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ABSTRACT
High-metallicity pollution is common in white dwarf (WD) stars hosting remnant planetary
systems. However, they rarely have detectable debris accretion discs, possibly because much
of the influx is fast steeply infalling debris in star-grazing orbits, producing a more tenuous
signature than a slowly accreting disc. Processes governing such deposition between the
Roche radius and photosphere have so far received little attention and we model them here
analytically by extending recent work on sun-grazing comets to WD systems. We find that
the evolution of cm-to-km size (a0) infallers most strongly depends on two combinations of
parameters, which effectively measure sublimation rate and binding strength. We then provide
an algorithm to determine the fate of infallers for any WD, and apply the algorithm to four
limiting combinations of hot versus cool (young/old) WDs with snowy (weak, volatile) versus
rocky (strong, refractory) infallers. We find: (i) Total sublimation above the photosphere befalls
all small infallers across the entire WD temperature (TWD) range, the threshold size rising with
TWD and 100× larger for rock than snow. (ii) All very large objects fragment tidally regardless
of TWD: for rock, a0 � 105 cm; for snow, a0 � 103–3 × 104 cm across all WD cooling ages.
(iii) A considerable range of a0 avoids fragmentation and total sublimation, yielding impacts or
grazes with cold WDs. This range rapidly narrows with increasing TWD, especially for snowy
bodies. Finally, we briefly discuss how the various forms of deposited debris may finally reach
the photosphere surface itself.

Key words: methods: numerical – celestial mechanics – minor planets, asteroids: general –
planets and satellites: dynamical evolution and stability – protoplanetary discs – white dwarfs.

1 IN T RO D U C T I O N

The stratification of white dwarf (WD) atmospheres by atomic
weight provides a tabula rasa upon which any deposited contami-
nants conspicuously stand out. Abundant contaminants, in the form
of heavy metals, have now been observed in one-quarter to one-half
of all WDs (Zuckerman et al. 2003, 2010; Koester, Gänsicke &
Farihi 2014). These metals cannot represent relics from stellar evo-
lution because their diffusion (sinking) time-scales are orders of
magnitude shorter (Paquette et al. 1986; Wyatt et al. 2014) than
the age of the WDs (the cooling time). The metals also cannot have
predominantly arisen from the interstellar medium, which is too rar-
efied and hydrogen rich (Aannestad et al. 1993; Friedrich, Jordan &
Koester 2004; Jura 2006; Kilic & Redfield 2007; Farihi et al. 2010).

Instead, the metals must originate from planetary system rem-
nants (Gänsicke et al. 2012; Jura & Young 2014; Xu et al. 2014;
Farihi et al. 2016; Melis & Dufour 2017). This exciting develop-
ment has been bolstered by strong evidence of at least one asteroid
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disintegrating in real time around a WD (Vanderburg et al. 2015;
Alonso et al. 2016; Gänsicke et al. 2016; Rappaport et al. 2016;
Redfield et al. 2016; Xu et al. 2016; Zhou et al. 2016; Gary et al.
2017; Gurri, Veras & Gänsicke 2017; Veras et al. 2017a) as well
as nearly 40 dusty and gaseous discs orbiting within a distance of
about one solar radius (Zuckerman & Becklin 1987; Gänsicke et al.
2006, 2008; Farihi, Jura & Zuckerman 2009; Wilson et al. 2014;
Barber et al. 2016; Dennihy et al. 2016; Farihi 2016; Manser et al.
2016a,b). However, of the ∼1000 metal polluted WDs known, these
40 harbouring discs represent only a few per cent.

Hence, a key question is how such WDs without detectable discs
become polluted? This pressing question has received little theoret-
ical attention (Veras 2016a) but it would seem likely either that the
slowly infalling flat dense disc is too tenuous for detection or that
the infall is substantially attributable to high-speed steep infall of
tenuous matter in near-parabolic orbits of periastron distances near
the stellar radius, and possibly is fairly isotropic. Simulations have
shown that both grazing encounters (Mustill, Veras & Villaver 2014;
Veras & Gänsicke 2015; Hamers & Portegies Zwart 2016;
Veras et al. 2016; Veras 2016b; Petrovich & Muñoz 2017) and
even direct stellar impacts (Veras et al. 2013, 2017b,c) should occur.
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These encounters and potential impacts can include comets (Alcock,
Fristrom & Siegelman 1986; Veras, Shannon & Gänsicke 2014b;
Stone, Metzger & Loeb 2015), asteroids (Bonsor, Mustill & Wy-
att 2011; Debes, Walsh & Stark 2012; Frewen & Hansen 2014;
Antoniadou & Veras 2016) or even small moons (Payne et al. 2016,
2017) though, as we show in this paper, these will become tidally
fragmented nearer the star. Icy bodies like minor planets could eas-
ily retain internal water during the giant branch stages of evolution
(Jura & Xu 2010, 2012; Malamud & Perets 2016), so continued con-
sideration of such bodies and even weaker snowy ones like comets
is important. The simulations in none of the above papers, however,
described the physical details of the encounters, and just a handful
of studies have considered physical aspects of the problem of de-
struction of bodies undergoing near-direct infall towards WD stars
(Alcock et al. 1986; Bear & Soker 2015; Stone et al. 2015).

Here, we approach the problem of near-direct infall from a dif-
ferent perspective, by building on the analysis of the destruction
regimes of steeply infalling solar comets by Brown et al. (2011)
and Brown, Carlson & Toner (2015). They consider both sublima-
tion by starlight (at r near R�) and bow-shock ablation and ram
pressure effects. Here, we extend their analysis to: (i) the much
larger range of parameters involved when one includes hard rocky
infalling bodies; (ii) the very different stellar parameters of WD stars
and (iii) the tidal fragmentation regime (which Brown et al. 2011
and Brown et al. 2015 mostly ignored) because WD surface gravity
is much stronger than solar gravity. Our aim is to determine (an-
alytically and numerically) for what parameters the destruction of
bodies of different sizes and properties is dominated by different
processes, and the implications for WD pollution.

The primary goals of this paper are to: (i) elucidate the physics
of steep infall of small bodies towards WDs; and (ii) develop a
useful algorithm for determining the outcomes. In the following
two sections, we discuss the meaning, importance, range and un-
certainty of values of all relevant WD stars (Section 2) and small
body (Section 3) parameters. In Section 4, we describe the various
relevant debris destruction processes – sublimation, fragmentation
and grazing/impacts, and in Section 5 we analyse which process(es)
dominate in what spatial regime as a function of the parameters of
the WD star and infalling object. We defer to Section 6 a discussion
of the physics of debris impacting the photosphere directly. Then,
in Section 7, we summarize our conclusion (7.1) and briefly dis-
cuss issues that need attention as to how debris (other than direct
impactors) can finally reach the WD surface for the cases of subli-
mated matter, fragmented matter (where tides exceed strength) and
steep star grazers (near misses) orbiting the WD.

In order to aid the reader, we have summarized the meaning and
location of the most important variables in Tables 1 and 2.

2 W HITE DWARF (WD) STAR PROPERTIES

2.1 WD masses and radii

It is well known that WD stars occupy only a narrow range of
masses MWD because remnant WD masses much above 1 M�
need rather large (so rare) progenitor masses while WDs of much
below 1 M� are not reached by evolution within the current age
of the Universe. Here, we will consider WDs in the mass range
0.4–0.8 M� and in many of our results we use a mean value of
0.6 M� (Liebert, Bergeron & Holberg 2005; Falcon et al. 2010;
Tremblay et al. 2016). The range of WD radii RWD is even smaller
because of the form of the mass–radius relationship (Hamada &
Salpeter 1961) set mainly by the hydrostatic balance of gravity and

electron degeneracy pressure. For this, we recognize that the relation
is approximately independent of temperature over a wide range
(Panei, Althaus & Benvenuto 2000)1 and use the approximation.

R� = γ R�
[

M�

M�

]−1/3

, (1)

where

γ � 10−2. (2)

2.2 WD ages and effective temperatures

WDs form with very high temperatures and cool at first very fast, but
with rapidly decreasing rates by blackbody radiation. Their effective
surface temperatures TWD are an easily observed quantity, physically
fixed by the cooling age τWDcool of the star. The relationship between
τWDcool and TWD also weakly involves MWD and has been studied in
detail by Mestel (1952), D’Antona & Mazzitelli (1990), Bergeron,
Wesemael & Beauchamp (1995) and Fontaine, Brassard & Berg-
eron (2001), but the following is an adequate rough approximation
here.

τWDcool ≈ 700 Myr

(
TWD

104 K

)−b

, (3)

where b ∼ 4.5.

2.3 Other WD quantities defined by mass and temperature

The quantities (MWD, TWD) are sufficient to define the following
quantities which also arise in our modelling. The WD bolometric
luminosity and radiation flux at asterocentric distance r are (with
x = r/R�)

Frad(r) = L�

4πr2
=

[
R�

r

]2

σT 4
� = F�

x2
(4)

while the WD surface gravity is

g� = GM�

R2
�

, (5)

where σ and G are the Stefan–Boltzmann and Universal Gravitation
constants. Likewise the surface escape speed v� = (2GM�/R�)1/2

which, for the WD case, becomes v� = v�γ −1/2(M�/M�)2/3.

2.4 WD atmospheres

In the case of (grazing) infallers that are both large enough in
size and small enough in periastron distance q to reach the dense
inner layers of the atmosphere, fluid interactions take over from
radiation and tides and the density structure ρa(r) of the atmosphere
determines the destruction depth. For this case, we will use a locally
exponential model ρa(r) = ρa0exp (−z/H) of constant scaleheight
H with z = r − RWD. We will take the hydrostatic scaleheight to
be that for ionized hydrogen (atomic mass mp) at the WD effective
temperature, viz

H = 2kTWD

mpgWD
(6)

1 More precise, but analytically less tractable relations, can be found in
equations (4) and (5) of Veras et al. (2014a).
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Table 1. Some Roman variables and parameters used in this paper.

Variable Explanation Equation number(s)

A Sublimation parameter (cm) 13, 15–20
a Mean dimension of infaller 11, 14, 26, 29
a0 Initial infaller a value
a0crit a(x) at which asub = afrag

afrag Size for fragmentation onset 29
asub Sublimated radius (at x) 11
B Binding parameter (cm) 30, 34–39
CH Bow shock to nucleus heat transfer coefficient
E Nucleus kinetic energy at impact
fcross Function which defines x, if any, at fragmentation onset 41
Fab Ablative energy flux
F∗ Bolometric radiation flux at star surface
Frad Bolometric radiation flux at r 4
Ftot Net disruptive force 21
FT Tidal force 22
FG Self-gravity binding force 23
FS Tensile strength force 24
G Gravitational constant
g∗ Stellar surface gravity 5
H Density scaleheight 6
k Boltzmann constant
L∗ Bolometric stellar luminosity
L Latent heat of ‘vaporization’
M Infaller mass 7, 12
M∗ Stellar mass
M0 Initial stellar mass
mp Proton mass
nsubtoab

a Stellar atmosphere hydrogen number density
P Instantaneous power of energy released in impact
Pram Ram pressure of atmosphere impinging on infaller
Pramsub Ram pressure of sublimating mass outflow
q Infaller periastron distance
Q Total vaporization energy for ablation
R Stellar radius 1
R Ratio of self-gravity to material strength 31–33
r Astrocentric distance of infaller
S Infaller’s tensile strength
�t Time-scale of impact energy deposition
T Stellar effective temperature
v∗ Escape speed from stellar surface
v(r) Infaller speed 9
X ≡ 2Q/CHv2

�

x ≡ r/R�

x1, x2 The real solutions of equation (41), if any
xcrit The x value at which asub = afrag 42
xsub The x value where total sublimation occurs for a size a0

xRoche The x value at the Roche radius 28
X−2 =100X

while the reference surface density can be fitted to more realistic
WD model atmosphere results such as those of Tremblay et al.
(2011, 2013, 2015).

For generality below, we will first derive debris destruction
equations for stars of any (M�, R�, T�) including the solar case
(M�, R�, T�) and then from them derive those for the WD case
as a function of (MWD, TWD) using the mass–radius relationship
(1). We do not concern ourselves here with variations in properties
among the different classes of WDs because the large uncertainty
and range in the infalling bodies (especially their strength) is much
larger and dominates the uncertainties in our results.

3 PRO P E RT I E S O F IN FA L L I N G B O D I E S

3.1 Introduction

In this section, we will mainly be defining terminology and dis-
cussing typical values of properties of individual infalling bodies.
We adopt homogeneous mean values through the body volume as
reasonable – i.e. we consider the bodies to have individual integrity
in the way one would normally think of an asteroid, rock, pebble
or hard-packed dirty snowball. However, we recognize that many
debris objects have only limited integrity, especially when it comes
to strength, such as loose ice/snow/dust/rock conglomerates and
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Table 2. Some Greek variables and parameters used in this paper.

Variable Explanation Equation number(s)

α ≡ A/a0 40
β ≡ B/a0 40

 ≡ 31/4 + 3−3/4 44
γ ≡ 10−2 (WD radius factor) 2
θ Impactor entry angle to vertical
μ ≡ cos θ

ρ Infaller mass density
ρa Atmospheric mass density 55, 57
ρsubtoab

a Atmospheric mass density crossover point from sublimation to ablation dominated
σ Stefan–Boltzmann constant
� Vertical atmospheric column mass density 54, 56

inhomogeneous rocks containing cavities, cracks etc. – or unce-
mented rubble piles or sand heaps held together with almost exclu-
sively self-gravity. For these, it is essential to recognize the internal
inhomogeneity of parameter values and its consequences. For ex-
ample, for a body made almost entirely of hard rock, but permeated
by cracks or surfaces of weakness, the local strength of the rock
material itself against strains is far higher than the effective strength
of the body as a whole. Related is the ease or difficulty of pulling it
apart into smaller stronger bodies of greater integrity – i.e. strength
exceeding self-gravity. This important distinction will arise espe-
cially in Sections 3.5 and 4.3.

3.2 Nucleus shape and size

We know from direct imaging, and from light curve data, that
cometary nuclei and asteroids are of diverse, irregular and dis-
tinctly aspherical shapes. For our modelling purposes, therefore we
characterize their linear size by a single mean dimension a, their
volume as a3 and their direction-averaged cross-sectional area as
a2. If the shape were actually spherical with radius as and we chose
a = 1.65as then our expressions for the volume and the cross-section
would differ from the true values only by ∼10 per cent. We define
the initial size a0 ≡ a(r → ∞), where a(r) is its value at asterocentric
distance r.

3.3 Density ρ and mass M(r)

We approximate the mass density ρ – and other intrinsic properties
(e.g. S, L, see below) – of the infalling body as being uniform
throughout its volume. Then the body’s constant density ρ, and its
evolving mass M(r) and size a(r) at r are related – provided it does
not change shape or fragment – by

M(r) = ρa3(r). (7)

The mean value widely used for the density of cometary objects
is around half that of water (1 g cm−3) but values vary somewhat
between objects and estimates. They are thought to be comprised of
a porous mix of ices, dust and rubble (dirty snowball) which in this
paper, for brevity, we will loosely term snow. Here, we allow for this
variation by using a fiducial value ρsnow = 0.5 g cm−3 and writing
the actual ρ = ρsnow × [ρ/ρsnow] when dealing with comet-like
material with the dimensionless factor in square brackets selectable
in a range of say 0.3–3.

Solid bodies like asteroids and pebbles (including solid ice) are
denser, with ρ in the range from around 1 g cm−3 for solid ices
to ∼10 g cm−3 for bodies rich in iron (ρ � 8 g cm−3) and heavier

materials. We therefore define a fiducial value used in numerical
expressions of ρrock = 3 g cm−3 and writing ρ = ρrock × [ρ/ρrock]
when dealing with rocky material with the dimensionless factor in
square brackets again selectable in a range of say 0.3–3.

3.4 Latent heat L
The intrinsic parameters of an infalling body which mainly deter-
mine its rate of mass-loss per unit area for a specified heating flux
per unit area (see Section 4) are its density ρ and latent heat L of
sublimation/ablation. The relevant values ofL for a star-grazing ice-
conglomerate snowy mix for the regimes of intense heating where
all components are vaporized was taken by (Brown et al. 2011, in
their section 2.2.2) to be the density-weighted mean over all mass
components, including volatile and refractory ones, which for a typi-
cal snowy cometary nucleus isLsnow ≈ L = 2.6 × 1010 erg g−1. For
solid rocky materials,L is a few times higher: e.g. Chyba, Thomas &
Zahnle (1993) adopted 2.3 × 1010 erg g−1 for comets, 8 × 1010

erg g−1 for stony/iron bodies and 1011 erg g−1 for solid iron.
To allow for this range of values in both the snowy and rocky

regimes, we proceed similarly to what we did in subsection 3.2
for densities and write L = Lsnow × [L/Lsnow] for snowy objects
and L = Lrock × [L/Lrock] for rocky objects with fiducial values
in numerical expressions of Lsnow = 2.6 × 1010 erg g−1 and
Lrock = 8 × 1010 erg g−1 where the square-bracket factors again
are selectable in a range of say 0.3–3.

Note that some of our equations below involve the product ρL
which, for the above fiducial values, is about 20 times larger for
rock than for snow. This in itself can be expected to yield very
different behaviours of these two types of debris, but the difference
in strength S is even more dramatic as we now see.

3.5 Strength S

In addition to sources of heat driving mass-loss, infalling bodies
experience disruptive forces that can contribute to their dissipation
both directly and by accelerating their mass-loss. These forces in-
clude: (i) the radial tensional tidal force (gravity gradient) of the
WD star; (ii) the associated azimuthal shear force (from the orbital
speed gradient; Davidsson 1999, 2001); (iii) for bodies that en-
ter the dense inner atmosphere of the WD (Brown et al. 2011, 2015),
the compressional force from the gradient of the ram pressure of
the interaction with the dense atmosphere, and the lift force in the
case of very shallow angle incidence; (iv) stellar radiation pressure
that can be important compared to gravity for dust particles. For
the larger primary infalling bodies considered here (a0 > 1 cm), this

MNRAS 468, 1575–1593 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/468/2/1575/3038255
by University of Glasgow user
on 18 April 2018



WD pollution by steeply infalling bodies 1579

Table 3. Our fiducial intrinsic parameter values for infalling objects.

Type Density ρ Latent Heat L Tensile strength S
(g cm−3) (erg g−1) (dyne cm−2)

Rock 3.0 8.0 × 1010 1010

Snow 0.5 2.6 × 1010 104

resulting force can be neglected, especially in the very strong grav-
ity of WDs; and possibly (v) the pressure gradient force arising from
very intense sublimative mass outflow (Sekanina & Kracht 2015).
We will, however, return to the matter of radiation pressure when
we briefly consider in Section 7 the final stage of arrival at the star
of the much smaller debris (dust and atoms) created by sublimation
and fragmentation.

The effects of these forces on the body depends on the ability of
its material to resist them, i.e. its relevant strengths: tensile, shear,
compressive. Across the diverse infalling material properties, these
strengths S are the most wide-ranging in value. The different types
of strength can also differ considerably from each other for a single
material but less so than the variation of a specific strength (e.g.
tensile) between materials, so here we will solely use tensile S
values as a starting point.

Consider for example, the mean local tensile strength S which
(together with self-gravity) resists the disruptive tidal gravity gra-
dient. This can be as high as a few times 1010 dyne cm−2 for uni-
formly hard rocks (like granite). For comparison, the mean tensile
strength value for the loose ice-conglomerate of some cometary nu-
cleus material has been estimated from modelling and lab measure-
ments to be possibly as low as 103 dyne cm−2 (see e.g. Greenberg,
Hitoshi & Tetsuo 1995, Gundlach & Blum 2016 and references
therein). A range of 103–107 dyne cm−2 has been reported for the lo-
calized surface strengths of Comet 67P/Churyumov–Gerasimenko
by Biele et al. (2015) from two of the bounces of ESA’s Rosetta
Philae lander but the strength relevant to bouncing is compressive
rather than tensile, the latter being much smaller for loose materials.
However, even a tensile strength equal to the smallest of all these S
values would be large enough to exceed self-gravity as the main ad-
hesive force (see also Section 4.3 and Table 3) except for very large
bodies. However, the effective strength of many bodies to resist
globally disruptive forces is often set by cracks and flaws which re-
duce the overall effective S to near zero, with ‘zero-strength’ ‘rubble
piles’ of icy boulders or even sand heaps held together solely by self-
gravity. A good example is that invoked to explain the ready breakup
of some sun-grazing comets and of Shoemaker–Levy 9 by Jupiter
(Asphaug & Benz 1994). We denote this class of body (self-gravity
exceeding strength globally) as ‘loose’.

In Section 4.3, we will argue that the high tidal gravity gradients
around WD stars are so large that inside the classical Roche limit
– which is far (x ∼ 100) from the WD – they act to pull apart
bodies of all sizes but only down to the limit of their constituent
parts in which internal strength exceeds self-gravity. In other words
bodies break up into parts bounded by their low-strength internal
fault surfaces but no further at that stage. The infalling assembly of
this processed debris will now comprise objects of a wide range of
sizes but each of much higher integrity (and tensile strength) than its
parent. In this region, strength rather than self-gravity becomes the
opponent of tidal fragmentation, with sublimative mass-loss also
limiting fragmentation to large bodies only (See Section 5). In this
inner sublimation region, we will consider two broad classes of
infalling matter strength: ‘weak’ (like comet nucleus matter) and
‘strong’ (rock) once again using the format S = Ssnow × [S/Ssnow]

and S = Srock × [S/Srock] for snowy and rocky bodies, respectively,
with fiducial values in numerical expressions of Ssnow = 104 and
Srock = 1010 dyne cm−2, respectively. The six order-of-magnitude
range in S values across debris types is a major factor in our findings,
although an even wider range can be included in our modelling
equations simply by adjusting S/Srock or S/Ssnow appropriately.

3.6 Orbital geometry and speed

Brown et al. (2011) and Brown et al. (2015) argued that, except in
the very final stages of interaction with the deep atmosphere (when
reached), or possibly in cases of rapid fragmentation (Sekanina &
Kracht 2015), the centre of mass of an infalling solid body pretty
much follows the locus and velocity of a Keplerian parabolic orbit
about the central star. Brown et al. (2011) and Brown et al. (2015)
considered the general case of a parabola with arbitrary periastron
distance q (which also defines the stellar surface entry angle for
cases where q < R�).

In this paper, we are concerned with the behaviour of infalling
material at the opposite extreme from the slow inflow of accretion
disc matter as viscosity redistributes angular momentum – namely
the case of infallers having orbital eccentricities near unity and very
small perihelion distances q close to or less than RWD (with very low
angular momentum). We will loosely term all of these impactors
but intend to include both those that could actually impact the
atmosphere (star plungers or divers) and those that would have
near-miss fly-bys (star grazers) if they are not fully sublimated or
fragmented before getting that close. For such objects, along most
of their path inside the Roche limit (x ∼ 100) down to x of a
few, the trajectory and velocity are nearly identical to those of a
linear parabolic orbit (q = 0). Through the next two sections, we
consider them as such to simplify the mathematical treatment of the
sublimation/fragmentation processes (see also Brown et al. 2011)
who treat exactly the case of general q. In Section 6, we allow for the
effect of deviations from the linear parabolic trajectory in addressing
the behaviour (entry angle, etc.) of material actually impacting the
WD surface and in Section 7 how near-miss star-grazing material
might find its way on to the surface.

In the regime (r � RWD) of the linear parabola approximation,
the only component of the velocity vector is the radial speed v(r) =
vr (r) = ṙ = dr/dt with the property that

dv

dt
≡ v̇ = v

dv

dr
= −GM∗

r2
(8)

yielding (for v(r → ∞) = 0) the usual solution

v(r) =
(

2GM�

r

)1/2

= v�

(
R�

r

)1/2

. (9)

4 PRO CESSES O F D ESTRUCTI ON O F
I N FA L L I N G B O D I E S

4.1 Overview

As noted above, destruction of infalling bodies occurs by a combi-
nation of: (a) sublimative mass-loss by an energy flux F of starlight
that is sufficiently large to raise the bodies above the vaporization
temperature of at least some, and eventually all, of their compo-
nents; (b) fragmentation due to the stellar tidal or possibly internal
pressure forces exceeding the internal strength and self-gravity of
the body and (c) frictional ablative mass-loss and ram-pressure pan-
caking and deceleration effects in the dense low atmosphere.
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The importance of these various processes all decline with dis-
tance r but at differing rates. Stellar radiation flux (sublimation)
declines as ∝1/r2 while tidal forces decline faster as ∝1/r3 and
effectively cut-off at a finite distance when self-gravity and body
strength offset them. Finally, atmospheric frictional ram-pressure
effects vary as ∼ρatm(r) where the atmospheric mass density ρatm(r)
∝ exp (−(r − R∗)/H) near r = R∗ with scaleheight H � R∗. Conse-
quently, these only become important within a few H of r = RWD.
Disruptive internal pressure is also only important if very high
mass-loss rates arise near the star (e.g. Sekanina & Kracht 2015).

We then argue (in Section 4.3.2), by analogy with observations
of fragmentation of some sun grazers and of SL-9 by Jupiter and the
modelling of the latter by Asphaug & Benz (1996), that the initial
process is tidal disruption of large very loose structures into smaller
more robust components in which strength everywhere exceeds
self-gravity.

Thereafter as infall progresses from large r, radiative sublima-
tion dominates until fragmentation sets in (if at all) or bow-shock
ablation/deceleration takes over near the photosphere. Below we
therefore first model (Section 4.2) the infall evolution of a(r) and
M(r) assuming that only sublimation is active. Then, in Section 4.3
we discuss the basics of tidal fragmentation and (see also Bear &
Soker 2015) include the effects of strength as well as of self-gravity.
The latter is often ignored but in fact proves to be dominant even for
quite weak snowy cometary material as we show below. Then, in
Section 5 we discuss the interplay of sublimation and tidal fragmen-
tation as a function of original infaller size. We determine the spatial
and parametric ranges for which tidal fragmentation may dominate
over sublimation, drawing conclusions relevant to the WD debris
infall problem. We defer to Section 6 treatment of the details of
destruction of objects (impactors) which are large/strong enough
to enter the high-density gas layers low in the atmosphere where
destructive hydrodynamic effects abruptly take over from sublima-
tion and tidal forces. In Section 7.1, we briefly discuss the issues
involved in whether and how sublimated atomic/molecular matter
and fragmented pebbly/dusty debris can reach the stellar surface
and in Section 7.2 what happens to original infallers or to their
fragmented pieces. These pieces would be close to but not quite in
the regime of direct infall, but rather they have orbits grazing close
by the photosphere – specifically we address how they may shed
enough of their angular momentum to reach the photosphere.

One other destructive force proposed (in the solar comet context)
as sometimes important in infalling debris deposition is (Steckloff
et al. 2015) the ram pressure Pramsub of sublimating mass outflow
when that outflow is high (near the star). Based on the rates found
by Brown et al. (2011) or the equations of the next subsection, one
finds that for comets quite near the sun, Pramsub can exceed the low
strength S of cometary, but not that of rocky, material. However,
Gundlach et al. (2012) argued that if the outflow is symmetric
enough, the inward reaction force to the outflow pressure Pramsub

can oppose fragmentation. On the other hand, Sekanina & Kracht
(2015) have invoked an energetic exothermal process in ice crystal
formation to explain the sudden fragmentation of Comet C/2012 S1
Ison while still well outside the Roche lobe. Such processes may
have to be considered for some stellar infall but we omit them here
as their importance is not yet widely agreed upon by the community.

4.2 Sublimation in starlight

By taking the infalling body to have near zero albedo, the heating
power of starlight entering the infalling body is a2Frad, with the

stellar radiation flux Frad is given by equation (4).2 We also neglect
radiative cooling, assuming that the sublimation occurs on a time-
scale faster than that of radiative energy loss. This neglect is based
on the fact that the specific energyL ∼ 2.6 × 1010 erg g−1 ∼0.01 eV
per nucleon needed for sublimation of ice and rock is much smaller
than that needed to heat it to the radiative equilibrium Teq ∼ T∗/x1/2

viz kTeq/mp ∼ 0.6/x1/2 eV. An exception occurs at x � 1, where, in
any case Teq falls below the sublimation threshold temperature and
little sublimation occurs. Then, for a body of density ρ and latent
heat L, with mass M(r), and size a(r)(→ M0, a0 as r → ∞), the
mass-loss per unit radial distance is, using equations (8) and (9),

dM

dr
= 1

v(r)

dM

dt
= 1

v�

(
r

R�

)1/2
Frada

2

L

= σT 4
�

Lv�ρ2/3

(
R�

r

)3/2

M2/3. (10)

By using M0 = ρa3
0 , M = ρa3 and v∗ = (2GM∗/R∗)1/2, we obtain

a solution for the variation with relative distance x = r/R∗ of size
and mass a, M (with original incident values a0, M0)

a(x) = asub(x) = a0 − A

x1/2
(11)

M(x)

M0
=

(
a(x)

a0

)3

=
(

1 − A

a0x1/2

)3

(12)

A = 2R�σT 4
�

3ρLv�

= 21/2R3/2
� σT 4

�

3ρLG1/2M
1/2
�

, (13)

where the sublimation parameter A (cm) is clearly the minimum
initial size a0 of object needed to just survive sublimation alone
down to the photosphere (r = R∗, x = 1) and represents a crucial
value in the debris deposition problem.

An important result of equation (11) is that in the absence of
fragmentation the sublimative drop in size a(x) at x is A(x) indepen-
dent of a0 and in particular the size a(1) of an unfragmented object
reaching the photosphere is

a(1) = a0 − A. (14)

For a general star characterized by M∗, R∗, T∗, we can rewrite
(13) as

A� =
(

21/2 R3/2
� σT4�

3ρLG1/2 M1/2
�

) [(
R�/R�

)3/2 (
T�/T�

)4(
M�/M�

)1/2

]
. (15)

For any WD star that is characterized by MWD, TWD, by using the
RWD(MWD) relationship (1), we obtain the following expression:

AWD =
(

21/2 R3/2
� σT4�

3ρLG1/2 M1/2
�

)
γ 3/2

[ (
TWD/T�

)4(
MWD/M�

)
]

. (16)

This relation leads to the following numerical expressions for gen-
eral stars and for WD stars. Each group is given in two distinct forms:
one expressed in terms of values of ρ,L, S relative to our fiducial
values for rock and the other relative to our fiducial values for snow.
In the WD cases, we have replaced (TWD/T�) by (TWD/104 K) as

2 We neglect here the correction factor ∼1–2 that is strictly required in
equation (4) as r comes close to R because at that location the stellar radiation
flux is not unidirectional, but rather arises from the large finite angular size
stellar disc.
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the latter is more convenient to the WD community. These fiducial
values are all given in Table 3.

Arock
� (cm) =

(
2.0 × 102

(ρ/ρrock)(L/Lrock)

) ⎡
⎢⎢⎢⎣

(
R�

R�
)3/2 (

T�

T�
)4

(
M�

M�
)1/2

⎤
⎥⎥⎥⎦

(17)

Asnow
� (cm) =

(
3.7 × 103

(ρ/ρsnow)(L/Lsnow)

) ⎡
⎢⎢⎢⎣

(
R�

R�
)3/2 (

T�

T�
)4

(
M�

M�
)1/2

⎤
⎥⎥⎥⎦

(18)

Arock
WD (cm) =

(
1.8

(ρ/ρrock)(L/Lrock)

) [(
TWD/104 K

)4(
MWD/M�

)
]

(19)

Asnow
WD (cm) =

(
33

(ρ/ρsnow)(L/Lsnow)

) [(
TWD/104 K

)4(
MWD/M�

)
]

. (20)

The second expression (Asnow
� ) agrees numerically with the results

of the Brown et al. (2011) paper on solar comets for M∗ = M�,
R∗ = R� in the case of zero periastron.

The above two expressions for A(T) in our fiducial WD cases are
shown in Fig. 1.

By comparing the value of A given by equation (15) for the
sun with that from equation (16) for a WD of the same mass and
temperature, we see that an object 1000 times smaller can survive
sublimation down to the surface of the WD compared to the size
needed to reach the surface of the sun. This result is due to the fact
that although the sublimating starlight has the same flux near the
stellar surface in both cases, the effective time of exposure to that
flux scales as the infall time R�/v� ∝ R3/2

� which is γ 3/2 = 10−3

Figure 1. Plot of AWD versus TWD in the range 3000 < TWD(K) < 60 000 for
rocky (lower pair of lines) and snowy (upper pair of lines) fiducial parameters
and for masses MWD = 0.4, 0.8 M� (dashed and solid curves). Note that
AWD = a0min the minimum incident size needed to survive sublimation
alone (no fragmentation) down to the WD surface. The top axis shows the
mean cooling time tWDcool (for an average MWD value) corresponding to the
values of TWD along the bottom axis. tWDcool(a0min) is thus the time after
which objects of initial size a0min can just reach the surface without total
sublimation.

times smaller for a WD than for the sun. In order for the minimum
incident ao = A value to allow an object to survive to the photosphere
to be the same as for the sun, the WD of the same mass would have
to be hotter than the sun by a factor 103/4 or TWD ≈ 32 600 K.
For smaller WD masses, the minimum size for survival increases,
partly because of R. Hence, infall time is larger, but also because
the luminosity ∝R2, and so sublimative mass-loss increases.

4.3 Tidal fragmentation including material strength

4.3.1 General case

Neglecting internal pressure forces, the net disruptive force (Ftot)
across a small infalling body (size a) is the difference between the
disruptive tidal force (FT), and the sum of the binding self-gravity
(FG) and tensile strength (FS) forces. (The following summary of
forces is similar to that in Bear & Soker 2015 within factors of order
unity.)

Ftot = + |FT| − |FS| − |FG| . (21)

Standard approximations for each component are

FT ≈ GM�Ma

2r3
, (22)

FG ≈ −GM2

a2
, (23)

FS = −Sa2. (24)

The condition for a body to remain intact is thus (replacing M by
ρa3 and setting M� = 4πρ�R

3
�/3) that a should satisfy

|FS + FG|
FT

= S/(Gρ2a2) + 1

M∗/(2ρr3)
= S/(Gρ2a2) + 1

(2π/3)(ρ�/ρx3)
≥ 1 (25)

which defines the maximum size afrag of object that can avoid frag-
mentation at distance r = xR∗ namely

a(x) ≤ afrag(x) =
√

S/Gρ2

(2π/3)(ρ�/ρx3) − 1
. (26)

In this paper, we will mainly be discussing the properties of this
equation in the limit where the strength S term dominates over self-
gravity – see Section 4.3.3 – but first we look at the opposite low S
limit of ‘loose’ incoming material held together only by self-gravity,
which was mentioned already in Sections 3.1 and 3.5.

4.3.2 The loose (zero S) self-gravity-dominated Roche-limit
regime

In the (loose) limit,

FS/FG � 1. (27)

Equation (25) simplifies to the usual Roche limit form

x > xRoche =
(

2πρWD

3ρ

)1/3

= 1

γ

(
2πρ�

3ρ

(
MWD

M�

)2
)1/3

(28)

which means typically rRoche = γ xRocheRWD ∼ 100RWD ∼ 1 R�.
This result is expected because the gravity gradient of a 1 M�
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WD is the same as that of the sun at the same absolute distance,
regardless of the size of the object concerned, so long as it is loose
with self-gravity dominating over strength.

As already mentioned in Sections 3.1 and 3.5, many incident
debris object are likely initially to be loose in the sense of being
aggregates of smaller more internally solid pieces, or permeated by
cracks or other faults. The global strength of such objects against
disruption of its loose components can be very small, far less than
the internal strengths of the latter (Asphaug & Benz 1996). We
thus envisage the scenario that all debris approaching a WD within
around 100 WD radii will tend to be tidally fragmented into smaller
component volumes containing matter of much greater integrity and
with global strength much higher than that of the object as a whole
and than self-gravity. Inward of this distance the effects of tides
on the remnant objects will be dependent on the greater strength
S of their material, be it weak or strong, as well as on distance
x, as we analyse in Section 4.3.3. This scenario is just what we
observed for Shoemaker–Levy 9 as it approached Jupiter (Asphaug
& Benz 1996). The above equations show that the strength S needed
in an object of size a and density ρ for strength to dominate over
self-gravity is only S > Gρ2a2 = 175(a (km))2 (dyne cm−2) for the
density of snow and 6300(a (km))2 for the density of rock. These S
values are very small except for large objects (km and up).

4.3.3 The weak and strong S-dominated regime

When we now consider equations (24) and (25) for large S, we
recall that fragmentation onset is no longer solely a function of
the infaller distance x and density as in the loose (rubble pile)
Roche limit case, but also of the infaller strength S and size a. We
find the condition on a(x) to avoid fragmentation is

a(x) < afrag(x) =
√

S/Gρ2

(2π/3)(ρ�/ρx3 − 1)
≈ Bx3/2, (29)

where

B =
√

3S

2πGρρ�

=
√

2SR3
�

GρM�

. (30)

The final expression amounts to neglecting self-gravity as opposed
to strength and is a good approximation whenever ρ∗ � ρx3. Later
results show that for WDs, this approximation is valid except for
very large, weak and low-density infallers. Essentially it amounts to
dropping the −1 from the denominator of equation (29), which arose
from the self-gravity term FG. It emphasizes the fact, not widely
appreciated, that even for materials of low S like snowy cometary
nuclei, self-gravityFG is unimportant compared to material strength
FS in opposing tidal fragmentation except for quite large objects.
This can be seen by examining the ratio

R = FG

FS
= Gρ2a2

S
(31)

Rrock = 0.6
(ρ/3 g cm−3)2(a/ 1000 km)2

(S/1010 dyne cm−2)
(32)

Rsnow = 0.017
(ρ/0.5 g cm−3)2(a/ 1 km)2

(S/104 dyne cm−2)
. (33)

In Table 4, we show Rrock and Rsnow versus a(cm). For our fidu-
cial cometary value of S = 104 dyne cm−2 (Table 4), the size has

Table 4. Ratio of forces of self-gravity to
internal strength.

Type a (cm) R
Rock 102 6.0 × 10−13

Rock 103 6.0 × 10−11

Rock 104 6.0 × 10−9

Rock 105 6.0 × 10−7

Rock 106 6.0 × 10−5

Snow 102 1.7 × 10−8

Snow 103 1.7 × 10−6

Snow 104 1.7 × 10−4

Snow 105 1.7 × 10−2

Snow 106 1.7

to exceed about 1 km (mass around 1015 g, as in C/2011 W3 Love-
joy) for self-gravity to dominate over strength, while for S = 103

dyne cm−2, the minimum size is around 100 m. For rocks with
our fiducial S = 1010 dyne cm−2, the minimum is around 1000 km
which is why only asteroids/dwarf planets larger than this size tend
towards sphericity (isotropic self-gravity defeats anisotropic rock
strength). The relevance of the classical Roche tidal limit (based on
self-gravity alone) is solely for the disassembling of aggregations
of bodies that are very loosely bound or unbound (apart from by
self-gravity) such as rubble or sand piles. It is not relevant to scales
on which the constituent bodies (individual boulders, sandgrains,
ice crystals etc.) have integrity in the sense of significant internal
strength with no weak fracture planes, as already mentioned in
Sections 3.1 and 3.5.

B (cm) is clearly a binding size parameter measuring the threshold
size that must be exceeded for the tidal force to overcome its strength
and thus for fragmentation to set in. It is also obviously the minimum
size of object which would fragment if placed directly at x = 1. By
considering equation (29), we can also see that B can be expressed
in terms of the relative distance x = (ao/B)2/3 at which a body
of initial size ao would start to fragment in the absence of any
significant sublimative reduction in size (i.e. in the limit of very
small A due, for example, to very large L or low TWD). In reality,
as we discuss in Section 5, one must consider the interplay of the
processes with sublimative decline of a(x) allowing deeper infall
before fragmentation.

Thus, for a general star we can write

B� =
√

2SR3
�

GρM�

=
√

2SR3�
Gρ M�

(R�/R�)3/2

(M�/M�)1/2
. (34)

By using the R(M) relation for WDs, in their case it becomes

BWD = γ 3/2

√
2R3�
GM�

(
S

ρ

)1/2 1

(MWD/M�)
. (35)

The corresponding numerical values for rock and snow infallers to
stars and to WDs are

B rock
� (cm) = 1.3 × 108

(
S/Srock

ρ/ρrock

)1/2 (R�/R�)3/2

(M�/M�)1/2
(36)

Bsnow
� (cm) = 3.2 × 105

(
S/Ssnow

ρ/ρsnow

)1/2 (R�/R�)3/2

(M�/M�)1/2
(37)

B rock
WD (cm) = 1.3 × 105

(
S/Srock

ρ/ρrock

)1/2 1

(MWD/M�)
(38)
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Bsnow
WD (cm) = 3.2 × 102

(
S/Ssnow

ρ/ρsnow

)1/2 1

(MWD/M�)
. (39)

It is evident from equations (36)–(39) that, while similar to the
solar case for similar absolute r values, tidal fragmentation is far
more important for WDs than for the sun for r values nearing
the stellar radius. The reason is because of the much larger stellar
surface tidal force gradient (∝GM/R3 from equation 30, so a factor
of 106 larger for a given mass). Though B = afrag(x = 1) is the
largest size of object that could be placed directly at the photosphere
without fragmenting, allowing for sublimative loss of size during
infall, in the absence of fragmentation, corresponds to an infalling
object of initial size a0 = B + A.

4.4 Destruction by atmospheric impact

As we will confirm in Section 5, regimes exist where intact incident
objects (or intact components of tidally fragmented loose incident
objects) partially survive sublimation down to x ∼ 1, where they
undergo destruction by impact with the stellar atmosphere or pos-
sibly disruptive processes in a grazing near miss. We defer detailed
modelling of such cases to Section 6 after we have discussed the
parameter regimes in which it, and also sublimative and fragmen-
tational destruction, occurs.

5 D E S T RU C T I O N PA R A M E T E R R E G I M E S

5.1 Basics

In Sections 4.2 and 4.3, we have discussed separately how body
size a(x, a0) declines with distance xRWD due to sublimation alone
(equation 11) and how the maximum size afrag which can survive
tidal fragmentation alone declines with x. This is all for x smaller
than the boundary where tidal forces inside the Roche (self-gravity-
dominated) limit have already processed very loosely bound in-
falling debris into smaller chunks of higher integrity in which in-
ternal strength far exceeds self-gravity. So it is clear that there is
interplay between all the processes (see Sections 6 and 7). Qualita-
tively, it is apparent that the possible fates of a stellar infall object
whose cohesion is from internal strength are as follows:

(i) Total SUBLIMATION outside the photosphere without en-
countering its tidal fragmentation limit.

(ii) Here, we lump together, under the heading IMPACT, both (a)
actual impacts (q < RWD) and (b) very close grazing encounters
(say RWD < q � 2RWD) with the photosphere before complete
sublimation or reaching its fragmentation limit. Destruction in the
actual impact case is by abrupt ablative mass-loss and deceleration
via bow-shock interaction with the dense stellar atmosphere, as
detailed in Section 6. The final fate of matter undergoing grazing
near misses is discussed in Section 7 along with whether and how
the products of fragmentation and of sublimation well above the
photosphere eventually reach it.

(iii) FRAGMENTATION occurs before total sublimation or pho-
tospheric impact. It is beyond the scope of this paper to analyse in
detail the behaviour of such fragmenting bodies (see also Asphaug &
Benz 1996) and here we mainly refer to their initial fragmentation
point as their end point as it signifies the demise of the original single
bodies. However, we note that the behaviour of any of the smaller
objects resulting from the first fragmentation which retain integrity
(in the sense of S once again dominating over the tidal force) can
be followed along the same lines as our treatment above until they

either sublimate totally, impact the photosphere or reach their own
fragmentation limit and fragment again. We briefly examine be-
low some special cases of this hierarchical fragmentation. (Also, in
Section 7, we touch on other processes affecting post-fragmentation
evolution.)

We can shed some light here on hierarchical fragmentation theory
for cases where fractional sublimative decrease in size a(x) between
successive fragmentations is small. This approximation applies for
B � A – for example to large enough a0,L and/or low enough TWD.
Then, by equation (29), an object of finite tensile strength S and size
a1 first reaches its tidal disruption limit at distance x1 = (a1/B)2/3

(if a1 > B so that x1 > 1). From that point onwards, one can imagine
two limiting behaviours.

The first is a marginally stable progression in which the mass and
size of the infalling body are almost steadily diminished by tidal loss
of small fragments such that a(x) is kept just at the limiting value
a(x) = Bx3/2 with the body mass M(x) declining with x according to
M(x)/M1 = [a(x)/a1]3 = (x/x1)9/2 and arriving at the photosphere
(x = 1) with precisely the critical tidal disruption size B there, the
rest of the mass having been transformed into small particles en
route.

Secondly, at the other extreme, we can envisage each tidal dis-
ruption occurring at x = x1 and subsequent critical points, if
any, to take the form of breakup into j equal parts with j ≥ 2.
Then, inside x1, the object initially comprises j parts, each of mass
M2 = M1/j = ρa3

1/j and size a2 = a1/j1/3. If this same process
repeats, with the same j value, for each of these initial j tidal dis-
ruption products when they reach x2 = (a2/B)2/3 (provided x2 > 1),
and so on, after k such stages the original object comprises jk pieces
each of size a1/jk/3 at distance xk = (ak/B)2/3 until xk < 1 or ak < B.
This shows that, in this regime, regardless of the value of j, tidal
fragmentation leads to arrival near the photosphere of fragments
each of size close to the critical tidal disruption size B there. This
means that objects of initial size a1 � B are all reduced to a size ∼B
near x = 1 by a fragmentation process lying somewhere between a
large number k of successive splittings, each yielding a small num-
ber j of pieces, or a small number k of successive splittings, each
yielding a large number j of pieces such that jk ∼ (a1/B)3.

These results indicate that for any given value of impactor param-
eters – especially strength S – tidal forces ensure that fragmentation
will break up any object larger than a clear lower limiting size be-
fore it reaches the photosphere. In Section 6.3, we evaluate these
size limits and their consequences for the depths which impactors
can reach before their explosive destruction.

In this section, we want to determine in which of these fate do-
mains, and at what end depth, the destruction of any specific infaller
lies as a function of its initial incident size ao, for specified values of
its intrinsic properties (ρ,L, S) and those of the star (TWD, MWD).
It is apparent from Sections 4.2 and 4.3 that, for given a0, there
are only two controlling parameters, A and B. These parameters are
given by equations (16) and (35) as simple products of powers of
the properties of the infaller and of the star. The dominant (most
wide-ranging) physical parameter factors are TWD within A, whose
magnitude is a measure of sublimation rate, and S within B, whose
magnitude is a measure of the material binding opposing fragmen-
tation (a high value of B indicates that fragmentation is less likely).
In Section 5.2, we use the equations of Section 4 to establish a
diagram of domains in the (A, B) plane showing where destruction
modes lie. In fact because the equations are separately linear in A,
B, ao, we can condense the destruction domain diagrams for all ao
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Figure 2. Recalling that x ≡ r/R�, A is the sublimation parameter and
B is the binding parameter, presented here is a two-panel schematic of
equation (41), showing the form of fcross(x) for the two cases when the
minimum occurs at xcrit < 1 (upper panel) and xcrit > 1 (lower panel) and
how this form influences the position x2 of fragmentation onset if it occurs.
a0 corresponds to a horizontal line, and fragmentation occurs if and when
this line first hits the curve at a point (which may be x1 or x2 or neither
depending on the parameters) where x > 1. In the red-shaded zones where
fcross < a0crit = 
A3/4B1/4, fragmentation cannot occur for the reasons
discussed in the text.

into a single diagram in the plane (α, β), where

α = A/a0

β = B/a0. (40)

5.2 Destruction domains in the (α, β) plane

We first consider in what α, β regimes fragmentation arises (i.e.
in what A, B regimes for a given size a0). As infall progresses, the
ratio afrag(x)/asub(x) declines. In order for fragmentation to occur,
this ratio must reach unity or less – and must do so at a value of
x > 1 – i.e. outside the star since impact destroys the body at x = 1.
In other words, the two a(x) functions must cross, or at least touch,
with fragmentation onset at some point x with x2 the largest such x
(since the infaller reaches x2 first). The equation asub(x) = afrag(x)
for such intersection can be written

fcross(x) = A

x1/2
+ Bx3/2 = a0, (41)

where the crossing function fcross(x) has a U shape – see Fig. 2 -
- with a minimum value a0crit(A, B) occurring at xcrit(A, B) where
f ′

cross(x) = 0, namely

xcrit =
(

A

3B

)1/2

(42)

a0crit = 
 × A3/4B1/4 = 
a0 × α3/4β1/4 (43)

with


 = [
31/4 + 1/33/4

] ≈ 1.75. (44)

Figure 3. The three distinct domains of infaller destruction in the α, β

plane – total sublimation, impact after partial sublimation, and fragmentation
after partial sublimation. Fragmentation is restricted to the green triangular
domain in the bottom left corner. Note that α scales as ∝T 4

WD/(MWDρL/a0)
while β scales as S1/2/(ρ1/2MWD). Recall that x ≡ r/R�, A is the sublimation
parameter and B is the binding parameter.

Turning now to the α, β plane shown in Fig. 3, using equation (43)
we note that the first necessary condition given above for fragmen-
tation to occur is a0 > a0crit which can be written 
a0α

3/4β1/4 < 1
or

β <
1


4α3
= 27

256α3
. (45)

This upper bound β(α) on fragmentation is shown as a dotted curve
in Fig. 3. The second condition necessary for fragmentation to occur
is that the solution x2 of equation (41) must satisfy x2 > 1. In terms
of α and β, equation (41) can be written αx−1/2 + βx3/2 = 1. The
limiting case for fragmentation to just occur is x2 = 1 such that
α + β = 1 or A + B = ao. In other words only if

A + B > ao

α + β > 1 (46)

can fragmentation occur above the photosphere. The meaning of
this is physically simple. In the absence of fragmentation, an object
of initial size a0 would sublimate down to size a0 − A at the pho-
tosphere (x = 1), where the size limit for fragmentation has come
down to Bx3/2 = B. Hence, only if a0 − A > B (i.e. α + β < 1)
can fragmentation occur before impact. This upper limiting line is
also shown in Fig. 3, where we see that for all x it lies below the
first limiting curve β(α) established above (though only just below
at one point). So if condition (46) is satisfied then so is condition
(45) and the fragmentation domain is purely the green triangular
region in the bottom left corner of the (α, β) plane in Fig. 3. The
significance of this triangular region is that it lies at low enough α,
A (e.g. low T, high L) that sublimation does not prevent the infaller
surviving far enough in to experience strong tidal gradients. At low
enough β, B (e.g. low S) the binding strength of material might not
be strong enough to prevent fragmentation.
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Figure 4. Size evolutions and fates for rocky (left-hand panels) and snowy (right-hand panels) bodies falling in towards a WD. Three WD temperatures are
sampled (5000 K, top panels; 15 000 K, middle panels; 50 000 K, lower panels). The initial sizes of the infallers (a0) are illustrated within each plot, and
ranged from 1 to 106 cm. The three possible outcomes include (i) total sublimation (bottom axis), (ii) fragmentation (dashed red line) or (iii) impact with the
WD photosphere (left axis).

Having established the fragmentation domain in the (α, β) plane,
it is simple to divide the rest of the plane between total sublimation
prior to impact and impact prior to partial sublimation. Outside of
the fragmentation domain, an infaller will or will not lose its en-
tire mass to sublimation according to whether A > a0 or A < a0

which means α > 1 or α < 1. In the first case, an infaller either is
totally sublimated above the photosphere at x = α2 = (A/a0)2,
or impacts the dense stellar ‘surface’ after being sublimatively
reduced in size to a0(1 − α) as shown by the α, β domains in
Fig. 3.

It only remains to determine the distance x2RWD at which frag-
mentation sets in, if at all, for a given a0. There are several possible

approaches to this. One is to calculate and plot the sublimated size
a(x) = a0(1 − α/x1/2) for a fine grid of x values commencing at
x � 1 and going down to x = 1 but stopping the plot at the first
of the following conditions to be reached: (i) the total sublimation
point xsub = α2 where a(x) = 0; (ii) the fragmentation onset point
x = x2 where a(x) = Bx3/2 = a0βx3/2; (iii) impact at x = 1 with
a = a(1) = 1 − α. In Fig. 4, we show such plots for a set of
fiducial parameters: rocky and snowy infallers (left-hand and right-
hand panels), and cool, warm and hot WDs (top, middle and bottom
rows), all for MWD = 0.6 M�.

If one only wants the fragmentation point value x2 and not the full
trajectory a(x), then an alternative approach is to solve numerically
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Table 5. x2 values corresponding to (α, β) pairs, where α is on y-axis and β is on the x-axis.

10−3.0 10−2.7 10−2.3 10−2.0 10−1.7 10−1.3 10−1.0 10−0.7 10−0.3 100.0

10−6.0 100 63 34 22 14 7.4 4.6 2.8 1.7 1.0
10−4.0 100 63 34 22 14 7.4 4.6 2.8 1.7 NA
10−2.0 100 63 34 22 14 7.3 4.6 2.8 1.7 NA
10−1.0 99 63 34 21 13 7.2 4.5 2.7 1.6 NA
10−0.7 99 62 33 21 13 7.0 4.3 2.5 1.5 NA
10−0.3 97 61 32 20 12 6.4 3.9 2.2 1.1 NA
100.0 93 57 30 18 11 4.9 2.2 NA NA NA

Figure 5. Schematic flow chart of how to determine the mode and position
of destruction of any infaller for any WD star starting from adopted values
of the physical parameters of each.

the equation α/x
1/2
2 + βx

3/2
2 = 1 for x2(α, β) over a large grid of

α, β values, and use these as a look-up source of x2 values or as
the basis of a plot of x2(α, β). This plot could either be a set of
smooth curves of x2(α) for a series of discrete β values, or as a plot
of iso-x value contours on the (α, β) plane. Here, we have adopted
the look-up grid option – shown as the matrix X2β,α – in Table 5 of
values x2 for logarithmically spaced steps in the ranges 10−3 ≤ β

≤ 1 and 10−6 ≤ α ≤ 1.
Fig. 5 provides, in terms of parameters A and B, a flowchart of

how to determine the fate of an infaller of size a0.

5.3 Summary

The essence of our destruction domain results in terms of numerical
values of physical parameters can best be illustrated by looking
at our typical examples for parameters with our fiducial values of
ρ,L, S for rock and snow, namely

(i) FRAGMENTATION occurs if α + β < 1 → a0 > A + B
which, using equations (19), (20), (38) and (39) for our fiducial
rock and snow cases imply, respectively,

1.3 × 105

MWD/M�

[
1 + 1.4 × 10−5

(
TWD

104 K

)4
]

< a0rock(cm) (47)

and

3.2 × 102

MWD/M�

[
1 + 0.10

(
TWD

104 K

)4
]

< a0snow(cm). (48)

(ii) On the other hand, if a0 < A + B and a0 > A i.e.

1.8T 4
4

MWD/M�
< a0rock(cm)

<
1.3 × 105

MWD/M�

[
1 + 1.4 × 10−5

(
TWD

104 K

)4
]

(49)

or

33T 4
4

MWD/M�
< a0snow(cm)

<
3.2 × 102

MWD/M�

[
1 + 0.10

(
TWD

104 K

)4
]

(50)

then IMPACT occurs before fragmentation or complete sublimation
while if a0 < A (and so a0 < A + B too) i.e.

a0rock(cm) <
1.8T 4

4

MWD/M�
(51)

or

a0snow(cm) <
33T 4

4

MWD/M�
, (52)

then SUBLIMATION is complete before fragmentation or impact.

These results are shown graphically in Figs 6(a) and 6(b) for rock
and for snow, respectively, with the fiducial reference values of the
various parameters given in Table 3.

6 T H E AC T UA L ‘ S T E L L A R IM PAC T ’ R E G I M E :
B OW-S H O C K A B L AT I V E D E S T RU C T I O N

6.1 Background – comparison with solar debris impacts

Our description here of the destruction of bodies actually directly
impacting WD photospheres is based on an extension of the Brown
et al. (2015) analysis of sun-impacting comets. The case of non-
compact stars in general can be similarly treated by a suitable gen-
eralization of parameters from the solar case.

Our results above show that regimes exist in which infallers (or
fragments of them) can arrive near the photosphere (r − RWD �
RWD) of WDs without being fragmented or fully vaporized by sub-
limation in starlight. The crucial property of this region of WD
atmospheres is that, because of the very high gravity g and the mod-
erate temperature T∗, the star has a very small density scaleheight
(equation 6): H ∼ 10–100 m � 10−2RWD. The kinetic energy flux
of the incident atmospheric flow for atmospheric mass density ρa

is ∼ρa(r)mpv3
o/2, which increases exponentially with decreasing r

on distance scale H. The incident radiation flux causing sublimation
Frad ∼ 6 × 1011(TWD/104)4 erg cm−2 s−1 varies very slowly (length-
scale ∼RWD) along the path of the infaller – roughly ∝1/r2, where
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Figure 6. Temperature dependence of destruction regimes in terms of a0(TWD) for (a) rocky and (b) snowy bodies with the fiducial reference values of infaller
parameters ρ,L, S given in Table 3. These show that for solid rock only objects larger than several km undergo fragmentation, with impact after partial
sublimation being the dominant fate in the mm – several km range for the coolest WDs, while for the hottest WDs total sublimation occurs for sizes up to
around 10 m with impact occurring for larger objects up to over 1 km. For weak snowy material, for WDs of well below 30 000 K, objects over a few metres
fragment and only objects below a few cm sublimate fully before fragmenting. However, above 30 000 K, total sublimation dominates for all sizes under about
1 km. Even for the coolest WDs only snowy objects in the few mm to 10 m range manage to impact before sublimating fully or fragmenting.

r ≈ RWD. Thus, as infall proceeds, atmospheric frictional heat-
ing very rapidly exceeds radiative. In order to assess the atmo-
spheric density ρsubtoab

a , where the crossover occurs from radia-
tive sublimation to atmospheric ablation, we first note that only
a small fraction CH of the total incident atmospheric bombard-
ment flux ρa(r)mpv3

o/2 actually reaches the nucleus and ablates it.
The remainder goes into heating the atmosphere through a stand-
off bow shock which decelerates the impacting body and ablates
the nucleus by radiative, conductive and convective heat trans-
fer. For CH = 10−2CH − 2 (see below), the ablating energy flux
is Fab ∼ 10−2CH−2ρa(r)v3

o/2 ∼ 1024ρaCH−2. This equals the ra-
diative sublimation flux Frad quoted above when ρa ∼ ρsubtoab

a ∼
6 × 10−13 g cm−3 × (TWD/104)4 or a proton number density
nsubtoab

a (cm−3) ∼ 3.5 × 1011 cm−3 × (TWD/104)4 [for further de-
tails, please see Brown et al. 2011. Thereafter the impactor is very
rapidly destroyed by ablation and deceleration within a few vertical
scaleheights H as we describe below by analogy with Brown et al.
(2015).

Whether or not the impactor is fully ablated before being fully
decelerated or vice versa depends on the speed vo of the im-
pactor. This speed determines the shock temperature and hence the
heat transfer coefficients, according to the dimensionless parame-
ter X = 2Q/CHv2

0 , where large X cases refer to the deceleration-
dominated regime and small X cases refer to the ablation-dominated
regime. Here, Q � L is an effective latent heat describing the total
energy needed to vaporize (L) and remove 1 g of impactor material
(see Brown et al. 2015). In the case of debris impacting Solar sys-
tem planets, it is usually argued (e.g. Chyba et al. 1993; MacLow &
Zahnle 1994; Zahnle & MacLow 1994) that the heating efficiency
CH ∝ 1/X is so small that X is large and the main energy lost to the
body is not ablative mass-loss but simply shock heating of the atmo-
sphere by deceleration of the body. Brown et al. (2015) have argued
convincingly that, for the very high shock temperatures involved
in the solar case, namely 0.4 MK for v0 = v� = 620 km s−1, the
big increase in thermal conductivity over slow planet impact shocks
means that the heating efficiency is increased (X much reduced)
and ablation dominates over deceleration. For WD stars (vWD ≈

6200 km s−1), the shock temperature ≈40 MK. This conclusion –
that ablation will dominate over deceleration – is even stronger so
below we follow Brown et al. (2015) in assuming ablative destruc-
tion dominates and in the following we use a typical fiducial value
of 10−2 for the uncertain parameter X = 10−2X−2. However, unlike
Brown et al. (2015) we have to distinguish the behaviour of strong
(rocky) bodies from weak (snowy) bodies. Brown et al. (2015) only
discussed the latter, and in the solar context, whereas strong infalling
rocks may behave differently in their response to atmospheric bow-
shock ram pressure, specifically depending on whether or not the
infalling object’s cross-sectional area is enhanced by compressional
pancaking.

The ram pressure of the atmosphere impinging on an infalling
body is Pram = ρv2

0 ∼ 4 × 1017ρa dyne cm−2 for typical WD v0

values. A high enough ρa value can exceed the compressive strength
of the body (which we take to be roughly comparable with the ten-
sile strength S) and result in the body pancaking (Chyba et al. 1993;
MacLow & Zahnle 1994; Zahnle & MacLow 1994) along its path.
For this to happen requires Pram > S or ρPramoverS

a > 2 × 10−14 for
Ssnow and 2 × 10−8 for Srock. Comparing these ρPramoverS

a with those
for ρradtoab, we see (see also Brown et al. 2015) that for weak
(e.g. snowy cometary bodies) Pram starts to drive pancaking before
ablation takes over from sublimation so that pancaking is occur-
ring through the ablation phase and the analytic bolide descrip-
tion (e.g. Chyba et al. 1993; MacLow & Zahnle 1994; Zahnle &
MacLow 1994) applies to the pancaking. On the other hand for
strong rocky bodies impacting on WDs, this is not the case so hard
rocks will not pancake significantly in the WD impact ablation
regime, except perhaps for the very hottest WDs.

An additional factor which can be important in the impact regime
is the angle θ of incidence (to the vertical) of the infalling object. At
distances well outside the star, this angle has little effect on results
and we have ignored it up till now, taking θ as always small (i.e.
vertical infall and periastron distance q = 0). However, for non-zero
q, at distance r, θ is given by μ = cos θ = √

1 − q/r so that for q
near R∗, θ can be a large angle with μ� 1. The reason that small μ is
so important in the impact regime is that the distance over which the
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atmospheric density ρA exponentiates along the impacting object
path is not H but H/μ, reducing vertical penetration by a factor μ.
We therefore include μ as a factor in our impact destruction depth
estimates below.

We also note that, from the observability viewpoint, Brown
et al. (2015) describe the result of comet–sun impacts as cometary
flares because of the very impulsive and local energy deposition
and generation of radiation signatures like impulsive X-ray bursts
and generation of helio-(astero-) seismic ripples (see Winget &
Kepler 2008 for a discussion of WD asteroseismology). For WD
impacts, the impulsivity will be much greater because of the high
impact speed and small-scale height. Specifically the encounter
speed vWD = (2GMWD/RWD)1/2 ∼ 10 × v�, while the atmospheric
density scaleheight H = 2kT /m̄g is smaller by a factor >104 for
MWD ≈ M� and TWD ≈ T�. The other major difference from the
case of sun-plunging comets is that the surface debris arrival (i.e.
escape) speed is around 10 times higher, namely ∼6000 km s−1 for
1 M� and the specific impact energy ∼104 times higher, namely
∼2 × 1019 erg g−1 or 10 MeV per nucleon (capable of producing
emissions up to gamma-ray energies). In terms of total energy, a
1 km infaller at this speed has a kinetic energy of 2 × 1034 erg, or 10–
100 times that of the largest solar flares ever observed. The power
release in impact by an infaller of size a0 is E ∼ a3

0ρv2
0/2 > 1032a3

0

(km) erg in a time-scale of a few times �t ∼ H/v0 < 10−4 s, cor-
responding to an instantaneous power P ∼ E/�t ∼ 1036a3

0 (km)
erg s−1 which is (very briefly) 103 times the bolometric luminosity
πR2

WDσT 4
WD of the very hottest (60 000 K) WD stars.

Therefore, it is important to assess the observability of such
impacts by their transient emissions, the discovery of which would
be as exciting as the discovery of shredded planet debris orbiting
near the 100RWD Roche limit via their transient absorption features
(Vanderburg et al. 2015).

6.2 Destruction depths for strong (rock) and weak (snow) WD
impactors

In the following, we approximate the size of the object arriving in
the lower atmosphere as being a0, i.e. that of the original incident
object. When an impact occurs after small fractional sublimation
(A � a0) and no fragmentation, this is quite adequate but if sub-
limation has significantly reduced a0 to say a = aimpact = a0 − A,
then a0 in the following expressions should be replaced by aimpact.

6.2.1 Expression for WD scaleheight H

For all but the coolest WDs, we can use the fully ionized hydro-
gen expression (6) for the hydrostatic density scaleheight of the
atmosphere which is (see also Section 2.4)

HWD(cm) = 2kTWD

GMWDmp/R
2
WD

= γ 2H�4
TWD

104 K

(
M�
MWD

)5/3

= 6 × 103 TWD

104 K

(
M�
MWD

)5/3

, (53)

where H�4 is the scaleheight for solar surface gravity
(2.7 × 104 cm s−2) combined with T = 104 K. We have used rela-
tionship (1) for RWD(MWD).

Figure 7. The WD atmospheric mass density (g cm−3) ρrock
aAblEnd/μX−2

versus a0 at the terminal impact point of infalling rocks for hot and cold
fiducial values of TWD, each for two values of MWD. Strong rocks do
not undergo the ram-pressure-driven pancaking suffered by weaker bod-
ies like snow. The ρ-axis has been scaled relative to the factor μX−2 from
equation (55).

6.2.2 Strong/rock impactors

In the case of vertical entry of a body with no pancaking, we de-
fine the vertical atmosphere column mass density at which ablative
destruction occurs as �a (g cm−2). We take this to be where the
kinetic energy CH�av

2
o/2 delivered per unit area (with �a = Hρa)

equals the total energy Qρao needed to drive total mass-loss per
unit impactor area M/a2

0 = ρa0. Allowing for non-vertical entry at
angle θ = cos −1μ, it follows that most of the destruction occurs
over a few vertical scaleheights at a vertical depth

�rock
aAblEnd(g cm−2) = μXρao ≈ 3 × 10−2μX−2ao(cm), (54)

where we have used the fiducial value ρ = 3 g cm−3 for
rock. The corresponding hydrogen column number density is
N rock

aAblEnd(cm−2) = �rock
aAblEnd/mp ∼ 2 × 1022μX−2a0(cm).

The continuum optical depth (for Thomson cross-section
σ T ∼ 7 × 10−25 cm2) is τ = Naσ T ∼ 0.01μX−2ao(cm), so the
destruction occurs near the continuum photosphere τ = 1 for verti-
cal impact of metre (100 cm) sized objects.

The corresponding atmospheric mass density ρ=�a/H is

ρrock
aAblEnd(g cm−3) ≈ 5 × 10−6μX−2

TWD/104 K

(
MWD

M�

)5/3

a0(cm), (55)

where we have used the above expression for H as a function
of TWD, MWD. The corresponding hydrogen number density is
naAblEnd = ρaAblEnd/mp. This relation is illustrated in Fig. 7.

6.2.3 Weak/snow impactors

We have argued that for WD stars and low-strength impactors, the
ablation-dominated regime of approximate analytic (ram-pressure-
driven) impactor pancaking radius solution discussed by e.g. Chyba
et al. (1993), MacLow & Zahnle (1994) and Zahnle & MacLow
(1994) applies. However, we note that it depends on the condition
ao � H and so may only be approximate for the largest bodies
and coolest (smallest H) WDs that we consider. According to that
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Figure 8. The WD atmospheric mass density (g cm−3) ρrock
aAblEnd/μX−2

versus a0 at the terminal impact point of infalling snowy bodies for hot
and cold fiducial values of TWD, each for two values of MWD. Snowy (soft)
bodies undergo ram-pressure-driven pancaking. The ρ-axis has been scaled
relative to the factor μ3/2X

1/2
−2 from equation (57).

pancaked solution, (Brown et al. 2015, page 7, their equation 26),
the atmospheric mass column density �a(r) = ∫ ∞

r
ρa dr (g cm−2)

at which ablative mass, momentum and energy loss peak sharply
and destroy the impactor is given by

�snow
aAblEnd =

(
μ3ρ2a3

0X

πH

)1/2

= 3.6 × 10−4(g cm−2)
μ3/2X

1/2
−2

(TWD/104 K)1/2

(
MWD

M�

)5/6

a
3/2
0 (cm)

(56)

and the mass density is

ρsnow
aAblEnd = 6 × 10−8 g

cm3

μ3/2X
1/2
−2

(TWD/104 K)1/2

(
MWD

M�

)5/6

a
3/2
0 (cm),

(57)

where we have again used the above expression for H(TWD, MWD)
(see Fig. 8). The dependences on μ, X, T, ao are all more complex
than in the strong rock case above because of the effects the pancak-
ing has on the weaker material. Estimating the optical depth τ in the
same way as for the rocky body case, we find that even vertically
entering snowy bodies would explode above the photosphere unless
they are larger than ∼1000 cm.

6.3 Effect of fragmentation size limit on maximum impactor
depths

We saw in Section 4.3 that tidal fragmentation sets upper limits
to the sizes (a(1) = B) of rocky and snowy objects which can
exist intact at the photosphere (equations 38 and 39). These in
turn set upper limits to the maximum depths at which explosive
destruction at rocky and snowy bodies can occur. By inserting these
two equations into equations (54) and (56), we obtain the following

tidally limited values, using our fiducial values for rock and snow
parameters

�rock
aAblEndMax(g cm−2) ≈ 4 × 103μX−2

(
MWD

M�

)−1

(58)

and

�snow
aAblEndMax = 2(g cm−2)

μ3/2X
1/2
−2

(TWD/104 K)1/2

(
MWD

M�

)−2/3

. (59)

The corresponding electron scattering optical depths
τ = �σ T/mp ∼ 0.4� are

τ rock
aAblEndMax ≈ 1600μX−2

(
MWD

M�

)−1

(60)

and

τ snow
aAblEndMax = 0.8

μ3/2X
1/2
−2

(TWD/104 K)1/2

(
MWD

M�

)−2/3

. (61)

These equations tell us that (for X = 0.01) the largest rocky bodies
(105 cm) arriving at the star unfragmented explode below the pho-
tosphere (τ = 1) provided their entry angle cosine μ > 10−3 and
that a vertically entering rock needs only be ∼100 cm in size to
do so. On the other hand, even the largest snowy bodies (300 cm)
arriving at the star unfragmented and vertically will explode above
the photosphere at τ ∼ 0.8.

7 D I S C U S S I O N A N D C O N C L U S I O N S

7.1 Discussion

All of the processes we have modelled above deposit the mass of
individual steep fast infallers along their trajectories in the form of :
sublimation products – ions, atoms, molecules and some intermin-
gled small dust particles, too refractory and efficiently cooled to sub-
limate initially; in some cases, tidal fragmentation products (dust,
pebbles, small boulders) with enhanced total mass sublimation rate
because of the increased surface to mass ratio. Any unsublimated
remains of the original object or of its fragments will ultimately
either impact the photosphere or graze close by it. Apart from the
direct stellar impact case, none of the processes we have modelled
directly result in metallic debris deposition on the WD surface (the
tabula rasa), where the metals are seen spectroscopically. Although
the details of metal accretion are beyond the scope of this paper,
here we briefly discuss below some of the issues that require further
work to answer the question of how such final deposition comes
about. We also recall our conclusion (Section 4.3, equations 38–39)
that tidal disruption limits the maximum size of chunks that can
ever arrive near the photosphere, namely of order 1 km for rocky
and 3 m for snowy bodies.

7.1.1 Detectability and temporal signature of individual impactors

We saw in Section 6 that the deposition of the mass and kinetic en-
ergy of impactors is extremely localized (scale of order scaleheight
H) and impulsive (time-scale of order H/vo). This initial impact
would cover a tiny fraction of the stellar disc and so be very hard
to see in absorption, though its very high temperature would likely
yield a briefly detectable flash of XUV emission. Furthermore, the
exploding debris would spread across the stellar disc in seconds and
might then be visible in absorption. We have shown that any indi-
vidual impacting object is limited in size by tidal fragmentation to
about 1 km if rocky and about 3 m if snowy, such objects containing
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masses ∼3 × 1015 g and ∼107 g, respectively, or ∼1039 and ∼1031

nucleons, respectively. Spread over the whole area ∼1019 cm2 of
a WD these correspond to column densities of 1020 and 1012 nu-
cleons cm−2 or 1020/A and 1012/A for species of atomic mass
A. Even for line transitions of moderate absorption cross-section
∼10−17 cm2, the optical depth is large ∼1000/A for the largest
(1 km) rocky bodies and easily detectable in high-resolution spec-
troscopy (Zuckerman et al. 2007; Koester et al. 2014) while even
for the largest (3 m) snowy impactors the optical depth is ∼10−5/A
and potentially within the reach of precision spectrometry while it
lasts. The duration of detectability depends on the type (DA or DB)
of WD star involved and requires further work to assess, but along
lines of argument like the following.

In the case of hydrogen-rich (DA-type) WD atmospheres, which
are primarily radiative, the diffusive time-scale for fresh contami-
nant matter to sink out of sight is only days to weeks (105–6 s) which
would be roughly the detectability duration of a metallicity enhanc-
ing impact. For a single 1 km (3 × 1015 g) rocky impactor, the
mass sinkage rate over that period is ∼109–10 g s−1, roughly similar
to the range estimated by Bergfors et al. (2014) as the steady rate
needed to sustain the observed level of surface contamination. Con-
sequently to sustain the metallicity signature quasi-steadily would
require arrival of 1 km rocks at intervals of days to weeks, or smaller
masses more frequently. If the mean mass supply rate were deliv-
ered as bursts of 1 km objects at longer intervals, the metallicity
time signature would be intermittent rather than quasi-steady.

For helium-rich convective DB-type WD stars, the situation is
quite different and more complex due to their atmospheres being
convective which has major effects: (i) the convective downflow
will remove surface debris and spread it through the convection
zone in hours. Therefore, apart from that very brief transient, the
contamination will not be visible until enough material has arrived
to spread throughout the convection zone; (ii) convective upflow
greatly increases the time (to Myr) for sinkage out of the convection
zone. Thus, the metallicity signature once established would persist
for Myr after a cut-off in debris supply.

7.1.2 Near-miss star-grazing chunks

These are the residual post-sublimation parts of steep infallers, or of
their tidally fragmented pieces, which come close to impact but have
q > RWD, and so orbit the star. We have seen in Section 4.3 that tidal
forces limit the size of such star grazers to around 1 km for rocky
and 3 m for snowy debris. The question of how these can ultimately
end up as photospheric contaminants boils down to how they can
shed their small angular momentum. This could occur by a variety
of processes including mutual collisions, Poynting Robertson drag
(most effective for the smallest pieces), or, most likely, by quite
rapid sublimation. A 1 km object in a 6000 K radiation field like
that at the surface of the sun or of a 6000 K WD would sublimate
totally in a matter of hours. In an elliptical orbit extending from near
the WD surface out to the Roche distance, that time is increased by
roughly the ratio of the orbital period to the time RWD/v0 spent near
the star: a factor of ∼1000, while it is shortened by a factor of 104

for very hot WDs (TWD ∼ 10T�). Thus, the process of eccentric
orbital decay and infall of boulders quickly becomes that of orbital
decay of dust, atoms and ions.

7.1.3 Radiation forces on dust

Residual material from infallers which have fully sublimated above
the photosphere (x > 1) will likely be in the form of molecules,

atoms and ions plus some dust particles, the proportions of each
depending on competing processes such as sputtering, dissociation
and ionization versus accretion, and molecular/atomic recombina-
tion. Such small particles will in general start in different gravita-
tional orbits from their progenitor infalling rocks and ice but also be
subject to forces additional to those discussed in Section 4 such as
radiation pressure, Poynting–Robertson drag and Yarkovsky effects,
which can either aid or inhibit descent of material on to the WD
surface.

(i) Radiation pressure (RP): for a particle of effective radiation
cross-section d2 (cm2) and mass M (g), the ratio of radially outward
radiation pressure to radially inward gravitational force is (neglect-
ing finite disc correction factors near the star)

 = R2
WDσT 4

WD

GMWDc

d2

M
= R2�σT 4

WD

GM�c
γ 2

(
M�
MWD

)5/3
d2

M

= 7 × 10−8

(
M�
MWD

)5/3
d2

M

(
TWD

104 K

)4

, (62)

where we have used the RWD(MWD) relations (equations 1 and 2)
and have assumed that the dust particles are much larger than the
effective wavelength of the starlight viz ∼400 nm/(TWD/104 K).

Whether or not a particle can be prevented by radial radiation
pressure from settling on to the star thus depends on the factor
T 4

WD × d2/m which we discuss here for dust and below for ions and
atoms. For pebbles and dust particles of density ρ (a few g cm−3),
d2/m ∼ 1/ρd (cm2 g−1), so that in this case

 = dust ≈ 2 × 10−8

d(cm)

(
TWD

104 K

)4 (
M�
MWD

)5/3

. (63)

Consequently, even for WD stars that are as hot as 60 000 K, only for
infalling dust particles of residual size after radiative sublimation
d < 10−5 cm (0.1 μm) would radiation pressure defeat gravity and
drive particles outward. For larger particles of the same density, the
radial force of radiation pressure is small compared to the inward
force of gravity. However, larger particles than these are subject to
the additional:

(i) Poynting–Robertson effect (P-R drag, Burns, Lamy &
Soter 1979) of the radiation field, namely the transverse drag it
exerts on the motion of orbiting matter which causes it to fall in-
ward even when the radial radiation pressure force on them is much
less than gravity. Its importance depends on the size of the ob-
ject and is very different for the WD case compared to the solar
(Rafikov 2011a,b; Veras et al. 2015b) because of different tempera-
tures at different distances from the stars. For a detailed discussion
of this effect and others, see Wyatt & Whipple (1950), Burns et al.
(1979), Bonsor & Wyatt (2010), Rafikov (2011b) and Veras, Eggl &
Gänsicke (2015a). However, a rough estimate of the force involved
for transverse orbital speed u is that it is the transverse force of the
radiation field incident at aberrational angle u/c. Then, the trans-
verse equation of motion is

du

dt
= −d2

M

u

c
Prad = u

d2

M

σT 4
WD

c2
(64)

which implies an orbital decay time from distance xRWD of

τu ∼ u

du/dt
∼ M

d2

c2x2

σT 4
WD

∼ 70 yr
ρx2d(cm)

(TWD/104)4
∼ 6 d

ρx2d(microns)

(TWD/104)4
. (65)
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This rough estimate suggests that for pebble-sized infallers, the P-R
drag time-scale is months to millennia, whereas for micron-sized
dust, the time-scale is minutes to months. The proportionalities in
this estimate match previous formulations, whereas the numerical
coefficient is dependent on several factors (see Veras et al. 2015a),
such as reflection efficiency and absorption efficiency. Another fac-
tor is eccentricity of the orbit, which necessitates the solution of
coupled differential equations. Highly eccentric orbits can generate
infall time-scales that differ by several orders of magnitude (see e.g.
fig. 1 of Veras et al. 2015b), basically because (as in the above case
of sublimation) the process (P-R drag) only acts effectively over a
small fraction of the orbit near the star.

P-R drag actually represents the consequences of a special case
of more general radiation forces. As outlined by Vokrouhlický et al.
(2015) for the Solar system and Veras et al. (2015a) for post-main-
sequence exosystems, radiation changes both an object’s spin and
orbit. Spin-inducing changes are known as the YORP effect. This
effect is particularly important if an object is spun up to breakup
speed, an outcome which has been starkly observed in the So-
lar system (Harris 1994; Jacobson et al. 2014). Orbital accelera-
tion due to radiation is a combination of absorption, re-emission
from immediate reflection and re-emission from delayed reflection.
The first two aspects together comprise RP and P-R drag, whereas
the sometimes-neglected third aspect creates the Yarkovsky effect
(Radzievskii 1954; Peterson 1976). Veras et al. (2015a) demon-
strated that the Yarkovsky effect can induce changes that are several
orders of magnitude stronger than the P-R drag, but ‘turns on’ only
for objects larger than pebbles. Consequently, P-R drag probably
remains the most important radiation-based effect for debris within
a few Roche radii of a WD.

7.1.4 Radiation pressure effect on infalling atoms and ions

Except for the coolest WDs, or for cases of very high matter in-
fall rate and density, we would expect the ionizing radiation field
close to the star to overwhelm recombination. Consequently, most
gaseous products of sublimation are likely to be in a fully or highly
ionized state. For an ionized H atom (p,e pair) one can use M ≈
mp = 1.7 × 10−24 g and d2 of order the Thompson cross-section
σ T ∼ 7 × 10−25 cm2, giving  < 7 × 10−5 for any (TWD, MWD).
Consequently, H-ions experience negligible RP force compared to
gravity and should not be blown away by it. For heavier species,
the same will be true unless the ionization is partial and involves a
much larger photo-absorption cross-section d2 (Chayer, Fontaine &
Wesemael 1995; Koester et al. 2014). On the other hand, any in-
falling ion experiences Lorentz and pressure forces of the WD
magnetic field, though these should only re-route the inflow along
field lines rather than preventing it.

In the case of neutral atoms or low-ionization states, the photo
cross-section d2 can be much larger than σ T (e.g. ∼10−15 cm2 for

H Lyman α) which would give  ∼ 35(TWD/104)4
( M�

MWD

)5/3
so

that, for all but the coolest WDs, the infall of any such highly
absorbing atoms would be inhibited by radiation pressure. On the
other hand, however, the fraction of neutrals present decreases as the
temperature increases. The relative importance of radiation pressure
on atoms and ions will thus evolve as WDs age and cool.

7.2 Main conclusions

An outstanding issue in post-main-sequence planetary science is
identification of the dynamical origin of metallic pollutants on WD

stars in the very common case where no slow-infall accretion disc
exists of sufficient mass to be detectable thus far by IR excess
resulting from reprocessed starlight, nor other means. Direct or
very steep infall of pollutants in near parabolic orbits of very small
perihelion and angular momentum may offer one possible solution
since they involve a hard-to-detect fast, and hence tenuous inflow,
especially if it is near isotropic.

We have addressed, in greater depth than hitherto, the issue of
what processes and parameters of the star and of the infallers govern
the nature and radial distribution of deposition of such infalling
debris objects as a function of their incident mass and composition
and of the WD mass and temperature (cooling age). Our analysis is
mainly analytic, producing simple expressions and an algorithm for
easy application to modelling specific WD stars and their metallicity
pollution data. Our results involve the incident size a0 of the infaller
and several of its intrinsic physical properties (density ρ, latent heat
L, tensile strength S) and on the WD mass (MWD) and effective
temperature (TWD). However, for given a0, results are a function of
only two length parameters (A, B), each of which is a simple product
of powers of several of the complete set of physical parameters. A
is a measure of the importance of sublimation and depends most
strongly on TWD (age) while B is a measure of resistance to tidal
fragmentation and is mainly determined by S.

Our analysis applies inside the classical Roche limit, where the
stellar tidal gradient force exceeds the self-gravity of infalling ob-
jects. This force disrupts objects/structures of zero intrinsic ten-
sile strength, such as sand or rubble piles, or objects of signifi-
cant local strength that are permeated by surfaces of low or zero
strength (cracks), as in the icy rubble-pile dusty-snowball models
of cometary nuclei. For the typical densities of comets, asteroids
and fragments thereof, the typical Roche limit is around a solar
radius, or roughly 100 times a typical WD radius. Inside that all
objects are tidally disrupted along all of their planes of weakness
into smaller pieces, whose tensile strength is more important than
self-gravity. These pieces continue their infall intact – undergoing
mass-loss by sublimation – until they are completely vaporized, or
impact or graze the star, or reach the point where tidal forces defeat
their intrinsic strength and they fragment further.

Our equations can be applied to obtain results for a very wide
range of infaller sizes and of WD and infaller parameters. Here,
we have mainly shown results for four distinct regimes: cool/hot
WDs, weak and volatile (snowy/comet-like) infallers and strong
and refractory (rocky/asteroid-like) infallers. We have also restricted
the infaller incident size range considered to be ∼cm–km. Objects
originally much below cm size are totally sublimated very far out,
whereas objects much above a km are scarcer and tidally fragmented
further out.

Our main findings are as follows.

(i) Total sublimation above the photosphere befalls all small in-
fallers across the whole WD temperature TWD range, the upper
threshold size rising with TWD and 100× larger for rock than snow.

(ii) All very large objects fragment tidally regardless of TWD, the
threshold for rock being a0 � 105 cm and for snow in the range a0

� 103 − 3 × 104 cm over the full range of TWD.
(iii) No body can ever arrive at the surface of a WD with a residual

size (after sublimation) larger than about 1 km for rocky material
or about 3 m for snowy material since it will be tidally disrupted
there.

(iv) A considerable range of a0 avoids fragmentation and total
sublimation, and impacts or grazes cold WDs, although the range
narrows rapidly with increasing TWD, especially for snowy bodies.
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Important future work would involve linking the results presented
here with individual WDs exhibiting signatures of metal pollution in
their atmospheres, and implementing a detailed deposition model
resulting from debris infall. As detailed in Section 7.1, residual
dust is subject to sputtering, dissociation and ionization, whereas
larger fragments might be influenced by Poynting–Robertson drag,
the YORP effect and the Yarkovsky effect. The effort to better
understand these effects may then be traced back to the architectures
and compositions of WD planetary systems which create such infall,
and lead to a better understanding of planetary system evolution
across all life stages.
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Payne M. J., Veras D., Gänsicke B. T., Holman M. J., 2017, MNRAS, 464,

2557
Peterson C., 1976, Icarus, 29, 91
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Veras D., Gänsicke B. T., 2015, MNRAS, 447, 1049
Veras D., Mustill A. J., Bonsor A., Wyatt M. C., 2013, MNRAS, 431,

1686
Veras D., Leinhardt Z. M., Bonsor A., Gänsicke B. T., 2014a, MNRAS, 445,
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Veras D., Mustill A. J., Gänsicke B. T., Redfield S., Georgakarakos N.,
Bowler A. B., Lloyd M. J. S., 2016, MNRAS, 458, 3942

Veras D., Carter P. J., Leinhardt Z. M., Gaensicke B. T., 2017a, MNRAS,
465, 1008

Veras D., Mustill A. J., Gaensicke B. T., 2017b, MNRAS, 465, 1499
Veras D., Georgakarakos N., Dobbs-Dixon I., Gaensicke B. T., 2017c,

MNRAS, 465, 2053
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