
There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/159155/

Deposited on: 27 March 2018
Congruence subgroups of braid groups
Charalampos Stylianakis

Abstract
In this paper we give a description of the generators of the prime level congruence sub-
groups of braid groups. Also, we give a new presentation of the symplectic group over a finite
field, and we calculate symmetric quotients of the prime level congruence subgroups of braid
groups. Finally, we find a finite generating set for the level-3 congruence subgroup of the
braid group on 3 strands.

1 Introduction
Let B_n be the braid group on n strands. By evaluating the (unreduced) Burau representation

$$B_n \rightarrow \text{GL}_{n-1} \left(\mathbb{Z}[t^\pm 1] \right)$$

at $t = -1$ we obtain a symplectic representation

$$\rho : B_n \rightarrow \begin{cases} \text{Sp}_{n-1}(\mathbb{Z}) & \text{if } n \text{ is odd}, \\ (\text{Sp}_n(\mathbb{Z}))_u & \text{if } n \text{ is even}, \end{cases}$$

where $(\text{Sp}_n(\mathbb{Z}))_u$ is the subgroup of $\text{Sp}_n(\mathbb{Z})$ fixing one vector $u \in \mathbb{Z}^n$ [17, Proposition 2.1] (see also [9] and [1]).

For a positive integer m, the projection $\mathbb{Z} \rightarrow \mathbb{Z}/m$ induces a representation as follows:

$$\rho_m : B_n \rightarrow \begin{cases} \text{Sp}_{n-1}(\mathbb{Z}/m) & \text{if } n \text{ is odd}, \\ (\text{Sp}_n(\mathbb{Z}/m))_u & \text{if } n \text{ is even}. \end{cases}$$

Note that if $m = 1$, then $\rho_1 = \rho$. For $i > 1$ the kernel of ρ_m is denoted by $B_n[m]$ and it is called the level-m congruence subgroup of B_n. The kernel of ρ is called the braid Torelli group, and it is denoted by $\mathcal{B}L_n$. The group $\mathcal{B}L_n$ has been extensively studied by Hain [18], Brendle-Margalit [10, 12], and Brendle-Margalit-Putman [11].

For p prime, A’Campo proved that the homomorphism ρ_p is surjective, by explicitly calculating the image of ρ_p [11 Theorem 1 (1)]. Wanjryb gave a presentation of $\text{Sp}_{n-1}(\mathbb{Z}/p)$ and $(\text{Sp}_n(\mathbb{Z}/p))_u$ as quotients of B_n [27 Theorem 1]. Let PB_n be the pure braid group, that is, the kernel of the epimorphism $B_n \rightarrow S_n$, where S_n is the symmetric group on n letters. Our first result is an analogue of Wanjryb’s theorem.

Theorem A For p prime, the groups $\text{Sp}_{n-1}(\mathbb{Z}/p)$ and $(\text{Sp}_n(\mathbb{Z}/p))_u$ admit a presentation as quotients of the pure braid group PB_n.

This result is given as Theorem 5.3 in the paper.

A result of Arnol’d shows that $B_n[2] = PB_n$, where PB_n is the pure braid group [2]. Therefore, for every k even, we have that $B_n[k] \leq PB_n$. Our second result extends A’Campo’s theorem.

Theorem B For $m = 2p_1 \cdots p_k$, where $p_i \geq 3$ are primes, we have that $PB_n/B_n[m]$ is isomorphic to $\bigoplus_{i=1}^{k} \text{Sp}_{n-1}(\mathbb{Z}/p_i)$ if n is odd, and $\bigoplus_{i=1}^{k} (\text{Sp}_n(\mathbb{Z}/p_i))_u$ if n is even.

Theorem B is Theorem 5.1 (see also Theorem 5.2) in the paper.
We also characterize quotient groups of congruence subgroups of braid groups. The braid group B_n surjects onto the symmetric group S_n. The kernel of this map is well known to be the pure braid group PB_n. Also, by a result established by Arnol’d [2] the group PB_n is isomorphic to $B_n[2]$. See also [9] Section 2 for further discussion. Therefore, we have $B_n/B_n[2] \cong S_n$. We generalize this result as stated in the following theorem.

Theorem C. For p prime number, the group $B_n[p]/B_n[2p]$ is isomorphic to S_n.

Theorem C is Theorem 6.1 in the paper.

Topological description of congruence subgroups. A key part of the paper is a topological interpretation of $B_n[p]$, for $p \geq 3$ prime, given in Section 4. The content of Section 4 was inspired by Powell, who based on Birman’s work on the presentation of the symplectic group S Theorem 1], to show that the Torelli subgroup of the mapping class group is normally generated by bounding pair maps, and Dehn twists about separating simple closed curves [23 Theorem 2]

Theorems A and B are used to find normal generators for $B_n[m]$, where $m = 2p_1...p_k$ and p_i is an odd prime. Motivated by Section 4 it would be interesting to find a topological description of the generators of $B_n[m]$ in the future.

Related results. The mapping class group $Mod(\Sigma)$ of an orientable surface Σ is the group of isotopy classes of homeomorphisms that preserve the orientation of Σ, fix the boundary pointwise, and preserve the set of marked points setwise. We denote by T_c a Dehn twist about a simple closed curve c. Let Σ^b_g be a surface of genus $g \geq 1$ with b boundary components, where $b \in \{1, 2\}$. It is a special case of theorem of Birman-Hilden [7] that B_{2g+b} embeds into $Mod(\Sigma^b_g)$ [15 Section 9.4]. We denote the image of this embedding by $SMod(\Sigma^b_g)$. As mentioned in the previous page, the braid Torelli $B_\mathcal{I}_{2g+b}$ is the kernel of the symplectic representation of B_{2g+b}. Hain conjectured that $B_\mathcal{I}_{2g+b}$ is isomorphic to the group generated by Dehn twists about separating simple closed curves inside $SMod(\Sigma^b_g)$ [15]. This conjecture was proved by Brendle-Margalit-Putnam [11 Theorem A], and also studied by Brendle-Margalit [10, 12]. By the definitions given in the beginning of the paper, the group $B_\mathcal{I}_{2g+b}$ is a subgroup of $B_{2g+b}[m]$, for any $m \in \mathbb{N}$.

For $m \geq 2$, consider $B_{2g+b}[m]$ as a subgroup of $SMod(\Sigma^b_g) \cong B_{2g+b}$. A consequence of a work of Arnol’d shows that $B_{2g+b}[2]$ is isomorphic to the pure braid group PB_{2g+b} [2] (see [9] Section 2 for explanation of this isomorphism). Combining the latter result with the work of Humphries [19] Theorem 1] we obtain that $B_{2g+b}[2]$ is isomorphic to the normal closure of a square of a Dehn twist about nonseparating simple closed curve in $SMod(\Sigma^b_g)$. Brendle-Margalit extended the latter result by proving that the normal closure of the 4^{th} power of a Dehn twist about a nonseparating simple closed curve in $SMod(\Sigma^b_g)$ is isomorphic to $B_{2g+b}[4]$ [9 Main Theorem].

Let $\mathcal{I}_{2g+b}(m)$ be the normal closure of the m^{th} power of a Dehn twist in $SMod(\Sigma^b_g)$, where $g \geq 1$ and $b = 1, 2$. Coxeter proved that $\mathcal{I}_{2g+b}(m)$ is a finite index subgroup of $SMod(\Sigma^b_g) = B_{2g+b}$ if and only if $(2g + b - 2)(m - 2) < 4$ [13 Section 10]. As mentioned above, $\mathcal{I}_{2g+b}(2) = B_{2g+b}[2]$. Furthermore, Humphries gave a complete description of when a group generated by $\{\mathcal{I}_{2g+b}(m_i) \mid m_i \in \mathbb{N}\}$, for finite number of m_i, is of finite index in PB_{2g+b} [20 Theorem 1]. In addition, Funar-Kohno proved that the intersection of all $\mathcal{I}_{2g+b}(2m)$, where $m \in \mathbb{N}$, is trivial [16 Theorem 1.1].

Finally, we note a more general definition of congruence subgroups of braid groups. Let F_n be the free group of rank n. There is an inclusion $B_n \hookrightarrow Aut(F_n)$ [5 Theorem 1.9]. Consider a characteristic subgroup H of finite index in F_n. The kernel of $Aut(F_n) \rightarrow Aut(F_n/H)$ is called principal congruence subgroup, and any finite index subgroup of $Aut(F_n)$ containing a principal congruence subgroup is called congruence subgroup. A group G is said to have the congruence subgroup property if every finite index subgroup of G contains a principal congruence subgroup. Asada proved that B_n satisfies the congruence subgroup property by using the notions of field extensions and profinite groups [3 Theorem 3A, Theorem 5]. In contrast with Asada’s techniques, Thurston gave a more elementary proof to the congruence subgroup property of B_n [22].
Outline of the paper. In Section 2 we give basic background on braid groups, hyperelliptic mapping class groups, the symplectic representation of braid groups, and the congruence subgroups of braid groups. In Section 3 we recall some key results about the congruence subgroups of symplectic groups. In Section 4 we give a topological interpretation of the generators of the prime level congruence subgroups of braid groups. In Section 5 we prove Theorems A and B. In Section 6 we prove Theorem C.

Acknowledgments. I would like to thank my PhD supervisor Tara Brendle for her support during my work on this paper.

2 Preliminaries
In this section we recall the definition of braid groups, hyperelliptic mapping class groups, and the symplectic representation of braid groups.

2.1 Definitions of braid groups

Braid groups. For detailed description of the following definition, see Birman-Brendle’s survey \cite{6}. Let $\Sigma_{b,g,n}$ denote an orientable surface of genus g with n punctures and b boundary components. If $n = 0$ we will simply write $\Sigma_{b,g}$. If $g = 0$ and $b = 1$ then $\Sigma_{0,1}^1$ is homeomorphic to a punctured disc. We enumerate the punctures from left to right. The braid group B_n on n strands is defined to be the mapping class group Mod($\Sigma_{1,0}^1$, n) of $\Sigma_{1,0}^1$. For $1 \leq i \leq n-1$ we denote by σ_i the mapping classes that interchanges the punctures $i, i+1$ as depicted in Figure 1 for $i = 3$. The mapping classes σ_i are called half-twists. It turns out that σ_i generate the braid group B_n. In fact we have the following presentation

$$\langle \sigma_1, ..., \sigma_{n-1} | \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \sigma_i \sigma_j = \sigma_j \sigma_i \text{ when } |i-j| > 1 \rangle.$$

![Figure 1: The action of σ_3 on a punctured disc.](image)

Consider the symmetric group S_n, and for $1 \leq i < j \leq n-1$ let s_i denote the transpositions $(i, i+1)$. The map $B_n \to S_n$ defined by $\sigma_i \mapsto s_i$ is a well defined homomorphism with kernel the pure braid group PB_n. Let $1 \leq i < j \leq n-1$, we denote by $a_{i,j}$ the element $\sigma_j^{-1} \sigma_i^2 ... \sigma_{i-1}$. For $1 \leq i < j \leq n-1$ the group PB_n admits a presentation with generators $a_{i,j}$ and relations

P1. $a_{r,s}^{-1} a_{i,j} a_{r,s} = a_{i,j}$, $1 \leq r < s < i < j \leq n$ or $1 \leq i < r < s < j \leq n$,
P2. $a_{r,s}^{-1} a_{i,j} a_{r,s} = a_{r,j} a_{i,j} a_{r,j}^{-1}$, $1 \leq r < s = i < j \leq n$,
P3. $a_{r,s}^{-1} a_{i,j} a_{r,s} = (a_{r,j} a_{s,j} a_{r,j}) a_{i,j} (a_{r,j} a_{s,j} a_{r,j})^{-1}$, $1 \leq r = i < s < j \leq n$,
P4. $a_{r,s}^{-1} a_{i,j} a_{r,s} = (a_{r,j} a_{s,j} a_{r,j}^{-1} a_{s,j}^{-1}) a_{i,j} (a_{r,j} a_{s,j} a_{r,j}^{-1} a_{s,j}^{-1})^{-1}$, $1 \leq r < i < s < j \leq n$.

For more details about definitions and presentations of B_n and PB_n see \cite{6} Chapter 1.
Hyperelliptic mapping class groups. Let c be a nonseparating simple closed curve on a surface $\Sigma_{b,g,n}$. We denote by T_c the Dehn twist about the curve c. Dehn twists about nonseparating simple closed curves generate $\text{Mod}(\Sigma_{b,g,n})$. Consider a hyperelliptic involution ι as depicted in Figure 2. For $b = 1, 2$, ι acts on $\Sigma_{b,g,n}$. Since ι does not fix the boundary components of $\Sigma_{b,g,n}$ pointwise, then $\iota \not\in \text{Mod}(\Sigma_{b,g,n})$. We have a two fold branched cover $\Sigma_{b,g,n} \to \Sigma_{b,g,n}/\iota$. Topologically $\Sigma_{b,g,n}/\iota$ is homeomorphic to $\Sigma_{1,0,2g+b}$ (see Figure 2). We note that if q_1, q_2 denote the boundary components of Σ_{2g}, then $\iota(q_1) = q_2$.

Consider the curves c_i depicted in Figure 3, and let σ_i be the generators of B_{2g+b}. We define a map $\xi : B_{2g+b} \to \text{Mod}(\Sigma_{b,g,n})$ by $\xi(\sigma_i) = T_{c_i}$. Since the braid, and the disjointness relations are satisfied by σ_i and T_{c_i}, then ξ is a homomorphism. The image of ξ is called hyperelliptic mapping class group, and it is denoted by $\text{SMod}(\Sigma_{b,g,n})$. In fact we have $B_{2g+b} \cong \text{SMod}(\Sigma_{b,g,n})$ [15, Theorem 9.2] (see also [24]).

2.2 Symplectic representation

In this section we will construct a representation for the braid group B_n. Firstly, we recall the definition of $\text{Sp}_{2n}(\mathbb{Z})$. Let J be the $2n \times 2n$ matrix

$$
\begin{pmatrix}
0 & I_n \\
-I_n & 0
\end{pmatrix}
$$

The symplectic group with integer coefficients is defined to be

$$
\text{Sp}_{2n}(\mathbb{Z}) = \{ A \in \text{GL}(2n, \mathbb{Z}) \mid A^T J A = J \}.
$$

We also define the symplectic group with coefficients in \mathbb{Z}/m to be

$$
\text{Sp}_{2n}(\mathbb{Z}/m) = \{ A \in \text{GL}(2n, \mathbb{Z}) \mid A^T J A \equiv J \text{ mod}(m) \}.
$$
where \(m \in \mathbb{N} \). For a fixed \(u \in \mathbb{Z}^{2n} \), we also recall
\[
(\text{Sp}_{2n}(\mathbb{Z}))_u = \{ t \in \text{Sp}_{2n}(\mathbb{Z}) \mid t(u) = u \}.
\]

Consider \(g \geq 1 \) and \(b = 1, 2 \). Since \(B_{2g+b} \cong \text{SMod}(\Sigma^b_g) \), we will use the action of \(\text{SMod}(\Sigma^b_g) \) on the first homology of \(\Sigma^b_g \) to construct a representation for \(B_{2g+b} \).

\[
\begin{align*}
\text{y}_1 & \quad \text{x}_1 \\
\text{y}_2 & \quad \text{x}_2 \\
\text{y}_3 & \quad \text{x}_3 \\
\text{y}_4 & \quad \text{x}_4
\end{align*}
\]

Figure 4: Standard generators for \(H_1(\Sigma^1_g) \), and \(H_1^P(\Sigma^2_g, \mathbb{Z}) \).

Construction of the representation. We denote by \(\iota_a \) the algebraic intersection number between curves of \(\Sigma^b_g \) for \(g \geq 1 \) and \(b = 1, 2 \). The form \(\iota_a \) is an alternating bilinear and nondegenerate. Every element of the mapping class group preserves \(\iota \). The oriented curves \(x_i, y_i \) of Figure 4 form a symplectic basis for \(H_1(\Sigma^g_g; \mathbb{Z}) \). The action of \(\text{SMod}(\Sigma^b_g) \) on \(H_1(\Sigma^g_g; \mathbb{Z}) \) induces the following representation:
\[
\text{SMod}(\Sigma^1_g) \to \text{Sp}_{2g}(\mathbb{Z}).
\]

If \(b = 2 \), the module \(H_1(\Sigma^2_g; \mathbb{Z}) \) is not symplectic. Thus, we will consider a different module. Fix a point on each of the boundaries of \(\Sigma^2_g \), and denote by \(P \) the set that contains those two points. Denote also by \(P \) the set that contains the two boundary components. We set \(H_1^P(\Sigma^2_g; \mathbb{Z}) \cong H_1(\Sigma^2_g, Q; \mathbb{Z})/(P) \). The module \(H_1^P(\Sigma^2_g; \mathbb{Z}) \) is symplectic [9, Section 2.1] (see also [26]). The basis of \(H_1^P(\Sigma^2_g; \mathbb{Z}) \) is \(x_i, y_i \) as indicated on the right hand side of Figure 4. The action of \(\text{SMod}(\Sigma^b_g) \) on \(H_1^P(\Sigma^2_g; \mathbb{Z}) \) induces the following representation:
\[
\text{SMod}(\Sigma^2_g) \to (\text{Sp}_{2g+2}(\mathbb{Z}))_{y_{g+1}},
\]
where \((\text{Sp}_{2g+2}(\mathbb{Z}))_{y_{g+1}} \) stands for the subgroup of \(\text{Sp}_{2g+2}(\mathbb{Z}) \) that fixes the vector \(y_{g+1} \).

Since the map \(\xi : B_{2g+b} \to \text{SMod}(\Sigma^b_g) \) is an isomorphism, we have a well defined representation
\[
\rho : B_{2g+b} \to \begin{cases}
\text{Sp}_{2g}(\mathbb{Z}) & \text{if } b = 1 \\
(\text{Sp}_{2g+2}(\mathbb{Z}))_{y_{g+1}} & \text{if } b = 2.
\end{cases}
\]

Image of the representation. We denote also by \([c]\) the homology class of a curve \(c \) in \(\Sigma^b_g \).

For \(x, c \) nonseparating simple closed curves in \(\Sigma^b_g \), the automorphism \(T_{[c]}([x]) = [x] + \iota_a(x, c)[c] \) is called a transvection [15, Section 6.6.3]. We remark that for every integer \(m \), we have \(T_{[c]}^m([x]) = [x] + m\iota_a(x, c)[c] \).

Let \(T_{c_i} \) be a Dehn twist about a curve \(c_i \) indicated in Figure 3. The image of \(T_{c_i} \) under the symplectic representation is the transvection \(T_{[c_i]} \). Also, since \(\xi(\sigma_i) = T_{c_i} \) as explained in the previous section, we have \(\rho(\sigma_i) = T_{[c_i]} \). We note also that \(\rho(\sigma_i^m) = T_{[c_i]}^m \).

Kernel of the symplectic representation. Assume that \(b = 1, 2, g \geq 0 \), and recall that \(B_{2g+b} = \text{Mod}(D_{2g+b}) \). The kernel of the symplectic representation \(\rho \) is denoted by \(\text{BL}_{2g+b} \), and it is called the *braid Torelli*. It is a result by Brendle-Margalit-Putman that \(\text{BL}_{2g+b} \) is generated by Dehn twists about simple closed curves surrounding 3 or 5 number of puncture points [14, Theorem C].

Consider the isomorphism \(\xi : B_{2g+b} \to \text{SMod}(\Sigma^b_g) \). The image of \(\text{BL}_{2g+b} \) in \(\text{SMod}(\Sigma^b_g) \) under \(\xi \) is denoted by \(\text{ST}(\Sigma^b_g) \). The latter group is well known as the hyperelliptic Torelli group. Furthermore, \(\text{ST}(\Sigma^b_g) \) is generated by Dehn twists about symmetric separating simple closed curves that bound a subsurface of genus 1 or 2 [11, Theorem A].
2.3 Congruence subgroups of braid groups

Let \(m \) be a positive integer. The surjective homomorphisms \(H_1(\Sigma_g^1; \mathbb{Z}) \to H_1(\Sigma_g^1; \mathbb{Z}/m) \) and \(H_1^p(\Sigma_g^2; \mathbb{Z}) \to H_1^p(\Sigma_g^2; \mathbb{Z}/m) \) induce the following epimorphisms:

\[
\left\{ \begin{array}{l}
\text{Sp}_{2g}(\mathbb{Z}) \to \text{Sp}_{2g}(\mathbb{Z}/m) \\
(\text{Sp}_{2g+2}(\mathbb{Z}))_{y_{g+1}} \to (\text{Sp}_{2g+2}(\mathbb{Z}/m))_{y_{g+1}}.
\end{array} \right.
\]

Thus we have a family of representations for the braid groups

\[
\rho_m : B_{2g+b} \to \left\{ \begin{array}{ll}
\text{Sp}_{2g}(\mathbb{Z}/m) & \text{if } b = 1 \\
(\text{Sp}_{2g+2}(\mathbb{Z}/m))_{y_{g+1}} & \text{if } b = 2,
\end{array} \right.
\]

where \(g \geq 1 \). The kernels of the representations \(\rho_m \) are denoted by \(B_{2g+b}[m] \) and they are known as level-\(m \) congruence subgroups of braid groups.

3 Congruence subgroups of Symplectic groups

In this section we examine the structure of the congruence subgroups of symplectic groups.

Congruence subgroups and generators. The projection \(\mathbb{Z} \to \mathbb{Z}/m \) induces a surjective homomorphism \(\text{Sp}_{2n}(\mathbb{Z}) \to \text{Sp}_{2n}(\mathbb{Z}/m) \), whose kernel is the principal level \(m \) congruence subgroup of \(\text{Sp}_{2n}(\mathbb{Z}) \) denoted by \(\text{Sp}_{2n}(\mathbb{Z})[m] \). The group \(\text{Sp}_{2n}(\mathbb{Z})[m] \) consists of all matrices of the form \(I_{2n} + mA \); where \(A \in \text{Sp}_{2n}(\mathbb{Z}) \). Furthermore, if \(m \) is a multiple of \(l \) then \(\text{Sp}_{2n}(\mathbb{Z})[m] \triangleleft \text{Sp}_{2n}(\mathbb{Z})[l] \).

Next we give generators for \(\text{Sp}_{2n}(\mathbb{Z})[p] \) when \(p \) is any prime number. Let \(r \in \mathbb{Z} \). We define \(e_{i,j}(r) \) to be the \(n \times n \) matrix with \((i,j)\)th entry equal to \(r \) and 0 otherwise. Let \(\beta_i(r) \) be the \(n \times n \) matrix with \((i,i)\)th and \((i,i+1)\)th entries equal to \(r \), \((i+1,i+1)\)th and \((i+1,i)\)th entries equal to \(-r \) and 0 otherwise. Define also \(s_{e_{i,j}}(r) \) to be the \(n \times n \) matrix with \((i,j)\)th and \((j,i)\)th entries equal to \(r \) and 0 otherwise. For \(1 \leq i \leq j \leq n \) we define:

\[
\mathcal{X}_{i,j}(r) = I_{2n} + \begin{pmatrix} 0 & 0 \\ s_{e_{i,j}}(r) & 0 \end{pmatrix}, \quad \mathcal{Y}_{i,j}(r) = I_{2n} + \begin{pmatrix} 0 & s_{e_{i,j}}(r) \\ 0 & 0 \end{pmatrix}.
\]

For \(1 \leq i, j \leq n \) with \(i \neq j \) we define:

\[
\mathcal{Z}_{i,j}(r) = I_{2n} + \begin{pmatrix} e_{i,j}(r) & 0 \\ 0 & -e_{i,j}(r) \end{pmatrix}.
\]

For \(1 \leq i < n \)

\[
\mathcal{W}_i(r) = I_{2n} + \begin{pmatrix} \beta_i(r) & 0 \\ 0 & -\beta_i(r) \end{pmatrix}.
\]

Finally,

\[
\mathcal{U}_i(r) = I_{2n} + \begin{pmatrix} e_{1,i}(r) & e_{1,i}(r) \\ -e_{1,i}(r) & -e_{1,i}(r) \end{pmatrix}.
\]

The following theorem gives a nice description of \(\text{Sp}_{2n}(\mathbb{Z})[p] \) as a group generated by the matrices above [13, Lemma 5.4].

Theorem 3.1. (Church-Putman). For \(n \geq 2 \) and for a prime number \(p \geq 2 \) the congruence subgroup \(\text{Sp}_{2n}(\mathbb{Z})[p] \) is generated by the set

\[
\mathcal{S} = \{ \mathcal{X}_{i,j}(p), \mathcal{Y}_{i,j}(p), \mathcal{Z}_{i,j}(p), \mathcal{W}_i(p), \mathcal{U}_i(p) \}
\]

where \(i, j \) are indices defined as above.
Lemma 3.2. Let \(a \) and \(b \) two distinct prime numbers. Then the following sequence is exact.

\[
1 \to \Sp_{2n}(\mathbb{Z})[ab] \to \Sp_{2n}(\mathbb{Z})[a] \to \Sp_{2n}(\mathbb{Z}/b) \to 1.
\]

Proof. The map \(\Sp_{2n}(\mathbb{Z})[a] \to \Sp_{2n}(\mathbb{Z}/b) \) sends every matrix \(A \in \Sp_{2n}(\mathbb{Z})[a] \) into its \(\text{mod}(b) \) reduction. First, we prove the surjectivity of the latter map. The generators of \(\Sp_{2n}(\mathbb{Z}/b) \) are \(X_{i,j}(1) \mod(b) \) and \(Y_{i,j}(1) \mod(b) \) where \(1 \leq i < j \leq n \). Define \(n \) to be the solution of the equation \(an \equiv 1 \mod(b) \). Then, \(X_{i,j}(a)^n \equiv X_{i,j}(1) \mod(b) \) and \(Y_{i,j}(a)^n \equiv Y_{i,j}(1) \mod(b) \). This proves the surjectivity of the reduction map. The kernel of this reduction map contains matrices which satisfy \(I_{2n} + aA \equiv I_{2n} \mod(b) \). But since \(a \) and \(b \) are relatively primes, the latter equivalence holds if and only if \(A = bB \) when \(B \) is a symplectic matrix. \(\square \)

The following proposition gives a useful decomposition of \(\Sp_{2n}(\mathbb{Z}/m) \) \([23, \text{Theorem 5}]\).

Proposition 3.3 (Newman-Smart). Let \(m \in \mathbb{N} \) and write \(m = p_1^k_1 p_2^k_2 \cdots p_l^k_l \), where \(p_i^k_i \) are powers of prime numbers. Then

\[
\Sp_{2n}(\mathbb{Z}/m) = \bigoplus_{i=1}^{l} \Sp_{2n}(\mathbb{Z}/p_i^{k_i}).
\]

Newman-Smart also proved that the abelian group \(\mathfrak{sp}_{2n}(\mathbb{Z}/l) \) can be expressed as a quotient of congruence subgroups of \(\Sp_{2n}(\mathbb{Z}) \), \([23, \text{Theorem 7}]\).

Proposition 3.4 (Newman-Smart). Let \(l, m \geq 2 \) such that \(l \) divides \(m \). Then we have the following isomorphism.

\[
\Sp_{2n}(\mathbb{Z})[m]/\Sp_{2n}(\mathbb{Z})[ml] \cong \mathfrak{sp}_{2n}(\mathbb{Z}/l).
\]

Lemma 3.2 and Propositions 3.3 and 3.4 play crucial role in Section 5, in which we explore the structure of congruence subgroups of braid groups.

4 Topological interpretation of prime level congruence subgroups

The purpose of this section is the characterization of the group \(B_{2g+b}[p] \) when \(p \) is prime. Since \(B_{2g+b} \cong \text{SMod}(\Sigma_g^b) \), it is convenient to study the kernel of the map

\[
\text{SMod}(\Sigma_g^b) \to \begin{cases}
\Sp_{2g}(\mathbb{Z}/p) & \text{if } b = 1, \\
(\Sp_{2g+2}(\mathbb{Z}/p))/_{y_{g+1}} & \text{if } b = 2
\end{cases}
\]

and we denote the map again by \(\rho_p \). Also, we denote the kernel of \(\rho_p \) by \(B_{2g+b}[p] \).

A’Campo proved that the homomorphism \(\rho_p \) is surjective \([1, \text{Theorem 1 (1)}]\). Later Assion gave a presentation for \(\Sp_{2g}(\mathbb{Z}/3) \) and \((\Sp_{2g+2}(\mathbb{Z}/3))/y_{g+1} \) as quotients of braid groups \([4]\). Wajnryb improved the result of Assion and generalized it for any prime number greater than 2 \([27, \text{Theorem 1}]\). We begin with the theorem of Wajnryb.

Theorem 4.1 (Wajnryb). Consider the curves \(c_i \) depicted in Figure 3. Let \(G_{2g+b} \) be a group with generators \(T_{c_1}, \ldots, T_{c_{2g+b-1}} \) and relations R1 to R6 as follows.

\[
R1. \ T_{c_i}T_{c_{i+1}}T_{c_i} = T_{c_{i+1}}T_{c_i}T_{c_{i+1}};
\]

\[
R2. \ [T_{c_i}, T_{c_j}] = 1, \quad \text{for } |i - j| > 1;
\]

7
R3. $T_{c_1}^p = 1$;

R4. $(T_{c_1} T_{c_2})^6 = 1$, for $p > 3$;

R5. $T_{c_1}^{(p-1)/2} T_{c_1}^{(p-1)/2} = T_{c_2}^2 T_{c_1} T_{c_2}^{-2}$, for $p > 3$; and

R6. $(T_{c_1} T_{c_2} T_{c_3})^4 = A T_{c_1}^2$, for $n > 4$, where $A = T_{c_4} T_{c_5} T_{c_4} T_{c_2}^{(p-1)/2} T_{c_3}^{-1} T_{c_2}$.

Then G_{2g+1} is isomorphic to $Sp_{2g}(\mathbb{Z}/p)$, and G_{2g+2} is isomorphic to $(Sp_{2g+2}(\mathbb{Z}/p))_{y_{g+1}}$.

As a consequence of Theorem 4.1, we obtain elements of $\text{SMod}(\Sigma_g^b)$ which normally generate $B_{2g+b}[p]$.

In the rest of the section we examine the elements of the relations of Theorem 4.1 in order to give a topological description for the generators of $B_n[p]$. We note that relations R1 and R2 are the defining relations in the presentation of the braid group.

We denote by $[c_i]$ the homology class of c_i, and by $T_{[c_i]}$ the transvection associated to the Dehn twist T_{c_i} under the map

$$\text{SMod}(\Sigma_g^b) \to \begin{cases} Sp_{2g}(\mathbb{Z}/p) & \text{if } b = 1, \\ (Sp_{2g+2}(\mathbb{Z}/p))_{y_{g+1}} & \text{if } b = 2. \end{cases}$$

By definition, the action of a transvection $T_{c_i}^n$ on an element $u \in H_1(\Sigma_g^b, \mathbb{Z})$ (respectively $H_1^P(\Sigma_g^b, \mathbb{Z})$) is defined to be $T_{[c_i]}^n(u) = [u] + mi(u, [c])[c]$, where i stands for the algebraic intersection number.

R3: Powers of Dehn twists. The p^h powers of Dehn twists about symmetric nonseparating simple closed curves are easy to check by looking at their image in the symplectic group. The symplectic representation sends $T_{c_i}^p$ into the following matrix:

$$\begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix} \oplus I,$$

where I stands for the identity matrix of dimension depending on g and b (see Section 7.1.3). The mod(p) reduction of the matrix above is the identity. Moreover, every Dehn twist about a non-separating curve is conjugate to T_{c_i}. As a consequence, every Dehn twist in $\text{SMod}(\Sigma_g^b)$ raised to the power of p lies in $B_n[p]$.

R4: Symmetric separating Dehn twists. By the chain relation the element $(T_{c_1} T_{c_2})^6$ can be represented by a Dehn twist T_γ, where γ is the symmetric separating curve bounding the genus 1 subsurface of Σ_g^b as indicated in Figure 3 [13 Proposition 4.12]. We can generalize the relation R4 by considering a symmetric separating curve δ of a genus k subsurface of Σ_g^b. By the chain relation there is a maximal chain of curves $a_1, ..., a_{2k}$ in the subsurface of genus k with boundary δ such that $(T_{a_1} ... T_{a_{2k}})^{4k+2} = T_\delta$.

The fact that every symmetric separating simple closed curve δ is nullhomologous in $H_1(\Sigma_g^b)$ (respectively $H_1^P(\Sigma_g^b)$) implies that $T_{[\delta]}(x) = x + t_{\delta}(x, [\delta]) = x + 0 = x$ for every $x \in H_1(\Sigma_g^b)$ (respectively $H_1^P(\Sigma_g^b)$), where $T_{[\delta]}$ is the corresponding transvection of T_δ as described in Section 2. Since for every symmetric separating curve δ in Σ_g^b and $T_\delta \in B_{2g+b}[p]$ we have that $(T_{a_1} ... T_{a_{2k}})^{4k+2} \in ST(\Sigma_g^b) \subset B_{2g+b}[p]$.

R5: Mod-p involution maps. We begin by modifying the relation R5 of Theorem 4.1.

Lemma 4.2. The relation R5 given above is equivalent to:

$$(T_{c_1}^{(p+1)/2} T_{c_2}^{-1})^2 = (T_{c_1} T_{c_2})^3$$

in $Sp_{2g}(\mathbb{Z}/p)$ (respectively $(Sp_{2g+2}(\mathbb{Z}/p))_{y_{g+1}}$).
On the other hand, for $i = 1, 2$, $(T_{c_i} T_{c_2})^3([c_i]) = -[c_i]$, where $[c_i]$ stands for the homology class of c_i. Thus, the homeomorphism $(T_{c_1} T_{c_2})^3$ acts as the hyperelliptic involution on the subsurface bounded by the boundary of the curve $ch(c_1, c_2)$ (see Figure 5). We can generalize Relation R5 as follows. For k even, consider any chain $ch(a_1, a_2, \ldots, a_k)$ of symmetric simple closed curves such that $a_i \in \text{SMOD}(\Sigma^g)$ for all $i \leq k$. Choose an $f \in \text{SMOD}(\Sigma^g)$ such that $f([a_i]) = -[a_i]$. Then $(T_{a_1} \cdots T_{a_k})^{k+1} f^{-1} \in B_{2g+k}[p]$. We call this type of element an $mod-p$ involution map.

R6: Mod-p center maps. We describe a generalized version of $(T_{g_1} T_{g_2} T_{g_3})^4(A T_{g_1}^{-2} A^{-1})$. Let A_k be the trivial homeomorphism in $\text{SMOD}(\Sigma^g)$. For k odd, and $k \geq 3$, define

$$A_k = T_{c_k+1} T_{c_k} T_{c_k+1} T_{c_k}^{-1} T_{c_k}^{-2} T_{c_k}^{-1} A_{k-2}.$$

First, we deal with the case $b = 1$. (For $b = 2$ the process is exactly the same.) Consider the symplectic bases $\{y_i, x_i\}$ for $H_i(\Sigma^g, \mathbb{Z})$ depicted on Figure 4.

Lemma 4.3. For k odd, we have that $A_k T_{[c_i]} A_k^{-1} = T_{[y_{(k+1)/2}]}$ in $\text{Sp}_{2g}(\mathbb{Z}/p)$.

Note that if $k = 3$, then $T_{[y_2]} = T_{[x_1]}$.

Proof. We need to prove that $A_k([c_i]) \equiv [c_1] + [c_3] + \ldots + [c_k] \in \text{Sp}_{2g}(\mathbb{Z}/p)$. A direct calculation shows that $A_3([c_i]) \equiv [c_1] + [c_3] \mod p$. Assume that the theorem is true for $k - 2$, that is, $A_{k-2}([c_i]) \equiv [c_1] + [c_3] + \ldots + [c_k-2]$. Then $T_{c_{k+1}} T_{c_k} T_{c_{k+1}} T_{c_k}^{-1} T_{c_k}^{-2} T_{c_k}^{-1} T_{c_{k-1}} ([c_k-2]) \equiv [c_k-2] + [c_k] \mod (p)$. The proof of the lemma follows.

Figure 5: The curve γ that bound a surface of genus 1.
Let k be an odd integer, and consider also the odd chain $ch(c_1, c_2, ..., c_k)$. By the chain relation we have that $(T_{c_1}...T_{c_k})^{k+1} = T_{d_k}T_{d_k'}$, where $d_k = y_{(k+1)/2}$, and $[d_k] = [y_{(k+1)/2}]$ (see, for example, Figure 6). Thus, $(T_{[c_1]}...T_{[c_k]})^{k+1} = T^{2}_{[y_{(k+1)/2}]} \in \text{Sp}_{2g}(\mathbb{Z}/p)$. On the other hand, according to Lemma 4.3 we have that $A_kT^{2}_{[c_1]}A_k^{-1} = T^{1}_{[y_{(k+1)/2}]} \in \text{Sp}_{2g}(\mathbb{Z}/p)$. Hence, $(T_{c_1}...T_{c_k})^{k+1}A_kT^{-2}_{c_k}A_k^{-1} = 1$ is the same as in the relation 6 of Theorem 4.1.

We can describe a generalized version of $(T_{c_1}...T_{c_k})^{k+1}A_kT^{-2}_{c_k}A_k^{-1}$. Consider any chain $ch(a_1, a_2, ..., a_k)$, such that $T_{a_i} \in \text{SMo}(\Sigma^1_g)$ for all $i \leq k$. Choose a homeomorphism $h \in \text{SMo}(\Sigma^1_g)$ such that $h([a_1]) = [a_1] + [a_2] + ... + [a_k] \in \text{Sp}_{2g}(\Sigma^1_g)$. Then $(T_{a_1}...T_{a_k})^{k+1}hT^{-2}_{a_k}h^{-1}$ lies on $B_{2g+1}[p]$. If we consider $(T_{a_1}...T_{a_k})^{k+1}$ as the center of the subgroup K of $\text{SMo}(\Sigma^1_g)$ generated by $T_{a_1}...T_{a_k}$, then $hT^{-2}_{a_k}h^{-1}$ is the center mod(p) of the same group. Note that the choice of h is not unique. We call this type of element an $mod-p$ center map.

Generators for congruence subgroups. As a corollary of Theorem 4.1 we obtain the following theorem.

Theorem 4.4. If $p = 3$, then $B_{2g+b}[3]$ is generated by Dehn twists raised to the power of 3, and for $2g+b > 4$ by mod-p center maps. For $p > 3$ the subgroup $B_{2g+b}[p]$ of $\text{SMo}(\Sigma^1_g)$ is generated by Dehn twists raised to the power of p, by Dehn twists about symmetric separating curves, by $mod-p$ involution maps, and for $2g+b > 4$ by mod-p center maps.

Finite set of generators. It is well known that every finite index subgroup of a finitely generated group, is finitely generated [21, Corollary 2.7.1]. The generating set in Theorem 4.4 is infinite. When $p = 3$ and $g = 1$ we can find a finite set of generators.

Theorem 4.5. The group $B_3[3]$ is generated by four elements.

Proof. Set $S = \{T^3_{c_1}, T^3_{c_2}, T^3_{c_3}, T^3_{c_4}, T^{-3}_{c_4}, T^{-3}_{c_3}, T^{2}_{c_2}, T^{3}_{c_3}, T^{-2}_{c_2}\}$. We denote by Γ the subgroup of $B_3[3]$ generated by S. We prove that if we conjugate elements of S by T_{c_1} or T_{c_2}, then the resulting elements lie in Γ. Since $B_3[3]$ is normally generated by S and since S generates a normal subgroup of B_3, then $\Gamma = B_3[3]$.

In the braid group we have the relation

$$T_{c_1}T_{c_2}...T_{c_{j-1}}T^{3}_{c_j}T^{-1}_{c_j} = T^{-1}_{c_1}T^{-1}_{c_1+1}...T^{-3}_{c_{j-1}}T^{3}_{c_j}T_{c_{j+1}}$$

We prove the theorem in three steps.

Step 1: Conjugates of $T^{3}_{c_1}, T^{3}_{c_2}$.

$$T^{-1}_{c_2}T^{3}_{c_1}T_{c_2} = T^{-3}_{c_2}T^{2}_{c_1}T^{3}_{c_2}T^{-2}_{c_2}T^{3}_{c_2} \in \Gamma$$

$$T^{-1}_{c_1}T^{3}_{c_1}T^{-1}_{c_1} = T^{-1}_{c_1}T^{3}_{c_1}T_{c_2} = T^{-3}_{c_2}T^{3}_{c_2}T^{-2}_{c_2}T^{3}_{c_2} \in \Gamma.$$
Step 2: Conjugates of $T_{c_2}T_{c_1}^{3}T_{c_2}^{-1}$:

$$T_{c_1}T_{c_2}T_{c_1}^{3}T_{c_2}^{-1}T_{c_1}^{-1} = T_{c_2}^3 \in \Gamma$$

$$T_{c_1}^{-1}T_{c_2}T_{c_1}^{3}T_{c_2}^{-1}T_{c_1} = T_{c_1}^{-1}T_{c_2}T_{c_1}^{2}T_{c_2} = T_{c_1}^{-3}(T_{c_1}T_{c_2}T_{c_1}^{-1})T_{c_1}^3.$$

The latter is in Γ by step 1.

Step 3: Conjugates of $T_{c_2}^2T_{c_1}^{3}T_{c_2}^{-2}$:

$$T_{c_1}^{-1}T_{c_2}^2T_{c_1}^{3}T_{c_2}^{-2}T_{c_1} = T_{c_1}^{-1}T_{c_2}^2T_{c_1}^{3}T_{c_2}T_{c_1}^{-3}T_{c_1} = (T_{c_1}^{-1}T_{c_2}T_{c_1})(T_{c_1}^{-1}T_{c_2}^2T_{c_1}T_{c_1})(T_{c_1}^{-1}T_{c_2}T_{c_1}^{-1}T_{c_2}^2T_{c_1}^{-1})$$

The elements $(T_{c_1}^{-1}T_{c_2}T_{c_1}), (T_{c_1}^{-1}T_{c_2}^2T_{c_1})$ are in Γ by step 1.

Finally, since $T_{c_2}^2T_{c_1}^{3}T_{c_2}^{-2} = T_{c_2}^3T_{c_2}^{-3}T_{c_2}^{-3}$, it suffices to check that $T_{c_1}T_{c_2}T_{c_1}^{-3}T_{c_2}^{-1}$ is in Γ. But we have that

$$T_{c_1}T_{c_2}T_{c_1}^{-1}T_{c_2}T_{c_1}^{-1} = T_{c_1}^2T_{c_1}^{3}T_{c_2}^{-2}T_{c_1} = T_{c_1}^{-3}T_{c_1}T_{c_2}T_{c_1}^{-3}T_{c_1}^{-3} = T_{c_1}T_{c_2}T_{c_1}^{-1}T_{c_2}^{-3} \in \Gamma.$$

This proves the theorem. \square

Since $T_{c_2}^2T_{c_1}^{3}T_{c_2}^{-2} = T_{c_2}^3T_{c_2}^{-3}T_{c_2}^{-3}$ we deduce that $\{T_{c_1}^3, T_{c_2}, T_{c_2}^3, T_{c_2}^{-1}, T_{c_2}^{-1}T_{c_1}^3\}$ is also a generating set for $B_3[3]$.

5 Symplectic groups and pure braid groups

For $i \in \mathbb{N}$, let p_i denote a prime number greater than 2. In this section we characterize $B_{2g+b}[m]$, where $m = 2p_1p_2...p_k$ and $m = 4p_1p_2...p_k$. Our strategy is to find a presentation for $PB_{2g+b}/B_{2g+b}[m]$.

We recall that $H_1(PB_{2g+b}, \mathbb{Z}/2)$ is $\text{sp}_{2g}(\mathbb{Z}/2)$, if $b = 1$ and $\text{Ann}(y_{g+1})$ if $b = 2$, where $\text{Ann}(y_{g+1}) = \{h \in \text{sp}_{2g+2}(\mathbb{Z}/2) \mid h(y_{g+1}) = 0\}$. The generators of B_{2g+b} are denoted by σ_i and the generators of PB_{2g+b} are denoted by $a_{i,j}$ as in Section 2.

Theorem 5.1. For $m = 2p_1p_2...p_k$, where $p_i \geq 3$ are prime numbers, we have

$$PB_{2g+b}/B_{2g+b}[m] = \bigoplus_{i=1}^k \text{Sp}_{2g}(\mathbb{Z}/p_i)$$

if $b = 1$,

$$\bigoplus_{i=1}^k (\text{Sp}_{2g+2}(\mathbb{Z}/p_i))_{y_{g+1}}$$

if $b = 2$.

Proof. We set $m = 2p_1p_2...p_k$. We have the map

$$\rho_m : B_{2g+b} \rightarrow \begin{cases} \text{Sp}_{2g}(\mathbb{Z}/m) \rightarrow \text{Sp}_{2g}(\mathbb{Z}/m) & \text{if } b = 1, \\ (\text{Sp}_{2g+2}(\mathbb{Z}))_{y_{g+1}} \rightarrow (\text{Sp}_{2g+2}(\mathbb{Z}/m))_{y_{g+1}} & \text{if } b = 2 \end{cases}$$

with kernel $B_{2g+b}[m]$. By Lemma 3.3 we know that

$$\text{Sp}_{2g}(\mathbb{Z}/m) = \text{Sp}_{2g}(\mathbb{Z}/2) \bigoplus \text{Sp}_{2g}(\mathbb{Z}/p_i).$$

If we restrict to the pure braid group, then the image of the map $PB_{2g+b} \rightarrow \text{Sp}_{2g}(\mathbb{Z})$ is the group $\text{sp}_{2g}(\mathbb{Z})[2]$ (see [3] Theorem 3.3). Furthermore, by Lemma 3.2 we have that the map $\text{Sp}_{2g}(\mathbb{Z})[2] \rightarrow \text{Sp}(\mathbb{Z}/p_i)$ is surjective. Thus, the image of the map

$$\text{Sp}_{2g}(\mathbb{Z}) \rightarrow \text{Sp}_{2g}(\mathbb{Z}/m) = \text{Sp}_{2g}(\mathbb{Z}/2) \bigoplus \text{Sp}_{2g}(\mathbb{Z}/p_i),$$
after we restrict to \(\text{Sp}_2(\mathbb{Z})[2] \), is the group \(\bigoplus_{i=1}^k \text{Sp}_2(\mathbb{Z}/p_i) \). Hence, we have a short exact sequence

\[
1 \to B_{2g+1}[m] \to PB_{2g+1} \to \bigoplus_{i=1}^k \text{Sp}_2(\mathbb{Z}/p_i) \to 1.
\]

Likewise, since the image of the map \(PB_{2g+2} \to (\text{Sp}_{2g+2}(\mathbb{Z}))_{y_{g+1}} \) is \((\text{Sp}_{2g+2}(\mathbb{Z})[2])_{y_{g+1}} \) (see Theorem 3.3), and since \((\text{Sp}_{2g+2}(\mathbb{Z}/m))_{y_{g+1}} < \text{Sp}_{2g+2}(\mathbb{Z}/m) \), we can apply Lemma 3.3 and end up with the following exact sequence.

\[
1 \to B_{2g+2}[m] \to PB_{2g+2} \to \bigoplus_{i=1}^k (\text{Sp}_{2g+2}(\mathbb{Z}/p_i))_{y_{g+1}} \to 1.
\]

This completes the proof. \(\square \)

In the following statement we slightly generalize Lemma 5.1. The symplectic Lie algebra \(\mathfrak{sp}_{2n}(\mathbb{Z}) \) consists of those elements \(A \in \mathfrak{gl}_{2n}(\mathbb{Z}) \) which satisfy the relation \(A^T J + JA = 0 \). We define also

\[
\text{Ann}(u) = \{ m \in \mathfrak{sp}_{2n}(\mathbb{Z}) \mid m(u) = 0 \},
\]

where \(\text{Ann}(u) \) stands for the annihilator of the vector \(u \). We have the following theorem.

Theorem 5.2. For \(m = 4p_1p_2...p_k \), where \(p_i \geq 3 \) are prime numbers, we have

\[
PB_{2g+b}/B_{2g+b}[m] = \left\{ \begin{array}{ll}
\mathfrak{sp}_{2g}(\mathbb{Z}/2) \bigoplus_{i=1}^k \text{Sp}_2(\mathbb{Z}/p_i) & \text{if } b = 1, \\
\text{Ann}(e) \bigoplus_{i=1}^k (\text{Sp}_{2g+2}(\mathbb{Z}/p_i))_{y_{g+1}} & \text{if } b = 2.
\end{array} \right.
\]

Proof. We set \(m = 4p_1p_2...p_k \). By Lemma 3.3 we have that

\[
\text{Sp}_2(\mathbb{Z}/m) = \text{Sp}_2(\mathbb{Z}/4) \bigoplus_{i=1}^k \text{Sp}_2(\mathbb{Z}/p_i).
\]

We want to characterize the image of the map

\[
B_{2g+b} \to \left\{ \begin{array}{ll}
\text{Sp}_2(\mathbb{Z}/4) \bigoplus_{i=1}^k \text{Sp}_2(\mathbb{Z}/p_i) & \text{if } b = 1, \\
(\text{Sp}_{2g+2}(\mathbb{Z}/4))_{y_{g+1}} \bigoplus_{i=1}^k (\text{Sp}_{2g+2}(\mathbb{Z}/p_i))_{y_{g+1}} & \text{if } b = 2.
\end{array} \right.
\]

For \(b = 1 \) we only need to characterize the image of the restriction of the map above to \(PB_{2g+b} \). In particular, we want to compute the image of the map \(PB_{2g+1} \to \text{Sp}_2(\mathbb{Z}/4) \). We know that the image of the map \(PB_{2g+1} \to \text{Sp}_2(\mathbb{Z}) \) is \(\text{Sp}_2(\mathbb{Z})[2] \). Consider the inclusion

\[
\text{Sp}_2(\mathbb{Z})[2] \hookrightarrow \text{Sp}_2(\mathbb{Z}).
\]

We quotient the above inclusion by \(\text{Sp}_2(\mathbb{Z})[4] \), and we get the following inclusion:

\[
\mathfrak{sp}_{2g}(\mathbb{Z}/2) \hookrightarrow \mathfrak{sp}_{2g}(\mathbb{Z}/4).
\]

We finally have

\[
PB_{2g+1} \to \text{Sp}_2(\mathbb{Z})[2] \to \mathfrak{sp}_{2g}(\mathbb{Z}/2) < \text{Sp}_2(\mathbb{Z}/4).
\]

Hence, the image of the map \(PB_{2g+1} \to \text{Sp}_2(\mathbb{Z}/4) \) is the abelian group \(\mathfrak{sp}_{2g}(\mathbb{Z}/2) \). Thus, we have

\[
PB_{2g+b}/B_{2g+b}[m] \cong \mathfrak{sp}_{2g}(\mathbb{Z}/2) \bigoplus_{i=1}^k \text{Sp}_2(\mathbb{Z}/p_i).
\]

For \(b = 2 \), the maps

\[
PB_{2g+2} \to (\text{Sp}_{2g+2}(\mathbb{Z})[2])_{y_{g+1}} \to \text{Ann}(y_{g+1})
\]
are both surjective, \[9\] Lemma 3.5. But \(\text{Ann}(y_{g+1}) < (\text{Sp}_{2g+2}(\mathbb{Z}/4))_{y_{g+1}}\), and thus, the image of the map

\[PB_{2g+2} \rightarrow (\text{Sp}_{2g+2}(\mathbb{Z}/4))_{y_{g+1}}\]

is the group \(\text{Ann}(y_{g+1})\). Thus, we get

\[PB_{2g+2}/B_{2g+2}[m] \cong \text{Ann}(y_{g+1}) \bigoplus_{i=1}^{k} (\text{Sp}_{2g+2}(\mathbb{Z}/p_i))_{y_{g+1}}\].

This completes the proof. \(\square\)

In order to find generators for \(B_{2g+1}[m]\), it suffices to find a presentation for \(\text{Sp}_{2g}(\mathbb{Z}/p)\) in terms of pure braids. In the next proposition we prove that \(\text{Sp}_{2g}(\mathbb{Z}/p)\) admits a presentation as a quotient of the pure braid group over some relations. These new relations are the generators for \(B_{2g+1}[2p]\). Recall that the generators of \(PB_n\) are defined to be \(a_{i,j} = \sigma_{j-1}...\sigma_{i+1}\sigma_{i}^{-2}\sigma_{i+1}^{-1}...\sigma_{j-1}^{-1}\), where \(1 \leq i < j \leq n\).

Proposition 5.3. Fix a prime number \(p\), and put \(p = 2k+1\). Let \(H_n\) be the group with generators \(\{a_{i,j}\}\) with defining relations as follows:

PR1. \(a_{i,i+1}a_{i+1,i}^{-1} = 1\), \(1 \leq i < j \leq n\),

PR2. \(a_{i,j}^p = 1\), \(1 \leq i < j \leq n\),

PR3. \((a_{1,2}a_{1,3}a_{2,3})^2 = 1\) for \(p > 3\),

PR4. \(a_{r,s}^{-1}a_{i,j}a_{r,s} = a_{i,j}\), \(1 \leq r < s < i < j \leq n\) or \(1 \leq i < r < s < j \leq n\),

PR5. \(a_{r,s}^{-1}a_{i,j}a_{r,s} = a_{r,j}a_{i,j}a_{r,s}^{-1}\), \(1 \leq r < s = i < j \leq n\),

PR6. \(a_{r,s}^{-1}a_{i,j}a_{r,s} = (a_{i,j}a_{s,j})a_{i,j}(a_{i,j}a_{s,j})^{-1}\), \(1 \leq r = i < s < j \leq n\),

PR7. \(a_{r,s}^{-1}a_{i,j}a_{r,s} = (a_{r,j}a_{s,j})a_{i,j}(a_{r,j}a_{s,j}a_{r,s}^{-1}a_{s,j}^{-1})^{-1}\), \(1 \leq r < i < j \leq n\),

PR8. \(a_{i,j} = a_{j-1,j}^{k+1}a_{j-2,j-1}...a_{i,i+1}a_{i+1,i+2}...a_{j-1,j}^{-1}\), \(1 \leq i - j \leq n\),

PR9. \(a_{1,2}a_{1,3}a_{2,3} = C\), where

\[C = (a_{1,2}^{(p+1)/4}a_{2,3}^{p/2})^2\], if \((p + 1)/2\) is even,

\[C = a_{1,2}^{(p+3)/4}a_{2,3}^{(p-1)/4}\], if \((p + 1)/2\) is odd.

PR10. \(a_{1,2}a_{1,3}a_{2,3}a_{2,4}a_{3,4} = Ba_{1,4}B^{-1}\), where

\[B = a_{3,5}a_{4,5}a_{2,3}^{k/2}a_{3,4}^{-1}\], if \(k\) is even;

\[B = a_{3,5}a_{4,5}a_{2,3}^{k+1}a_{3,4}\], if \(k\) is odd.

If \(n = 2g + 1\) then \(H_n\) is isomorphic to \(\text{Sp}_{2g}(\mathbb{Z}/p)\). On the other hand if \(n = 2g + 2\), then \(H_n\) is isomorphic to \(\text{Sp}_{2g+2}(\mathbb{Z}/p)_{y_{g+1}}\).

Note that relations PR4, PR5, PR6, PR7 are relations in the presentation of the pure braid group given in Chapter 4. We begin with the group \(G_n\) defined in Theorem 4.1 and using Tietze transformations, we obtain the presentation of \(H_n\).

Proof. By Theorem 4.1 the group \(G_n\) has the following presentation:

\[G_n = \langle \sigma_i | R1, R2, R3, R4, R5, R6 \rangle, \]

where \(1 \leq i < 2g + b\). Let \(a_{i,j} = \sigma_{j-1}...\sigma_{i+1}\sigma_{i}^{-2}\sigma_{i+1}^{-1}...\sigma_{j-1}^{-1}\) and denote this relation by PR11. Then include PR11 into the presentation of \(G_n\) and add the generator \(a_{i,j}\) to obtain

\[\langle \sigma_i, a_{i,j} | R1, R2, R3, R4, R5, R6, PR11 \rangle.\]
Since \(PB_n \) is a subgroup of \(B_n \), this means that \(R1 \) and \(R2 \) can be used to deduce the relations \(PR4, PR5, PR6, PR7, PR7' \).

\[
\langle \sigma_i, a_{i,j} \mid R1, R2, R3, R4, R5, R6, PR4, PR5, PR6, PR7, PR11 \rangle.
\]

The relation \(R2 \) can be deduced by \(PR11 \) and \(R3 \) and \(PR4 \)

\[
\langle \sigma_i, a_{i,j} \mid R1, R3, R4, R5, R6, PR2, PR4, PR5, PR6, PR7, PR11 \rangle.
\]

We derive two more relations from \(PR11 \) and \(R3 \).

\[
\sigma_i = a_{i,i+1}^{k+1}, \quad \sigma_i^{-1} = a_{i,i+1}^k.
\]

Then \(PR1 \) is equivalent to \(R1 \), \(PR2 \) is equivalent to \(R3 \), \(PR3 \) is equivalent to \(R4 \), \(PR9 \) is equivalent to \(R5 \), \(PR10 \) is equivalent to \(R6 \), and \(PR11 \) is equivalent to \(PR8 \). In other words,

\[
\langle \sigma_i, a_{i,j} \mid PR1, PR2, PR4, PR5, PR6, PR7, PR8, PR9, PR10, \sigma_i = a_{i,i+1}^{k+1}, \sigma_i^{-1} = a_{i,i+1}^k \rangle
\]

Finally, for \(1 \leq i < j \geq 2g + b \) we have that

\[
\langle a_{i,j} \mid PR1, PR2, PR4, PR5, PR6, PR7, PR8, PR9, PR10 \rangle,
\]

which is the presentation of \(H_n \).

As an application of Proposition 5.3, we can obtain generators for \(B_{2g+b}[2p] \).

Corollary 5.4. For \(k = (p - 1)/2 \), the group \(B_{2g+b}[2p] \) is normally generated by six types of elements:

\[
\begin{align*}
a_{i,j}^p, \\
(a_1a_2a_3a_2a_3)^2, \\
a_1a_2a_3a_2a_3c^{-1}, \\
a_1a_2a_3a_4a_2a_3a_4a_3a_4b_{a14}b^{-1}, \\
a_{i,i+1}a_{i+1,i+2}a_{i+1,i+2}a_{i,i+1}a_{i+1,i+2}, \\
a_{j-1,j}a_{j-2,j-1}...a_{i,i+1}a_{i+1,i+2}...a_{j-1,j}a_{i,j}.
\end{align*}
\]

Actually we can use Proposition 5.3 to find normal generators for any \(B_n[m] \), where \(m \) is either \(2p_1...p_k \) or \(4p_1...p_k \) and \(p_i \geq 3 \) are prime numbers.

6 Symmetric quotients of congruence subgroups

In this section we explore factor groups of congruence subgroups of braid groups. From Section 3 we know that \(B_n[2] \cong PB_n \) and \(B_n/B_n[2] \cong S_n \). In the next theorem we generalize the latter isomorphism.

Theorem 6.1. The quotient \(B_n[p]/B_n[2p] \) is isomorphic to \(S_n \).

Before we proceed to the proof of Theorem 6.1, we will prove the following lemma.

Lemma 6.2. The groups \(B_n[2p] \) and \(B_n[2] \cap B_n[p] \) are isomorphic.

Proof. It is obvious that \(B_n[2p] \leq B_n[2] \cap B_n[p] \). By Proposition 3.3 we have the decomposition \(Sp_{2g}(\mathbb{Z}/2p) = Sp_{2g}(\mathbb{Z}/2) \oplus Sp_{2g}(\mathbb{Z}/p) \). By the homomorphism \(\rho : B_n \rightarrow Sp_{2g}(\mathbb{Z}/2p) \) we deduce that \(\rho(B_n[2] \cap B_n[p]) \) is trivial. Hence \(B_n[2] \cap B_n[p] < B_n[2p] \).

Now we can prove the main theorem of the section.
Proof of Theorem 6.1. Denote by s_i the transposition $i, i+1$, that is, the generators of S_n. We have the following presentation.

$$S_n = \langle s_1, ..., s_{n-1} \mid s_i^2 = 1, s_is_{i+1}s_i = s_{i+1} s_is_{i+1}, s_is_j = s_js_i \text{ when } |i-j| > 1 \rangle.$$

Consider the natural epimorphism $\tau : B_n \to S_n$ defined by $\tau(\sigma_i) = s_i$. Fix a prime number $p > 2$; then the restriction $\tau : B_n[p] \to S_n$ is a surjective homomorphism as well. Indeed, we have that $\tau(\sigma_i^p) = s_i^p = s_i$, and for any other generator $g \in B_n[p]$ we have $\tau(g) = 1$. Finally, $\ker(\tau) = B_n[2] \cap B_n[p] = B_n[2p]$ by Lemma 6.2.

References

Charalampos Stylianakis, department of Mathematics & Statistics, University of Glasgow, Glasgow, G12 8QW, UK.

E-mail address: c.stylianakis.1@research.gla.ac.uk