1 and ‘moving object’ A2, or ‘drinking’ A7 and 

‘taking a call’ A8 in Fig 1. This is intended to help test the 

robustness of the proposed classification methods, with respect 

to ‘fall’ A9, the main class of interest.    

Prior to data analysis, the signals collected by the wearable 

sensor were pre-processed through a Chebyshev-II band-pass 

filter [12, 14] to remove undesired noise and components, for 

example those generated by small vibrations of the device. For 

radar, the micro-Doppler effect [21] is visible within the 

spectrograms. These are Doppler versus time plots where the 

movements of torso, limbs, and other body parts generate a 

distinctive pattern; some examples are shown in [22]. To 

generate the spectrogram, Short-Time Fourier Transform of the 

radar data with a window of 0.2s and 95% overlap were taken 

to characterise the time variant Doppler shifts associated with 

the movement of different body parts. Prior to this, moving 

target indicator filtering was performed to remove static targets 

from the spectrograms, i.e. strong reflections from the static 

environment (walls, furniture).   

 

A1 A2 A3 A4

A5 A6 A7

A8 A9 A10

 

 
Fig.1. Simple sketch of the 10 classified activities (top) and experimental setup 

(bottom) 
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III. FEATURE EXTRACTION  

Numerical parameters referred to as features were extracted 

from the pre-processed data of each sensor. For the IMU, 177 

features were extracted from the tri-axial sensors: 63 for the 

accelerometer, 57 for the gyroscope, and 57 for the 

magnetometer respectively. Features generated are the same for 

each sensor except for skewness and kurtosis, which are 

exclusive to the accelerometer. These features were inspired by 

previous work in the literature [23-25] and summarised in 

Table I where they are divided into time and frequency 

domains. Time domain features include raw signal mean; raw 

signal variance, which evaluates the samples dispersion around 

their mean value; higher statistical moments (skewness and 

kurtosis), and correlation coefficients which identify activities 

with commensurate movements in different axis. Frequency 

domain features aim to capture the spectral energy distribution, 

they include amplitude of the power spectral density; the sum 

of Fourier Transform coefficients, and the spectral entropy 

based on power spectrum. [25]. 

TABLE I 

 FEATURES EXTRACTED FROM THE INERTIAL SENSOR IN TIME AND FREQUENCY 

DOMAINS (* IDENTIFIES SALIENT FEATURES) 

Time domain # Frequency domain  # 

Mean 

Standard Deviation 
Autocorrelation(Mean,STD*) 

Cross Correlation(Mean*,STD*) 

Variance 
RMS* (Root Mean Square) 

MAD (Median Absolute Deviation) 

Inter-quadrature Range 
Range 

Minimum* 
25th percentiles 

75th percentiles 

Skewness 
Kurtosis 

3 

3 
6 

6 

3 
3 

3 

3 
3 

3 
3 

3 

3 
3 

Spectral Power* 

Coefficients Sum* 
Spectral Entropy 

9 

3 
3 

Number of features 48 Number of features 15 

 

Different features have been suggested in the literature for 

classification with radar [22, 26] and these features, listed in 

Table II, can be grouped into three categories: Physical, 

Transform domain, and Textural.     

Physical features are directly related to the kinematics of the 

movement represented in the spectrograms. Main features 

utilised from this subcategory are centroid, which represents the 

localised centre of gravity of the micro-Doppler signature and 

bandwidth, which is the derived Doppler spread. Both of these 

features have been widely used in classification applications 

[25] and are robust features in this area.  Transform domains 

represent the projection of the spectrogram to alternate domains 

for feature. Cadence velocity diagram exploits time varying 

information in the instantaneous frequency of a spectrogram 

[28] whereas Singular Value Decomposition (SVD) preserves 

the information content of the signal by projecting the 

spectrogram into spectral and temporal domains [29-30].  Step 

repetition frequency is derived from the cadence velocity 

diagram [31] whereas for the SVD moments of the first few 

vectors of the left and right singular vectors respectively, are 

used. Textural features are inspired by classical feature 

extraction from image recognition. Entropy of the grey level 

histogram of an image equates to the average information 

within an image, and skewness of the histogram indicates 

energy level shifts [32].  

The following sections will describe how these features are 

used as classifier inputs for monitoring activities, and how less 

informative features can be deselected to improve the 

classification performance and reduce computational cost. 

TABLE II  
FEATURES EXTRACTED FROM SPECTROGRAMS OBTAINED WITH THE RADAR 

SENSOR (* IDENTIFIES SALIENT FEATURES) 

Feature Category Radar Features # 

Textural  Entropy of spectrogram 1 

Skewness of spectrogram 1 

Physical Centroid of spectrogram (mean & 

variance)* 

2 

 Bandwidth of spectrogram (mean & 
variance)* 

2 

 Energy curve of spectrogram* 

 

3 

 

 Transform based Singular Value Decomposition (mean & 
variance of right and left vectors)* 

Range Doppler velocity 
Range Doppler displacement 

Range Doppler dispersion  

Energy curve of spectrogram* 
Step repetition frequency  

Step repetition frequency band peak 

13 
 

1 
1 

1 

3 
1 
2 

 Number of features 28 

IV. CLASSIFICATION AND FEATURE SELECTION 

A. Classification methods 

For classification, a Support Vector Machine (SVM) with a 

quadratic kernel and a K Nearest Neighbor (KNN) with K = 10 

were used to discriminate between the activities. A description 

of the classifiers is available in [33-34]. The classifiers were 

trained and validated using k-folds as follows: the feature set 

was partitioned into 10 ‘folds’ randomly, nine folds were used 

to train the classifiers with the last fold being the test set. This 

is performed until every fold has been tested against, and the 

validation accuracy is averaged over the 10 folds. 

Results for the classification accuracy when using all the 

available features for KNN and SVM are summarized in 

Table III for each sensor, where accelerometer and gyroscope 

produce similar results, while magnetometer and radar are 

below by approximately 4% and 6.1% with SVM. Furthermore, 

the results of magnetometer and radar are significantly lower 

with KNN compared with SVM. 

TABLE III  

COMPARISON OF CLASSIFICATION ACCURACY BETWEEN SENSORS 

Classification Accuracy (%) SVM KNN 

Accelerometer 85.2 79.6 

Gyroscope 84.1 79.6 

Magnetometer 80.4 69.6 

Inertial 89.3 85.2 

Radar 77.9 70.7 

Along with accuracy, the average correct detection rate 

across all classes, prediction rates are often compared with two 

further metrics [34]. Given a specific class of interest (e.g. 

‘fall’), sensitivity (1) is the rate of correct class detection for 

each class, and specificity (2) is used to measure the ‘false alarm 
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rate’ of the classifier for that specific class. The average 

sensitivity across the 10 activities considered in this work is 

referred to as classification accuracy in the rest of the paper. 

 
TruePositive

Sensitivity
TruePositive FalseNegative




  (1) 

          
TrueNegative

Specificity
TruePositive TrueNegative




  (2) 

B. Feature Selection 

Feature selection techniques improve classification accuracy 

and reduce computational load by removing redundant or 

correlated features with incorrect/confusing information [35]. 

These methods mainly include: 

 Filter based methods, which are agnostic to the choice of a 

particular classifier and rank the different features based on 

information content (e.g. Euclidean Distance, Entropy, 

Correlation Coefficients). 

 Wrapper methods, which consider different combinations 

in the feature space and test them jointly with a specific 

classifier, to find the solution providing the highest 

accuracy. Compared to filter-based methods, wrapper 

methods can be resource intensive, requiring more 

iterations and exhaustive search, to run the classification 

algorithm. 

 Embedded methods, which integrate the classification and 

feature selection together with feedback (SVM-RFE) [36]. 

In this paper we evaluate two filter based methods, namely 

Fisher score (F-score) [35], Relief-F [37], and one wrapper 

method: SFS (Sequential Feature Selection) [35].  F-score ranks 

the available features based on the distance between samples 

with same classes having minimal distance and different classes 

being a maximal distance apart. Similarly, Relief-F utilizes 

distance measures to give each feature a weight between -1 and 

1 depending on its proximity to a certain class. SFS finds the 

best combinations of features by using a classifier and its 

accuracy as a metric to rank the features. This can be done in a 

forward selection by progressively adding features until the 

accuracy stops improving, or backwards by progressively 

dropping features.  

Fig. 2 presents results for the SFS method for inertial sensors 

(accelerometer, gyroscope and magnetometer considered 

jointly) and the radar sensor, with a general summary for all 

methods provided in Table IV (inertial) and Table V (radar). 

Both F-score and Relief-F appear to reduce the number of 

features used but provide only a small 2% improvement.  In 

terms of feature reduction for improving computational time, 

the optimal features suggested by filter methods were 40% and 

65% of the available features for inertial sensor and radar, 

respectively. Classification accuracy was only boosted when 

SFS features were used, leading to an improvement of 5-7% in 

accuracy for both sensors with SVM. KNN on the other hand, 

had less pronounced results as there was no performance 

improvement for the inertial sensor despite a 9% boost for 

radar.  

 
Fig. 2 Feature selection using SFS for inertial (top) and radar (bottom) 

 
TABLE IV  

COMPARISON OF FEATURE SELECTION METHODS (INERTIAL) 

Method Accuracy(%) Time(s) Features no. 

Fscore(SVM) 90.7 1448 73 

Fscore(KNN) 88.2 220.2 76 

ReliefF(SVM) 91.1 1210.7 164 

ReliefF(KNN) 89.3 196.9 58 

SFS(SVM) 95.6 14489.5 35 

SFS(KNN) 88.25 903.5 69 

 

TABLE V  

COMPARISON OF FEATURE SELECTION METHODS (RADAR) 

Method Accuracy(%) Time(s) Features no. 

Fscore(SVM) 78.8 220.4 17 

Fscore(KNN) 74.1 30.6 17 

ReliefF(SVM) 74 213.1 20 

ReliefF(KNN) 67 24.2 18 

SFS(SVM) 85.6 1316.7 20 

SFS(KNN) 79.8 32 19 
 

  
Eleven most salient features were selected by the SFS 

algorithm for the wearable sensor, achieving over 90% 

accuracy; these are denoted in Table I and II with an asterisk. 

Interestingly, although magnetometer performs weakly in 

single sensor scenario, during feature selection with 

inertial+radar, it appears to provide salient features, whereas 

physical features such as centroid and bandwidth of the 

spectrograms appear to be the most relevant for radar data. 

V. INFORMATION FUSION METHODS 

Information fusion can be used to overcome limitations of 

individual sensors by pooling either information or decisions 

from the singular sources. Fusion can be achieved at signal, 

feature, and decision level [36, 38-39]. Signal level fusion can 

take place between sensors that record the same quantities (for 

example accelerometers placed on different body parts of the 

monitored subject), or commensurate data (e.g. accelerometer 

and gyroscope) that can then be combined. Feature level fusion 

combines in a single, larger feature vector samples generated 

from different sensors’ data, and can be followed by a feature 

selection stage to remove redundant or incorrect features in this 

larger, more complex feature space. Decision level fusion is a 

higher level of information fusion, taking into account the 

predictions provided by each classifier. In this section, we 

present the results of feature and decision level fusion with 

sequential forward selection of features. 
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A. Feature level fusion    

For feature level fusion, the features extracted from 

heterogeneous sensors were concatenated before feeding them 

to the classifiers. SFS is then used as feature selection method 

and the results are shown in Fig. 3 for a SVM classifier only, as 

these were found to be the best performing classifier and feature 

selection method. The feature combination yielding the highest 

accuracy includes 31 features (15% of total features), providing 

97.4% classification accuracy across the 10 activities compared 

with previous results in section IV, where the sole radar sensor 

yielded 85.6% and the homogeneous fusion of inertial sensors 

provided 95.6%. This improvement is 12% when compared to 

the results of using radar on its own, and 2% for inertial sensors 

on their own. However, misclassification events (highlighted in 

yellow), remain present between a few of the 10 activities, 

which is visible in Table VI as instances of ‘picking up object’ 

A5 are misclassified as fall events. Despite the high 

classification accuracy, there is scope for improvement, which 

we have attempted to address by utilizing decision level fusion.  

B. Decision level fusion 

With this approach, the preliminary decisions of different 

classifiers, in the form of negated binary losses for each of the 

classes, are pooled. Like feature level fusion, SFS is embedded 

at this stage as well. The first method uses logarithmic opinion 

pool (LOGP) [40] and summarized in equations (3) and (4). 

𝐵𝑛 = 𝑒−𝑆𝑛(𝑐)                           (3)  

  𝐵(𝛼|𝑦) = ∏ 𝐵𝑛(𝑎|𝑦)
𝑑𝑁

𝑛=1 = ∏ 𝑒−𝑆𝑛(𝑐)
𝑑𝑁

𝑛=1     (4) 

𝐵𝑛 is defined by a mass Gaussian function that converts the 

negated binary loss returned by the individual classifiers 𝑆𝑛(𝑐) 
to a posterior probability. The distribution factor 𝑑 is equal to 

𝑁−1 , where 𝑁  is the number of classifiers, in this case 2. 

Contributions of both classifiers influence the final probability 

𝐵(𝛼|𝑦) , and the test sample will be assigned to the class 

yielding the highest probability. 

The second method utilizes Fuzzy logic, where the binary 

loss is used as a Fuzzy set as described in equation (5) [36]. 

𝑆𝑅𝑎𝑑𝑎𝑟  and 𝑆𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙  are two sets of negated binary loss values 

including 10 elements related to the 10 activities, as generated 

from the two SVM classifiers, whereas 𝑆𝐹𝑢𝑠𝑒𝑑  is the new binary 

loss set which represents the least optimal outcome (i.e. sum of 

errors). The final decision is made by finding the minimal value 

(i.e. least errors) in this set. 

𝑆𝐹𝑢𝑠𝑒𝑑(𝑐) = min⁡{𝑆𝑅𝑎𝑑𝑎𝑟(𝑐), 𝑆𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙(𝑐)}        (5)                

To merge advantages from different sensors and classifiers, the 

third fusion algorithm is based on a novel voting system that 

uses predictions from two SVM and two KNN classifiers 

trained by inertial sensor and radar data separately, then 

combined for improved classification accuracy. Fig 4 shows the 

voting process where each classifier predicts a class and the 

decision is the one supported by the majority of classifiers. In 

case of no clear majority (decision clash), one pass of the LOGP 

fusion is performed and the SVM outputs are fused to make the 

final prediction.  

 
 Fig. 3 Classification accuracy applying SFS to radar features, inertial 

features, and fusion of radar plus inertial features (SVM classifier) 

TABLE VI  

CONFUSION MATRIX FOR FEATURE FUSION OF DIFFERENT SENSORS WITH SFS 

% A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

A1 100 0 0 0 0 0 0 0 0 0 

A2 0 100 0 0 0 0 0 0 0 0 

A3 0 0 100 0 0 0 0 0 0 0 

A4 0 0 0 85.2 7.4 7.4 0 0 0 0 

A5 0 0 0 0 92.6 3.7 0 0 3.7 0 

A6 0 0 3.7 0 0 96.3 0 0 0 0 

A7 0 0 0 0 0 0 100 0 0 0 

A8 0 0 0 0 0 0 3.7 96.3 0 0 

A9 0 0 0 0 0 0 0 0 100 0 

A10 0 0 0 0 0 0 0 0 0 100 

 
 

Fig. 4 Block diagram of the decision level voting system 

 
TABLE VII  

COMPARISON OF ACCURACY FOR DIFFERENT FUSION METHODS 

(*AVERAGE ERROR IS THE AVERAGE MISCLASSIFICATIONS OVER 10 ITERATIONS) 

Method Average error* Average accuracy (%) 

LOGP 9 96.7 

Fuzzy logic 14 94.8 

Voting system 6 97.8 

 
TABLE VIII  

CONFUSION MATRIX FOR VOTING SYSTEM APPROACH 

% A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

A1 100 0 0 0 0 0 0 0 0 0 

A2 0 100 0 0 0 0 0 0 0 0 

A3 0 0 100 0 0 0 0 0 0 0 

A4 0 0 0 88.9 3.7 7.4 0 0 0 0 

A5 0 0 0 0 96.3 3.7 0 0 0 0 

A6 0 0 3.7 0 0 96.3 0 0 0 0 

A7 0 0 0 0 0 0 100 0 0 0 

A8 0 0 0 0 0 0 3.7 96.3 0 0 

A9 0 0 0 0 0 0 0 0 100 0 

A10 0 0 0 0 0 0 0 0 0 100 
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Table VII compares misclassification events and overall 

accuracy for the three decision fusion methods where the voting 

system provides the highest classification accuracy out of the 

decision fusion methods.  Average error in Table VII indicates 

the average misclassification rate over the 10 iterations. The 

confusion matrix in table VIII shows that false alarms for fall 

events have been removed, and the overall accuracy is a bit 

higher than in Table VI.  

Fig. 5 shows a summary of specificity for fall events and 

average sensitivity across the 10 activities (overall 

classification accuracy) for all the approaches presented in this 

paper. A trend of progressive improvement in overall sensitivity 

without compromising in fall specificity can be seen by 

applying suitable feature selection and fusion and exploiting a 

combination of wearable and radar sensors information. 

 

 
Fig. 5 Sensitivity and Fall Specificity for different approaches  

VI. CONCLUSION 

This paper investigated the simultaneous experimental use of 

wearable (accelerometer, gyroscope, and magnetometer) with 

radar sensors, for automatic activity monitoring and fall 

detection in the context of assisted living. Different feature 

selection and information fusion techniques were presented and 

applied on experimental data. This can overcome the limitations 

in using only one sensing technology, and in not considering 

the required diversity in features extracted from the sensors’ 

data. Results indicated that the overall classification 

performance can be improved, from approximately 78-85% 

when using individual sensors with a large set of features, to 

approximately 98% when using feature level selection and 

multi-sensory approach and the proposed decision fusion 

method based on voting classifier. 

Additional work will aim to collect a larger dataset to 

investigate different multisensory approaches, including more 

numerous and diverse subjects (age, body type), and different 

locations of the sensors (wearables on different body parts and 

radar with different line-of-sight to the subject). In terms of data 

processing, additional features can be added to the pool of those 

considered (e.g. “jerk” [41] or wavelet-based [19] features for 

wearable sensors, or additional representation domains for the 

radar data [42]), and additional feature selection methods and 

metrics for information fusion investigated. The application of 

deep learning methods may also be considered, in particular the 

challenge of using deep networks with small amount of 

experimental data available, for example through transfer 

learning approaches or through the generation of suitable 

simulation data. Finally, the use of multisensory approach for 

estimation of biomedical parameters that can have an important 

impact in healthcare (such as gait speed, stride length, foot 

progression angle) will be also considered. 

REFERENCES 

[1]   M. Terroso, N. Rosa, A. T. Marques, and R. Simoes, "Physical 

consequences of falls in the elderly: a literature review from 1995 to 

2010," European Review of Aging and Physical Activity, vol. 11, no. 1, 

p. 51, 2014.  
[2]      W. Ageing and L. Unit, "WHO global report on falls prevention in older 

age," World Health Organization, 2008. 

[3]      U. D. o. Health and H. Services, "Report to Congress: Aging services 
technology study," Washington, DC: Author, 2012. 

[4]  R. M. Gibson, A. Amira, N. Ramzan, P. Casaseca-de-la-Higuera, and Z. 

Pervez, "Multiple comparator classifier framework for accelerometer-
based fall detection and diagnostic," Applied Soft Computing, vol. 39, pp. 

94-103, 2016. 

[5] S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, "A review of 
wearable sensors and systems with application in rehabilitation," Journal 

of neuroengineering and rehabilitation, vol. 9, no. 1, p. 21, 2012. 

[6]     J. Chen, K. Kwong, D. Chang, J. Luk, and R. Bajcsy, "Wearable sensors 
for reliable fall detection," In Proc. 27th Annu. Int. Conf. Eng. Med. Biol. 

Soc., pp. 3551–3554, 2005.  
[7]      M. Mubashir, L. Shao, and L. Seed, "A survey on fall detection: 

Principles and approaches," Neurocomputing, vol. 100, pp. 144–152, 

2013.  
[8]      Q. Li, J. A. Stankovic, M. A. Hanson, A. T. Barth, J. Lach, and G. Zhou, 

"Accurate, fast fall detection using gyroscopes and accelerometer-

derived posture information," In Proc. IEEE 6th Int. Workshop Wearable 
Implantable Body Sensor Netw., pp. 138–143, Jun 2009. 

[9]    C.-C. Yang and Y.-L. Hsu, "A review of accelerometry-based wearable 

motion detectors for physical activity monitoring," Sensors, vol. 10, no. 
8, pp. 7772–7788, 2010.  

[10]  S. J. Preece, J. Y. Goulermas, L. P. Kenney, D. Howard, K. Meijer, and 

R. Crompton, "Activity identification using body-mounted sensors—A 
review of classification techniques," Physiol. Meas., vol. 30, no. 4, p. R1–

33, 2009.  

[11] K. Chaccour, R. Darazi, A. H. El Hassani, and E. Andrès, "From fall 

detection to fall prevention: A generic classification of fall-related 

systems," IEEE Sensors Journal, vol. 17, no. 3, pp. 812-822, 2017. 

[12] F. Erden, S. Velipasalar, A. Z. Alkar, and A. E. Cetin, "Sensors in 
Assisted Living: A survey of signal and image processing methods," 

IEEE Signal Processing Magazine, vol. 33, no. 2, pp. 36-44, 2016. 

[13]  I. H. López-Nava and A. Muñoz-Meléndez, "Wearable inertial sensors 
for human motion analysis: A review," IEEE Sensors Journal, vol. 16, 

no. 22, pp. 7821-7834, 2016. 

[14] S. C. Mukhopadhyay, "Wearable sensors for human activity monitoring: 
A review," IEEE sensors journal, vol. 15, no. 3, pp. 1321-1330, 2015. 

[15] T. R. Bennett, J. Wu, N. Kehtarnavaz, and R. Jafari, "Inertial 

measurement unit-based wearable computers for assisted living 
applications: A signal processing perspective," IEEE Signal Processing 

Magazine, vol. 33, no. 2, pp. 28-35, 2016.  

[16]  J. Fleming and C. Brayne, "Inability to get up after falling, subsequent 
time on floor, and summoning help: prospective cohort study in people 

over 90," Bmj, vol. 337, p. a2227, 2008. 

[17] M. G. Amin, Y. D. Zhang, F. Ahmad, and K. D. Ho, "Radar signal 
processing for elderly fall detection: The future for in-home monitoring," 

IEEE Signal Processing Magazine, vol. 33, no. 2, pp. 71-80, 2016. 

[18]  H. Li et al., "Multisensory Data Fusion for Human Activities 
Classification and Fall Detection," Proceedings of IEEE Sensors 2017, 

pp. 909-911, Oct 29-31, Glasgow, UK, 2017. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

7 

[19]  C.-Y. Hsu, Y. Liu, Z. Kabelac, R. Hristov, D. Katabi, and C. Liu, 
"Extracting Gait Velocity and Stride Length from Surrounding Radio 

Signals," in Proceedings of the 2017 CHI Conference on Human Factors 

in Computing Systems, 2017, pp. 2116-2126: ACM.  
[20] E. Cippitelli, F. Fioranelli, E. Gambi and S. Spinsante, "Radar and RGB-

Depth Sensors for Fall Detection: A Review," in IEEE Sensors Journal, 

vol. 17, no. 12, pp. 3585-3604, 15 Jun, 2017. 
[21] V. C. Chen, W. J. Miceli, and D. Tahmoush, Radar micro-Doppler 

signatures: processing and applications. The Institution of Engineering 

and Technology, 2014. 
[22] A. Shrestha, J. Le Kernec, F. Fioranelli, E. Cippitelli, E. Gambi, and S. 

Spinsante, "Feature Diversity for Fall Detection and Human Indoor 

Activities Classification Using Radar Systems," 2017. 
[23] D. Figo, P. C. Diniz, D. R. Ferreira, and J. M. Cardoso, "Preprocessing 

techniques for context recognition from accelerometer data," Personal 

and Ubiquitous Computing, vol. 14, no. 7, pp. 645-662, 2010. 
[24] Lee, M-H., Kim, J., Kim, K., Lee, I., Jee, S-H. and Yoo, S-K, “Physical 

Activity Recognition Using a Single Tri-Axis Accelerometer”, 

Proceedings of the World Congress on Engineering and Computer 
Science 2009, Oct 20-22, San Francisco, USA, 2009. 

[25] E. Munguia Tapia, "Using machine learning for real-time activity 

recognition and estimation of energy expenditure," Massachusetts 
Institute of Technology, 2008. 

[26]  D. Tahmoush, "Review of micro-Doppler signatures," IET Radar, Sonar 

& Navigation, vol. 9, no. 9, pp. 1140-1146, 2015. 
[27] F. Fioranelli, M. Ritchie, and H. Griffiths, "Centroid features for 

classification of armed/unarmed multiple personnel using multistatic 
human micro-Doppler," IET Radar, Sonar & Navigation, vol. 10, no. 9, 

pp. 1702-1710, 2016. 

[28]  A. Miller, C. Clemente, A. Robinson, D. Greig, A. Kinghorn, and J. 
Soraghan, "Micro-Doppler based target classification using multi-feature 

integration," 2013. 

[29] J. De Wit, R. Harmanny, and P. Molchanov, "Radar micro-Doppler 
feature extraction using the singular value decomposition," in Radar 

Conference (Radar), 2014 International, 2014, pp. 1-6: IEEE. 

[30] F. Fioranelli, M. Ritchie, and H. Griffiths, "Classification of 
unarmed/armed personnel using the NetRAD multistatic radar for micro-

Doppler and singular value decomposition features," IEEE Geoscience 

and Remote Sensing Letters, vol. 12, no. 9, pp. 1933-1937, 2015. 
[31] R. Ricci and A. Balleri, "Recognition of humans based on radar micro-

Doppler shape spectrum features," IET Radar, Sonar & Navigation, vol. 

9, no. 9, pp. 1216-1223, 2015. 
[32] X. Shi, F. Zhou, L. Liu, B. Zhao, and Z. Zhang, "Textural feature 

extraction based on time–frequency spectrograms of humans and 

vehicles," IET Radar, Sonar & Navigation, vol. 9, no. 9, pp. 1251-1259, 
2015. 

[33] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical 

learning: data mining, inference, and prediction / Trevor Hastie, Robert 
Tibshirani, Jerome Friedman, 2nd ed. (Springer series in statistics). New 

York, NY: Springer, 2009, pp. xxii, 745 p. 

[34] T. D. Bufler and R. M. Narayanan, "Radar classification of indoor targets 
using support vector machines," IET Radar, Sonar & Navigation, vol. 10, 

no. 8, pp. 1468-1476, 2016. 

[35]  S. Z. Gürbüz, B. Erol, B. Çağlıyan, and B. Tekeli, "Operational 
assessment and adaptive selection of micro-Doppler features," IET 

Radar, Sonar & Navigation, vol. 9, no. 9, pp. 1196-1204, 2015. 

[36]  R. C. King, E. Villeneuve, R. J. White, R. S. Sherratt, W. Holderbaum, 
and W. S. Harwin, "Application of data fusion techniques and 

technologies for wearable health monitoring," Medical Engineering & 

Physics, vol. 42, pp. 1-12, 2017/04/01/ 2017. 
[37] R. Durgabai and Y. Ravi Bhushan, "Feature selection using ReliefF 

algorithm," International Journal of Advanced Research in Computer 

and Communication Engineering, vol. 3, no. 10, pp. 8215-8218, 2014. 
[38] D. L. Hall and J. Llinas, "An introduction to multisensor data fusion," 

Proceedings of the IEEE, vol. 85, no. 1, pp. 6-23, 1997.  

[39] F. Castanedo, "A review of data fusion techniques," The Scientific World 
Journal, vol. 2013, 2013. 

[40] C. Chen, R. Jafari and N. Kehtarnavaz, “A Real-Time Human Action 

Recognition System Using Depth and Inertial Sensor Fusion,” in IEEE 
Sensors Journal, vol. 16, no. 3, pp. 773-781, 1 Feb, 2016. 

[41] Zhu, R. San-Segundo, and J. M. Pardo, "Feature extraction for robust 

physical activity recognition," Human-centric Computing and 
Information Sciences, journal article vol. 7, no. 1, p. 16, June 02 2017. 

[42] B. Jokanović and M. Amin, "Suitability of Data Representation Domains 
in Expressing Human Motion Radar Signals," IEEE Geoscience and 

Remote Sensing Letters, vol. 14, no. 12, pp. 2370-2374, 2017. 

 

 

 


