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Abstract

How plants perceive and respond to temperature remains an important question in the

plant sciences. Temperature perception and signal transduction may occur through tem-

perature‐sensitive intramolecular folding of primary mRNA transcripts. Recent studies

suggested a role for retention of the first intron in the 5′UTR of the clock component

LATE ELONGATED HYPOCOTYL (LHY) in response to changes in temperature. Here,

we identified a set of haplotypes in the LHY 5′UTR, examined their global spatial distri-

bution, and obtained evidence that haplotype can affect temperature‐dependent splic-

ing of LHY transcripts. Correlations of haplotype spatial distributions with global

bioclimatic variables and altitude point to associations with annual mean temperature

and temperature fluctuation. Relatively rare relict type accessions correlate with lower

mean temperature and greater temperature fluctuation and the spatial distribution of

other haplotypes may be informative of evolutionary processes driving colonization of

ecosystems.We propose that haplotypes may possess distinct 5′UTR pre‐mRNA folding

thermodynamics and/or specific biological stabilities based around the binding of trans‐

acting RNA splicing factors, a consequence of which is scalable splicing sensitivity of a

central clock component that is likely tuned to specific temperature environments.
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1 | INTRODUCTION

Temperature is a potent stimulus influencing plant morphology

and reproductive development (McClung, Lou, Hermand, & Kim,

2016) and is on a par with the influential effects of light quantity and

quality (Quint et al., 2016; Wigge, 2013). In Arabidopsis thaliana, tem-

perature governs plant morphology and life history over a wide scale.

Exposure to ambient temperatures that are high, but not heat stress

inducing, influences elongation of the hypocotyl and flowering,
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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referred to as thermomorphogenesis (Quint et al., 2016), whereas

extended periods of cold, or vernalization, affect epigenetic modifica-

tions of key components of the flowering time pathway (Berry & Dean,

2015; Hepworth & Dean, 2015; Song, Irwin, & Dean, 2013).

Recent interest has focused on understanding how plants

perceive and transduce temperature information to deliver physiological

responses to temperature (Capovilla, Pajoro, Immink, & Schmid, 2015;

McClung et al., 2016; McClung & Davis, 2010; Wigge, 2013). Although

the identity of molecular plant thermometers has been described as
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“one of the great mysteries in the plant sciences” (McClung & Davis,

2010), recent studies using seedlings point to a role for phytochrome

red light receptors as thermosensors (Jung et al., 2016; Legris et al.,

2016); a role for the histone variant H2A.Z as a flowering time

thermosensor (Kumar & Wigge, 2010); and roles for the phytochrome

signalling component PHYTOCHROME INTERACTINGFACTOR4 (Koini

et al., 2009; Kumar et al., 2012), the circadian clock evening complex

component EARLY FLOWERING3 (Box et al., 2015; Ezer et al., 2017),

and CONSTANS (Fernandez, Takahashi, Le Gourrierec, & Coupland,

2016) in thermoresponsiveness. Additionally, temperature information

may be routed via alternative splicing (AS) of components of several net-

works, including for the circadian clock (Calixto, Simpson, Waugh, &

Brown, 2016; Filichkin et al., 2010; Filichkin et al., 2015; Filichkin &

Mockler, 2012; James, Syed, Bordage, et al., 2012; James, Syed, Brown,

& Nimmo, 2012; Kwon, Park, Kim, Baldwin, & Park, 2014; Seo et al.,

2012), for light signalling components (Mancini et al., 2016; Shikata

et al., 2014; Wu et al., 2014; Zhang, Lin, & Gu, 2017), and for flowering

time (Capovilla, Symeonidi, Wu, & Schmid, 2017; Melzer, 2017; Pose

et al., 2013; Sureshkumar, Dent, Seleznev, Tasset, & Balasubramanian,

2016). A prominent theme emerging from these advances is the role

played by the circadian clock in integrating environmental cues (Arana,

Tognacca, Estravis‐Barcala, Sanchez, & Botto, 2017; Ezer et al., 2017;

Greenham & McClung, 2015), enabling endogenous clock rhythms to

coincide with externally imposed cycles of light:dark and temperature

(McClung et al., 2016; Nomoto et al., 2013; Yamashino, 2013).

The circadian clock enhances biological fitness by allowing organ-

isms to anticipate environmental changes (Dodd et al., 2005; Green,

Tingay, Wang, & Tobin, 2002). Its pace is largely unaffected across a

range of physiologically relevant temperatures (Pittendrigh, 1960); this

is termed temperature compensation and is usually studied by

measuring circadian period at different fixed temperatures (Gould

et al., 2006; Gould et al., 2013). In contrast to focusing solely on

acclimated temperatures, we examined clock genes in mature

Arabidopsis thaliana plants both during and after cooling. This identified

temperature‐dependent AS in several genes including LATE ELON-

GATED HYPOCOTYL (LHY), CIRCADIAN CLOCK ASSOCIATED1, and

PSEUDO RESPONSE REGULATOR7 (James, Syed, Bordage, et al.,

2012). The retention of the 5′UTR intron 1 in LHY (I1R, event UAS4

in James, Syed, Bordage, et al., 2012) and the inclusion of exon 5a

(event AS5 in James, Syed, Bordage, et al., 2012) reach physiologically

important levels in cooling and control LHY protein levels. Notably the

former AS event is transient whereas the latter is adaptive to temper-

ature (James, Syed, Bordage, et al., 2012; James et al., 2018). Concep-

tually, the regulation of LHY therefore represents an interesting model

of how the clock adapts to (a) fluctuations and (b) longer term changes

in temperature that are analogous in nature to unpredictable everyday

changes and longer term (conceivably seasonal) changes in tempera-

ture, respectively. The LHY I1R event is of particular interest, because

switching between fully spliced (FS) and I1R isoforms with tempera-

ture is rapid and reversible (James, Syed, Bordage, et al., 2012), has

characteristics of a thermometer in that it is sensitive to temperature

changes as modest as 2 °C, and is scalable and reversible over a wide

dynamic range of temperature (James et al., 2018).

There is now clear evidence that pre‐mRNA secondary structure

can influence the outcome of the splicing process (Buratti & Baralle,
2004; Ding et al., 2014; Gueroussov et al., 2017; Li et al., 2012;

Soemedi et al., 2017; Vandivier, Anderson, Foley, & Gregory, 2016).

Pre‐mRNA processing is simultaneous, and mechanistically coupled,

to transcription with splicing factors (SFs) recruited either constitu-

tively or on an “as needed” basis to intron‐containing genes (Bentley,

2014). The complexity of temperature signalling has recently been aug-

mented with studies revealing cooling associated “splicing of the splic-

ing factors” (Verhage et al., 2017; James et al., 2018), for example, for

temperature‐associated isoform switching of the polypyrimidine (pY)

tract‐binding (PTB) proteins and U2 auxiliary factor 65A (James et al.,

2018) both of which compete for interaction with pY‐rich sequences

thereby influencing efficiency of splicing (Simpson et al., 2014).

Natural variation of genes sensitive to temperature‐associated AS

has yet to be characterized. However, there are several resources

available to test correlations between sequence variations of candidate

genes with climatic variables such as temperature. Whole genome

sequencing of at least 1001 naturally inbred Arabidopsis lines, or

accessions, led by The 1001 Genomes Consortium (1001genomes.

org), has resulted in 1135 resequenced natural accessions that cover

both the native Eurasian and North African range and recently colo-

nized North America (Consortium, 2016). Using high‐resolution spa-

tially interpolated climate data for global land areas, we mapped the

distribution of four LHY 5′UTR haplotypes with a series of global bio-

climatic variables and altitude, reasoning that if splicing of the LHY 5′

UTR constituted a bona fide temperature sensing module, haplotype

distribution would stratify with temperature climatic parameters.

We found that distinct haplotypes delineate along the lines of

annual mean temperature and extent of annual temperature fluctua-

tion (annual mean diurnal range) and that haplotype accessions are

distinct in their temperature‐dependent splicing of LHY pre‐mRNA.

We discuss these findings in the context of the transduction of

temperature information to the clock via modulation of pre‐mRNA

intramolecular folding and temperature scalable splicing sensitivity

that is likely tunable to specific climatic regions.
2 | MATERIALS AND METHODS

2.1 | Sequence analysis and spatial analysis

The Arabidopsis 1001 Genome Browser (http://signal.salk.edu/

atg1001/3.0/gebrowser.php) was used for preliminary analysis of sin-

gle nucleotide polymorphism (SNPs) at the LHY locus. Sequence base

calls for each of five SNP coordinates (Chr1: 37437, 37268, 37245,

37138, and 37072) for 1,135 accessions were obtained using

the Pseudogenomes tool (http://tools.1001genomes.org/pseudoge-

nomes/#select_strains). Latitude and longitude coordinates for the

accession collection sites were also obtained (http://1001genomes.

org/accessions.html). ADMIXTURE assignations for individual acces-

sions were obtained from the 1001 Genomes Admixture map tool

(http://1001genomes.github.io/admixture‐map/). Gviz (Hahne &

Ivanek, 2016) was used to annotate LHY gene organization features

with SNP frequencies. The sample() function in R was used to obtain

random accession groups from the WRLD dataset. Maps were pre-

pared using the map_data() function and a coord_fixed(1.3) aesthetic

http://1001genomes.org
http://1001genomes.org
http://signal.salk.edu/atg1001/3.0/gebrowser.php
http://signal.salk.edu/atg1001/3.0/gebrowser.php
http://tools.1001genomes.org/pseudogenomes/#select_strains
http://tools.1001genomes.org/pseudogenomes/#select_strains
http://1001genomes.org/accessions.html
http://1001genomes.org/accessions.html
http://1001genomes.github.io/admixture-map
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in ggplot2 in R. Bioclimatic variables at a global resolution of 2.5 arcmin,

reflecting interpolations of observed data from 1960 to 1990, were

obtained at worldclim.org (Hijmans, Cameron, Parra, Jones, & Jarvis,

2005). The global index maps were created by plotting the bioclimatic

raster layer objects, with projected accession coordinates made explic-

itly spatial using the coordinates() function from the sp package in R

and a coordinate reference system using the PROJ.4 spatial projection

and the Earth shape reference datum WGS84. Bioclimatic variables

were extracted for spatial locations using the extract() function from

the raster package in R and represented mean values of raster cells

in a 5‐km radius around each point location. Elevations, based on the

latitude–longitude coordinates of the accession collection site, were

obtained at http://www.gpsvisualizer.com/elevation.

2.2 | RNA secondary structure prediction

LHY 5′UTR sequence of length 782 nt (−779 to +3 at the canonical start

codon) was used in all RNA secondary structure prediction algorithms.

R4RNA (Lai, Proctor, Zhu, & Meyer, 2012), using dot–bracket output

of the RNA folding prediction web‐server mfold (Zuker, 2003) was used

for RNA structure comparison analysis. Predicted thermodynamic stabil-

ities (Gibbs free energy, ΔG, kcal/mol) of 5′UTR pre‐mRNAs were based

on the folding algorithms of mfold (Zuker, 2003) and RNAfold, a compo-

nent of the ViennaRNA Package 2.0 (Lorenz et al., 2011; http://rna.tbi.

univie.ac.at/cgi‐bin/RNAWebSuite/RNAfold.cgi). Secondary structure

drawings were graphical output of RNAfold (Lorenz et al., 2011).

2.3 | In vitro mRNA synthesis and labelling

High‐fidelity DNA Taq polymerase (Phusion, ThermoFisher Scientific)

was used to amplify LHY from genomic DNA (isolated from Col‐0,

DNeasy Plant kit, Qiagen) using the primers gLHY‐f1; 5′‐CACGTG

TCGATCTGCGATGACTTC‐3′and gLHY‐r1; 5′‐TGTAGAAGCTTCTC

CTTCCAATCGAAGC‐3′ that was then template for the amplification

of LHY section −774 to +438 BP (relative to the translational start site;

corresponding to coordinates Chr1: 37,835 to 36,624) using the

primers LHY‐ex1‐f2; 5′‐GCTGAGATTGCTTCTGGCTTCT‐3′ and

LHY‐ex5‐r; 5′‐CTTTGTGAAGAACTTTTGTGC‐3′. This PCR product

was inserted into pCR4‐TOPO (ThermoFisher Scientific), sequence

verified, and linearized with SpeI (Promega). The 5′‐capped in vitro syn-

thesized RNA was prepared using the mMESSAGE mMACHINE kit

(Ambion) using the T7 RNA polymerase site according to the

manufacturer's protocol. RNA was purified and recovered with ammo-

nium acetate followed by phenol:chloroform (1:1) extraction and

isopropanol precipitation. RNA (approximately 70–400 ng) was

labelled using the RNA 3′end biotinylation kit (Pierce) according to

the manufacturer's instructions. Labelled RNA was purified (MEGA-

clear, ThermoFisher Scientific); glycogen and salt precipitated and

diluted in elution solution (MEGAclear kit) to approximately 50 fmol/μl.

2.4 | Preparation and purification of recombinant
PTB1 protein

PTB1 complementary DNA (cDNA) in pETM‐20 (gift of Professor John

Brown, The James Hutton Institute, Dundee, UK) was subcloned via

BspHI‐NotI into the pHS expression vector (Christie et al., 2012) to
produce 7xHis‐Strep II‐SUMO PTB1 in Escherichia coli expression

strain Rosetta BL21 (DE3) pLysS (Merck). Cells were grown in LB broth

to an OD600 of 0.6 and induced with 100 μM isopropyl‐β‐D‐

thiogalactopyranoside at 18 °C for 16 hr. Cells were collected by cen-

trifugation at 3,500 g for 20 min and snap frozen in liquid nitrogen.

Cells were thawed and resuspended in EB buffer containing 50 mM

Tris–HCl pH 8.0, 500 mM NaCl, 20 mM imidazole, 1 mM

phenylmethylsulfonyl fluoride (PMSF), and a protease inhibitor mixture

(cOmplete EDTA‐free; Roche); lysed by sonication; and centrifuged at

143,000 g at 4 °C for 20 min. The supernatant was incubated in batch

with 2 ml TALON SuperFlow (GE Healthcare), washed in EB buffer

before eluting with 50 mM Tris–HCl pH 8.0, 150 mM NaCl, 250 mM

imidazole, and 1 mM PMSF. Eluted protein was incubated in batch

with 1 ml Strep‐Tactin Superflow Plus (Qiagen) and washed with

50 mM Tris–HCl pH 8, 150 mM NaCl, and 1 mM PMSF. PTB1 was

released from the resin by incubation with the SUMO (ULP‐1) protease

at 4 °C for 16 hr (Christie et al., 2012).
2.5 | RNA electrophoretic mobility shift assay

RNA EMSA was performed using the Pierce Biotechnology LightShift

Chemiluminescent RNA EMSA kit (ThermoFisher Scientific) essentially

according to the manufacturer's instructions, but with minor modifica-

tions. EMSA binding reactions (20‐μl final volume) consisted of

10mMHEPES pH7.3, 100mMKCl, 1mMMgCl2, 1mMdithiothreiotol,

0.25 μg/μL tRNA, and varying amounts of purified, recombinant PTB1

protein. The 3′ biotin labelled RNA (approximately 10 fmol per binding

reaction, predenatured at 95 °C for 3 min and held on ice) were carried

out at room temperature for 30 min. Glycerol (5% [v/v]) and loading dye

(LightShift kit) were added to binding reactions and loaded on 6%

polyacrylamide gels (40:1 acrylamide:bisacrylamide ratio in 50 mM

Tris/50 mM Glycine [pH 8.3]) and run in the cold at 10 V/cm for

3.5 hr, similar to that described in (Clerte & Hall, 2009). For competition

binding reactions an excess of the same, unlabelled RNA was preincu-

bated (10 min at room temperature) with recombinant PTB1 before

addition of the biotin‐labelled RNA. Gels were electro‐blotted onto

Amersham Hybond‐N+ nylon membrane (GE Healthcare Life Sciences)

in 50 mM Tris/50 mM Glycine (pH 8.3) at 30 mA for 1 hr at room tem-

perature and transferred RNA cross‐linked at 120 mJ/cm2 (Crosslinker

CL‐508, Syngene, Cambridge, England). Biotin‐labelled RNA:PTB1 pro-

tein complexeswere detected using Pierce Biotechnology's Chemilumi-

nescent Nucleic Acid Detection Module (ThermoFisher Scientific),

according to the manufacturer's instructions, and exposed to X‐ray film

(Medical X‐ray Blue, Carestream Health, Hertfordshire).
2.6 | Plant material and growth conditions

Plant material was the Columbia (Col‐0) ecotype or natural variant

accessions Lan‐0 (CS76539), Shigu‐2 (CS76374), Borsk‐2 (CS76421),

Don‐0 (CS76411), and Vie‐0 (CS76418), NottinghamArabidopsis Stock

Centre. Plants were grown hydroponically as described previously

(James et al., 2008) in environmentally controlled growth cabinets

(Microclima, Snijders Labs, Tilburg, The Netherlands) at 20 °C in 12 hr

light:dark cycles. White light intensity (100 ± 20 μE m−2 s−1) was pro-

vided by Sylvania Grolux F36 W/GRO fluorescent tubes. Plants were

http://worldclim.org
http://www.gpsvisualizer.com/elevation
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
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harvested 5 weeks after sowing (one biological repeat was RNA

extracted from approximately 50–100 mg of pooled tissue from 9–13

mature plants per temperature condition/time point). Plants were

harvested at dawn at 20 °C with cooling to 4 °C initiated 12 hr later

at dusk, with subsequent samples at the next dawn (Day 1, 4 °C) and

at Day 4, 4 °C, and at Day 8, 4 °C. Harvested tissue was immediately

frozen in liquid nitrogen and stored at −80 °C until further use.
2.7 | RNA extraction, cDNA synthesis, and qPCR

RNA extraction, cDNA synthesis, and qPCR were performed essen-

tially as described previously (James et al., 2008; James, Syed, Bordage,

et al., 2012). Briefly, total RNA was extracted with the RNeasy Plant

Mini kit (Qiagen) and DNase treated (DNA‐free; Ambion). cDNA was

typically synthesized from 1 μg of total RNA using random hexamers

and SuperScriptII reverse transcriptase (ThermoFisher Scientific).

qPCR reactions (1:100 dilutions of cDNA) were performed with

Brilliant III SYBR Green QPCR Master Mix (Agilent) on a StepOnePlus

(Fisher Scientific U.K. Ltd., Loughborough, U.K.) real‐time PCR system.

The average Ct values for PP2A (At1g13320, primers PP2A‐f2; 5′‐

TAACGTGGCCAAAATGATGC‐3′ and PP2A‐r2; 5′‐GTTCTCCACAA

CCGCTTGGT‐3′) was used as internal control for expression levels.

Primers LHY‐ex1‐f2; 5′‐GCTGAGATTGCTTCTGGCTTCT‐3′, and

LHY‐ex2‐ex1‐r; 5′‐GCAGCCAAAACCCTTGAGAGTA‐3′ were used to

amplify constitutively spliced LHY 5′UTR transcripts and primers

LHY‐ex1‐int1‐f; 5′‐GGCTACTCTCAAGGGTATAACAGTT‐3′ and

LHY‐ex3‐ex2‐r; 5′‐GATTCTAGAGAAACCAAACGAATCC‐3′ were

used to amplify transcripts retaining intron 1. The delta–delta Ct algo-

rithm (Livak & Schmittgen, 2001) was used to determine relative

changes in gene expression from two technical replicate assays.
2.8 | Statistical analyses

Ordinary one‐way analysis of variance (one‐way ANOVA) with Brown–

Forsythe summaries, post hoc Tukey–Kramer, and unpaired t tests with

equal SD analyses were carried out in GraphPad Prism (version 6). For

Tukey–Kramer, pairs of means grouped by a horizontal line were not

significantly different from each other (p > .05). For t tests, threshold sig-

nificance summaries were ***p = .0001 to .001, **p = .001 to .01, and

*p = .01 to .05. Principal component analyses (PCAs) were carried out

in R using prcomp by applying a log transformation to the continuous bio-

climatic variables and employing “set center” and “scale.” =TRUE to stan-

dardize the variables. PCAs were visualized using ggbiplot employing

“elipse” =TRUEwhere contours are drawn at the default 68% probability

for each haplotype group.
3 | RESULTS

We inspected the LHY locus (At1g01060) for SNPs and focused our

attention on a subset of five SNPs (Figure S1, Figure 1a, and Table 1)

located within the 5′UTR region because the balance between consti-

tutive splicing and retention of the 5′UTR intron 1 in the LHY pre‐

mRNA is scalable with temperature transitions (James, Syed, Bordage,

et al., 2012; James et al., 2018). Sequence base calls, including uncalled

N's, and latitude–longitude coordinates for each of the five SNP
positions for 1,135 accessions were obtained (see Section 2). Four

accessions (Table S1) were devoid of latitude–longitude information

and were excluded from the dataset, as were accessions that

possessed one or more uncalled “N” base. Inspection of this filtered

dataset (our “WRLD” dataset, see Table S2 and the Supporting infor-

mation Dataset file ‘LHY SNP WRLD dataset.csv’) revealed that 932

accessions each possessed one of four distinct 5′UTR haplotypes

(Table 2). Col‐0, the Arabidopsis reference strain, possesses the G/G/

U/G/C haplotype—the most prevalent LHY 5′UTR haplotype within

the WRLD cohort.

We next compared pre‐mRNA secondary structure models for the

four haplotypes. Table 3 summarizes the predicted contacts within the

LHY 5′UTR made by the individual SNPs. Haplotype A/U/G/C/A dis-

plays a quite different pattern of base pairing compared to the other

three haplotypes. We visualized the predicted structural differences

between the Col‐0 haplotype, G/G/U/G/C, and A/U/G/C/A. To do

this, we contrasted arc diagrams (R4RNA; Lai et al., 2012)—a method

that uses the dot–bracket output annotation of RNA secondary struc-

ture algorithms such as mfold (Zuker, 2003). The arc diagram of

Figure 1b points to the potential effects of variation at SNPs 37437,

37245, and 37138 to local and distant canonical base pairing. Notably,

the 37245 and the 37138 SNPs of the G/G/U/G/C haplotype are pre-

dicted to make a local and a distant canonical base pair with regions

enriched for PTB cis‐consensus sequence within a pY tract (Singh,

Valcarcel, & Green, 1995; Wachter, Ruhl, & Stauffer, 2012) and SUA

cis‐consensus sequences (Marquez, Hopfler, Ayatollahi, Barta, & Kalyna,

2015), respectively (Figures 1c and S2). These interactions are not evi-

dent for the A/U/G/C/A haplotype (Figure 1c) but are retained in the

G/G/U/G/A and A/G/U/G/A haplotypes (Table 3). In addition, SNP

37268 is also predicted to make a different base pair in the A/U/G/C/

A haplotype compared to the other three, though there is only a differ-

ence of 2 nts between contact sites. Interestingly, the thermodynamic

stability (Gibbs free energy, ΔG, kcal/mol) of the G/G/U/G/C haplotype

pre‐mRNA is more stable compared to the A/U/G/C/A haplotype

(Table 4). Two SNPs—37268 and 37245—are located within intron 2 of

the pre‐mRNA (Figure 1a), one of which (37268) is located at the neck

of a region predicted to form a long (95 nt) stem loop (Figure 2a). Intron

2 is rich in PTB cis‐elements (Figure S2).

PTBs contribute to the temperature‐dependent splicing of LHY

(James et al., 2018) and as such PTB would be predicted to interact

specifically with LHY mRNA. To test this, we used RNA‐EMSA binding

reactions with recombinant PTB1 protein and an in vitro transcribed

LHY mRNA fragment comprising exons 1 through 5 and the interven-

ing introns (representing the Col‐0 G/G/U/G/C haplotype) to ask

whether PTB1 bound LHY pre‐mRNA. Figure 2b shows the formation

of PTB1:LHY mRNA complexes that could be partially competed by

the addition of excess unlabelled probe. The amount of probe bound

seemed to increase cooperatively with the PTB1 concentration. Taken

thus far, the structure predictions and binding data highlight that LHY

5′UTR splicing sensitivity is likely influenced by both the inherent ther-

modynamic stability (RNA secondary structure) of transcripts in addi-

tion to the biological stability of transcripts bound and processed by

trans‐acting RNA‐binding SFs.

In order to investigate the potential relevance of the SNP varia-

tions to temperature‐dependent splicing of the 5′UTR of LHY, we next



FIGURE 1 LHY 5′UTR haplotype prevalence and potential influence on pre‐mRNA secondary structure. (a) Single nucleotide polymorphism (SNP)
coordinates and prevalence (%, vertical bars) for a set of 1,131 natural Arabidopsis variants. SNP bars align with ENSEMBL transcript models for the
5′UTR of LHY (At1g01060; orange assemblies) and the constitutively spliced model (At1g01060.1, pale blue model). Horizontal bars and lines;
exons and introns, respectively. (b) R4RNA arc diagrams for predicted secondary structure comparison of the (upper) G/G/U/G/C and (lower) A/U/
G/C/A haplotypes. Predictions are based on the folding of 782 nt (transcriptional start site to the first AUG start codon) of LHY pre‐mRNA. Vertical
arrows and dotted lines map the coordinates of SNPs 37437, 37245, and 37138 from Panel (a) onto the arcs; coloured arcs highlight three SNP‐
associated arcs. (c) Regions of secondary structure divergence for the three haplotypes in Panel (b) projected (vertical dotted lines) back onto the
LHY 5′UTR model featuring red symbols, putative pY regions containing UCUU/UUCU (circles; regions <15 nt, rectangles regions >15 < 30 nt) and
green rectangles, potential SUA consensus binding elements UCUUCUUC, including four tandem repeats (red outline). LHY = LATE ELONGATED
HYPOCOTYL

1528 JAMES ET AL.



TABLE 3 Base pairing features of the SNPs at the 5′UTR region
of LHY

Location Coordinate 1 Pairing Coordinate 2 Location

G/G/U/G/C

exon 1 37716 C:G 37437 intron 1

intron 2 37360 U:G 37268 intron 2

intron 2 37223 A:U 37245 intron 2

exon 1 37776 C:G 37138 exon 3

‐ ‐:C 37072 exon 3

G/G/U/G/A

exon 1 37716 C:G 37437 intron 1

intron 2 37360 U:G 37268 intron 2

intron 2 37223 A:U 37245 intron 2

exon 1 37776 C:G 37138 exon 3

‐ ‐:A 37072 exon 3

A/G/U/G/A

‐ ‐:A 37437 intron 1

intron 2 37360 U:G 37268 intron 2

intron 2 37223 A:U 37245 intron 2

exon 1 37776 C:G 37138 exon 3

‐ ‐:A 37072 exon 3

A/U/G/C/A

intron 1 37405 U:A 37437 intron 1

intron 2 37358 A:U 37268 intron 2

intron 1 37525 C:G 37245 intron 2

exon 1 37593 G:C 37138 exon 3

‐ ‐:A 37072 exon 3

Note. Single nucleotide polymorphism, as coordinate 2, location and mfold
predicted association with Coordinate 1 canonical and non‐canonical pre‐
mRNA base pair for each of the haplotypes. Dash (−) denotes non‐base
pairing.

TABLE 4 Thermodynamic stability of LHY 5′UTRs with distinct
haplotypes

Haplotype Vienna RNAfold mfold

A/G/U/G/A −186.80 −175.60

G/G/U/G/A −186.80 −175.46

G/G/U/G/C −186.10 −175.46

A/U/G/C/A −184.20 −173.56

Note. Vienna RNAfold and mfold predicted thermodynamic stabilities
(Gibbs free energy, ΔG, kcal/mol) for 782 nts of LHY pre‐mRNA sequence
(−779 to +3 relative to the ATG start codon) for each haplotype.

LHY intron 2 5'
3'

37268

37245

22
5
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×10 ×25 ×50

45
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(b)

FIGURE 2 In vitro binding of PTB1 with LHY pre‐mRNA. (a)
Predicted secondary structure (Vienna RNAfold) of intron 2 with
location of SNPs 37245 and 37268 of the G/G/U/G/C haplotype
highlighted. (b) In vitro RNA‐EMSAs (long and short exposures)
showing the binding of recombinant PTB1 at the denoted
concentrations with 3′‐biotin labelled LHY RNA (approximately 10 fg,
spanning exons 1 to 5 plus the intervening introns), the three tracks on
the right show competition with unlabelled RNA at the denoted fold
abundance relative to labelled probe). LHY = LATE ELONGATED
HYPOCOTYL [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Prevalence of haplotypes within the WRLD dataset

37437 37268 37245 37138 37072 Number (Proportion)

G G U G C 369 (39.6%)

G G U G A 320 (34.3%)

A G U G A 191 (20.5%)

A U G C A 52 (5.6%)

Note. Single nucleotide polymorphisms are ordered into four distinct haplo-
types. The number of accessions and proportion of the 932 accessions (the
WRLD dataset) used for global spatial analysis is provided.

TABLE 1 Single nucleotide polymorphism heterogeneity at the LHY
5′UTR locus (Chromosome 1; At1g01060) for 1,131 Arabidopsis
thaliana accessions

Coordinate Location U G C A N

chr1:37437 intron 1 0 792 0 298 41

chr1:37268 intron 2 74 983 0 0 74

chr1:37245 intron 2 986 67 0 0 78

chr1:37138 exon 3 0 1013 70 0 48

chr1:37072 exon 3 0 0 404 668 59

Note. The number of natural variants from The 1001 Genome Consortium
project (Consortium, 2016) possessing the indicated SNP at the denoted
location in the genomic sequence for LHY is provided.
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FIGURE 3 Global distribution of haplotypes. Frequency of
haplotypes at the ADMIXTURE group level for the (a) WRLD and (b)
WRLD_ran50 datasets. (c) Frequency of haplotypes at the latitude
level. Colour shading categorization of haplotypes in Panels (b) and (c)
is as Panel (a). For Panels (a) and (c), the number of accessions in each
group is denoted above the bars [Colour figure can be viewed at
wileyonlinelibrary.com]
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examined global spatial distribution of the Arabidopsis natural variants.

The 932 accessions are distributed across 44 countries (Figure S3).

Thirty countries, denoted as “others” in Figure S3a, have seven or less

accessions (Figure S3b). Around 50% of the accessions in the WRLD

dataset originate from Sweden, the Iberian Peninsula (Spain and

Portugal), and the United States (Figure S3a). Differences in the rela-

tive make‐up of haplotypes within the country populations were evi-

dent—Recently colonized U.S. accessions (Hagmann et al., 2015) are

principally the Col‐0‐like G/G/U/G/C type with a high proportion of

the U.S. cohort (66%) originating from sites adjacent to Lake Michigan

(Figure S4a). Other countries show increased stratification of haplo-

type distribution, as evident for the Spain and the U.K. populations

(Figures S4b and S4e, respectively). Colonization of the British Isles is

thought to have been more ancient and gradual compared to the

United States (Consortium, 2016), and this is likely reflected in a wider

spread of genotypes in the U.K. population compared to the United

States. The latitudinal distribution of haplotypes in Spain (Figure S4b,

inset), resolved with reasonably even sample sizes within 1° latitude

“bins,” shows an increase in the proportion of the G/G/U/G/A haplo-

type with increasing latitude at the expense of the G/G/U/G/C and

A/U/G/C/A haplotypes. Sweden provides the largest single contribu-

tion (23.5%) of accessions in the WRLD dataset (Figure S3a), primarily

split between two sites—a northern “High Coast” group and a southern

“Skåne” population (Figure S4c). These two regions display contrasting

climates. The northern accessions, the majority of which are the G/G/

U/G/A type (Figure S4c, inset), experience colder temperatures, longer

snow cover, and a broader range of photoperiod, whereas the more

stratified southern strains are found in agricultural meadows, fields,

and on beaches along the Baltic Sea (Brachi, 2014).

Sample sizes for each haplotype within the WRLD dataset were

uneven due to the relative rarity of A/U/G/C/A (Figure S5a). We

therefore prepared a dataset (“WRLD_ran50”, see Supporting informa-

tion Dataset file ‘LHY SNP WRLD_ran50.csv’) with equal haplotype

sample sizes by randomly selecting 50 accessions for each of the

four haplotypes from the original WRLD dataset (Figure S5a). The

WRLD dataset contained a relatively high proportion (40%) of lines

originating from the same latitude–longitude coordinates, but with

the WRLD_ran50 dataset, this sample site redundancy was reduced

to 11.5% (Figure S5b).

Previously, we distributed the LHY 5′UTR haplotypes at the coun-

try level (Figures S3 and S4). However, The 1001 Genomes Consor-

tium established that genetic distances between individual accessions

did not reflect geographic distance (Consortium, 2016). We therefore

next sought to associate haplotypes according to their ADMIXTURE

assignations, a model‐based assessment of the ancestry of unrelated

individuals (Alexander, Novembre, & Lange, 2009; Consortium,

2016). The clusters broadly correspond to geography (eight groups)

and extreme ancestral divergence (the “relict” and “admixed” clusters).

The distribution of the different haplotypes within these ADMIXTURE

groups is shown in Figure 3a for the WRLD dataset and in Figure 3b

for the WRLD_ran50 dataset. These data show representation of the

haplotypes, albeit with different frequencies, within the majority

of these clusters (Figure 3a)—the exception being the Northern

Sweden cohort that is almost universally the “G/G/U/G/A” haplotype

(Figure 3a). A similar distribution of haplotypes within the ADMIXTURE
clusters for the WRLD_ran50 dataset was also seen (Figure 3b), sug-

gesting that sampling accessions randomly across the world maintained

an adequate representation of the full dataset. There was not a clear

correlation of haplotype prevalence across the latitude range

(Figure 3c), although interpretation may be hampered by sample size

variation in each of the latitude “bins.”

Relict accessions are variants that continue to inhabit ancestral

habitats and are thought to have mixed with other lineage during a

spread to northern latitudes. The 1001 Genomes Consortium identi-

fied 22 Iberian relicts, 17 of which are present in our WRLD_ran50

http://wileyonlinelibrary.com
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scale; °C × 10). Accessions are plotted across Europe, North Africa, and
Central Asia. A global projection of the entire WRLD_ran50 dataset is
presented in Figure S6a. (b) Principal component analysis (PC1 vs. PC2)
of 20 continuous variables (11 temperature [T], 8 precipitation [P], and
1 altitude [A] variable) and categorized for the four haplotypes for the
WRLD_ran50 dataset. Means and ±SEM of (c) BIO2: annual mean
diurnal range (°C × 10) and (d) BIO7: temperature annual range
(°C × 10) for each haplotype cohort. Pairs of means grouped by a
horizontal bracket are not significantly different from each other
(Tukey–Kramer method, p > .05; see Section 2) [Colour figure can be
viewed at wileyonlinelibrary.com]
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datasets (20 are within the WRLD dataset; Table S2, Table S3, and Fig-

ure S4d). The majority of these are the A/U/G/C/A type (15 out of 17,

and 15 out of 20 for WRLD_ran50 and WRLD, respectively). This hap-

lotype therefore seems to be of relict origin—It is relatively rare

(around 5% in the WRLD dataset [Table 2] and 9% in WRLD_ran50

dataset [Table S2]) and, as noted earlier, probably possesses distinct

secondary structure properties compared to the more prevalent haplo-

types (Figure 1b and Tables 3 and 4).

We next investigated correlations between LHY 5′UTR haplotype

distribution with a series of 19 bioclimatic variables at a global resolu-

tion of 2.5 arcmin (worldclim.org; Hijmans et al., 2005). These variables

included monthly total precipitation, and monthly mean, minimum, and

maximum temperature, and another 15 variables derived from the

monthly data. Elevations for the accession collection sites were also

obtained (see Section 2). Figure 4a shows the WRLD_ran50 dataset

accessions mapped upon global means of monthly temperature

ranges (BIO2: annual mean temperature range), an index useful for

interpreting the relevance of temperature fluctuation to a species

(O'Donnell & Ignizio, 2012). Figure S6a shows an equivalent plot for

the 932 accessions of theWRLD dataset mapped upon BIO2 variables.

The WRLD and WRLD_ran50 datasets (Table S2) contain accession

details, LHY 5′UTR haplotype and ADMIXTURE categorization and lat-

itude–longitude, bioclimatic and elevation information.

PCA was next used to visualize variation between the 20 continu-

ous (bioclimatic and elevation) variables and the four categorical (hap-

lotype) variables for the WRLD_ran50 and WRLD datasets (Figures 4b

and S6b, respectively). For both datasets, six principal components

could explain around 96% of the variation of the continuous variables

(Figure S7). The PCAs show clustering of the precipitation and temper-

ature variables (denoted as “P” and “T” in the plots) with the principal

component dimensions. Although these data show a high degree of

overlap between the haplotypes, it seems that at least the G/G/U/

G/A haplotype diverged from the A/U/G/C/A haplotype across the

PC2 (Figures 4b and S6b). We focused on the nonredundant

WRLD_ran50 dataset, reasoning that a balanced design (equal

number of observations in each haplotype group) would minimize

heteroscedasticity (different standard deviations in the different

groups), a consideration for ANOVA interpretations. We selected bio-

climatic variables meriting further analysis based on (a) an ANOVA

assessment of the variability among haplotype group means and (b) a

test of the assumption that the group variances were statistically equal

(Brown–Forsythe test; Table 5). On this basis, clinical correlations

between the categorical haplotype variables and temperature biocli-

matic variables can be seen—especially for BIO2 (mean diurnal range)

and BIO7 (temperature annual range; Table 5). Post hoc multiple com-

parison tests (Tukey–Kramer; confidence interval for comparisons of

means with every other mean) were performed for BIO2 and BIO7

for both the WRLD_ran50 and WRLD datasets. These data show

that the A/U/G/C/A haplotype correlates with a higher extent of

annual temperature fluctuation (BIO2; Figures 4c and S6c for the

WRLD_ran50 and WRLD datasets, respectively), and a higher temper-

ature difference between the minimum temperature of the coldest

month and the highest temperature of the warmest month (BIO7;

Figures 4d and S6d). The previously noted 20 relict accessions in the

WRLD dataset (Tables S2 and S3) are principally A/U/G/C/A (15 out
of 20 accessions). Plots of the individual relict accession BIO2 and

BIO7 levels indicate that the A/U/G/C/A relicts are not responsible

for the higher mean levels of the A/U/G/C/A BIO2 and BIO7 variables

compared to other haplotypes (Figure S6c,d, respectively). Haplotypes

G/G/U/G/C and G/G/U/G/A differ—at least for the 5′UTR region

analysed—only in the SNP adjacent to the translational start site

(37072), yet G/G/U/G/C accessions associate with wider fluctuations

http://worldclim.org
http://worldclim.org
http://wileyonlinelibrary.com


TABLE 5 ANOVA and Brown–Forsythe statistics for the WRLD_ran50 dataset

WORLDCLIM Description Abbrev. Type ANOVA F3,196 Brown–Forsythe B–F significance

Annual mean temperature BIO1 T =2.88, p = .037* p < .0001**** Y

Mean diurnal range BIO2 T =11.98, p < .0001**** p = .016* Y

Isothermality (BIO2/BIO7) (* 100) BIO3 T =2.20, p = .089 p = .015* Y

Temp. seasonality (st. dev. *100) BIO4 T =3.72, p = .012* p = .005** Y

Max. temp. of warmest month BIO5 T =4.94, p = .003** p = .722 N

Min temp. of coldest month BIO6 T =3.53, p = .016* p < .0001**** Y

Temp. annual range (BIO5‐BIO6) BIO7 T =6.34, p = .0004*** p = .051 N

Mean temp. of wettest quarter BIO8 T =5.50, p = .001** p = .120 N

Mean temp. of driest quarter BIO9 T =2.25, p = .084 p = .0005*** Y

Mean temp. of warmest quarter BIO10 T =3.16, p = .016* p = .320 N

Mean temp. of coldest quarter BIO11 T =2.66, p = .050 p < .0001**** Y

Annual precipitation BIO12 P =4.79, p = .003** p = .250 N

Precipitation of wettest month BIO13 P =0.86, p = .461 p = .838 N

Precipitation of driest month BIO14 P =10.72, p < .0001**** p = .915 N

Precipitation seasonality (CV) BIO15 P =8.24, p < .0001**** p = .461 N

Precipitation of wettest quarter BIO16 P =1.36, p = .225 p = .630 N

Precipitation of driest quarter BIO17 P =10.33, p < .0001**** p = .779 N

Precipitation of warmest quarter BIO18 P =12.43, p < .0001**** p = .744 N

Precipitation of coldest quarter BIO19 P =0.88, p = .451 p = .129 N

Elevation altitude_GPS ‐ =17.22, p < .0001**** p = .0002*** Y

Note. A test of the null hypothesis that the haplotype group means were identical for each of the WORLDCLIM bioclimatic variables (Hijmans et al., 2005)
and the elevation variable was tested by ordinary one‐way ANOVA. For the null hypothesis to be true the F ratio value is expected to be close to 1.0 and a
large F ratio indicates that the variation among haplotype group means is more than expected by chance. A small p value (in the ANOVA column) indicates
that it is unlikely that the differences observed are due to random sampling. Bioclimatic variables are summarized as either temperature (“T”) or precipitation
(“P”) associated. The Brown–Forsythe test is reported as a p value and indicates whether the haplotype group populations have different standard deviations
and is summarized at a significance level (“B–F significance”) as either yes (“Y”) or no (“N”) (p < .05). ANOVA = analysis of variance.
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in temperature (Figure 4c) and wider extremes of temperature

(Figure 4d). A/G/U/G/As and G/G/U/G/As, which differ only in SNP

37437, share similar responses to fluctuations (i.e., the extent of habitat

temperature “bandwidth”; Figure 4c) yet appear to be geared to envi-

ronments with distinct annual mean temperatures (BIO1; Figure S8).

Taken together, a general picture emerges of haplotype tempera-

ture “specialisms”—Although A/U/G/C/As and G/G/U/G/As both

tend to associate with cooler environments (BIO1; Figure S8), A/U/

G/C/As are prominent in environments with wider extremes of

temperature (BIO7; Figure 4d). On the other hand, A/G/U/G/As and

G/G/U/G/Cs both appear to correlate with milder temperatures

(BIO1; Figure S8), with G/G/U/G/Cs tending to associate with wider

maximum–minimum temperature habitats (BIO2; Figure 4c).

A/U/G/C/As are notably distinct from the other three haplotypes

for precipitation bioclimatic variables (Table 5 and, e.g., BIO14, BIO17,

and BIO18 in Figure S9). A similar picture is seen for the annual precipi-

tation variable (BIO12, Figure S10) where A/U/G/C/A is clearly distinct

from the other haplotypes. Interestingly, scatter plots of BIO1 (annual

mean temperature) with BIO12 (annual precipitation) imply that for Ibe-

rian and Swedish populations (Figures S11a,b, respectively), the G/G/U/

G/A haplotype has expanded into low temperature and high precipita-

tion environments, whereas G/G/U/G/C haplotypes appear to occupy

habitats with narrower ranges of temperature and precipitation.

The Quaternary glacial history of the Mediterranean Basin has

played an important role in structuring patterns of plant biodiversity.
Consequently, the Iberian Peninsula has emerged as an important

backdrop for studying the evolutionary processes underlying plant

differentiation (Comes & Kadereit, 1998; Hewitt, 1999; Hughes,

Woodward, & Gibbard, 2006; Marcer et al., 2017; Médail & Diadema,

2009). There are also high levels of environmental heterogeneity in the

region, leading to, for example, large differences in geographic vari-

ances of minimum temperature between the north and south of the

Peninsula, and these appear to correlate strongly with Arabidopsis life

cycle phenology (Marcer et al., 2017). Central and northwest Spain are

mountainous areas with strong altitudinal gradients and rapid changes

in ecological conditions over short distances. These mountainous areas

have cool climates that are largely absent in the south‐west of the

Iberian Peninsula (Mendez‐Vigo, Pico, Ramiro, Martinez‐Zapater, &

Alonso‐Blanco, 2011). We were therefore interested to see the global

distribution of the four haplotypes for the elevation variable in the

WRLD dataset (Figures 5a and S6e) and also for the WRLD‐ran50

datasets (Figure 5b). These data show a global‐wide high altitude distri-

bution of the relict A/U/G/C/A haplotype compared to the other three

haplotypes. Iberian A/U/G/C/As also demonstrated a tendency for a

higher altitude distribution (Figure 5c,d). Similar to that observed previ-

ously for the BIO2 and BIO7 variables, A/U/G/C/A accessions classi-

fied as relict by ADMIXTURE did not appear to influence the higher

altitude distribution compared to the other haplotypes (Figure S6e).

The A/U/G/C/A haplotype was not the only high altitude special-

ist; there also seemed to be a prevalence for the G/G/U/G/A



FIGURE 5 Haplotypes correlate with
elevation. (a) Projection of haplotypes from
the WRLD dataset onto the global elevation
profile (index; metres). Accessions are plotted
across Europe, North Africa, and Central Asia.
(b) Means and ±SEM of elevations for each
haplotype group for the left; WRLD_ran50
and right; WRLD datasets. Pairs of means
grouped by a horizontal bracket are not
significantly different from each other (Tukey–
Kramer method, p > .05). (c) Left, projection of
haplotypes onto the Iberian Peninsula
elevation profile (index; metres), and right,
means of elevations for each haplotype group
for the Spanish cohort; all means not
significantly different from each other (Tukey–
Kramer method, p > .05), except for G/G/U/
G/A versus G/G/U/G/C (Tukey–Kramer
method, p < .05; see Section 2) [Colour figure
can be viewed at wileyonlinelibrary.com]
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haplotype at higher elevations in the Iberian cohort (Figure 5d). Thus,

there appears to be a tendency for low altitude, low latitude Iberian

accessions to be G/G/U/G/C variants with higher altitude and higher

latitude types to be of the G/G/U/G/A type (Figure S4b inset and

Figure 5c,d). G/G/U/G/As seem to be particularly prevalent in the

mountainous Pyrenees region of northern Spain, where there is a

lower prevalence of relict A/U/G/C/As (Figure S4b inset and

Figure 5c).

We next asked whether the predicted transcript secondary struc-

ture of the LHY 5′UTR might correlate with its splicing response to

cooling. We chose to compare representative accessions for two of

the haplotype subgroups—the relict‐like A/U/G/C/A and the Col‐0‐

like G/G/U/G/C subgroups—for which the bases in pre‐mRNA at posi-

tions 37268 and 37245 make different contacts (Figure 1b). Three

accessions each for the two haplotypes (Figure S12) were subjected

to cooling from 20 to 4 °C, with cooling initiated at dusk (see Section

2), and representative dawn phased samples for transition (Day 1)

and acclimation (Days 4 and 8) to the lower temperature analysed.

Levels of FS 5′UTR transcripts and transcripts retaining intron 1 (I1R

transcripts) were determined (see Section 2). Previous work had

demonstrated that FS:I1R levels, at dawn at 20 °C for Col‐0, was

approximately 0.9 (James, Syed, Bordage, et al., 2012), and this ratio

was therefore used as the reference against which all other accessions

were compared. FS levels for the two subgroups were largely similar,

with a tendency for G/G/U/G/Cs to have lower levels post‐cooling

compared to A/U/G/C/As (Figure 6a,b). More strikingly, however, rel-

ict accessions appear to splice a lower proportion of transcripts to I1R

under all conditions (Figure 6c,d), with the concomitant result that the
splice ratio—the proportion of FS as a fraction of total levels—for rel-

icts was higher compared to G/G/U/G/Cs (Figure 6e,f). This suggests

that haplotype does indeed affect the splicing of LHY transcripts in

response to cooling.
4 | DISCUSSION

The circadian clock integrates multiple environmental stimuli, or

“inputs,” with physiologically relevant “output” processes, and it is

now well appreciated that there are fitness costs in running a dysfunc-

tional clock (Dodd et al., 2005; Greenham & McClung, 2015;

Yerushalmi & Green, 2009). The clock is keenly tuned to alternating

light:dark and temperature cycles and is said to “gate” responsiveness

to the environment to particular phases of the day via precise timing

—or phasing—of individual clock components and their cognate down-

stream signalling cascades (Fowler, Cook, & Thomashow, 2005; Hotta

et al., 2007). Large portions of the Arabidopsis transcriptome are clock

controlled including growth, stress responses, hormone signalling, and

metabolism pathways (Covington, Maloof, Straume, Kay, & Harmer,

2008; Harmer et al., 2000). One example is circadian clock gating of

the cold response via the C‐REPEAT BINDING FACTOR regulon—

comprising around 100 or so cold‐responsive genes—many of

which contain CIRCADIAN CLOCK ASSOCIATED1/LHY cis‐binding ele-

ments within their promoters (Mikkelsen & Thomashow, 2009;

Thomashow, 1999). Cooling also signals to the clock—trough levels

of daily clock gene oscillations appear to rise with cooling resulting in

damped rhythms (Bieniawska et al., 2008)—and cooling promotes

http://wileyonlinelibrary.com
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FIGURE 6 Distinct LHY 5′UTR splicing sensitivity for two
haplotypes. Expression levels, at dawn for the denoted temperature
conditions, for the individual accessions (Panels (a), (c), and (e)) and
means and ±SEM for the grouped haplotypes (Panels (b), (d), and (f);
n = 3) for ((a) and (b)) fully spliced (FS) 5′UTR, ((c) and (d)) intron 1
retained (I1R) transcripts, and ((e) and (f)) the splice ratio (FS transcripts
as a fraction of total transcripts). Expression levels for individual
accessions are derived from pooled tissue (9–13 plants per
temperature condition) and from two technical repeats of the
qPCR assay (see Section 2) [Colour figure can be viewed at
wileyonlinelibrary.com]
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temperature‐associated AS of several clock genes (Filichkin & Mockler,

2012; James, Syed, Bordage, et al., 2012; James, Syed, Brown, &

Nimmo, 2012; Kwon et al., 2014; Seo et al., 2012). Precisely how

temperature information is perceived and transduced to the clock via

post‐transcriptional mechanisms is an area of speculation and how

this might mechanistically coordinate gating of output pathways is

not known. Similarly, it remains unclear to what extent temperature‐

associated clock AS is mechanistically linked to inherently important

core clock phenomena such as temperature compensation or temper-

ature entrainment of the clock (Edwards et al., 2006; Edwards, Lynn,
Gyula, Nagy, & Millar, 2005; Salome & McClung, 2005), although it is

notable that splicing related components such as SICKLE, GEMIN2,

and SKIP are implicated in temperature compensation (Marshall,

Tartaglio, Duarte, & Harmon, 2016; Schlaen et al., 2015; Wang

et al., 2012).

We based this analysis of 1,001 genomes accessions on our recent

observations of the dynamic responses of LHY AS to temperature, and

in particular, the “molecular thermostat” properties of 5′UTR splicing—

an apparently adaptive response to temperature such that I1R splicing

is most prominent during temperature transitions (and not “steady

state” temperatures), akin to fluctuations in temperatures that are a

hallmark of natural climatic conditions (James et al., 2018). We focused

our attention on five SNPs in the 5′UTR region—two exonic and three

intronic—that cluster as four haplotypes. We characterized the A/U/

G/C/A haplotype, common to “relict” accessions, as the most distinct

of the haplotypes in the respect that, worldwide, these accessions

are found in regions of low rainfall. They are also associated with the

highest elevations with low mean annual temperatures and a wider

range of maximum–minimum temperatures. Two of the remaining

three haplotypes seem to associate with milder annual mean tempera-

tures (A/G/U/G/As and G/G/U/G/Cs) and lower altitude and wetter

habitats. Interestingly, G/G/U/G/As seem to be a low temperature

“specialist”—This haplotype is commonly found in the mountainous

Pyrenees region of northern Spain and is prominent at the limit of

Arabidopsis growth in northern Sweden.

It is not known whether the splicing of LHY transcripts is affected

by water status, but it is clearly affected by temperature changes. Our

data show that the splicing of the LHY 5′UTR on cooling does differ

between a small number of representative “relict‐like” A/U/G/C/A

and ‘Col‐0 like’G/G/U/G/C accessions, consistent with the notion that

the LHY 5′UTR represents a bona fide thermometer that is likely finely

tuned to distinct temperature habitats. However, further work will be

required to determine if other differences between the haplotypes

contribute to these results. The 5′UTR is critical for ribosome recruit-

ment to mRNAs and start codon choice plays a major role in the con-

trol of translation efficiency (Hinnebusch, Ivanov, & Sonenberg,

2016). It is currently unclear whether I1R transcripts retain translation

potential and if so whether upstream open reading frames (uORFs)

would play a role in fine‐tuning translational control of LHY. Equally,

I1R transcripts might be devoid of translation potential and subject

to degradation via nonsense mediated decay (NMD; Kalyna et al.,

2012; Staiger & Brown, 2013; Syed, Kalyna, Marquez, Barta, & Brown,

2012). In this scenario, the pool of translatable message is likely com-

promised with a possibility that this results in reduced levels of LHY

protein. Either way, LHY protein levels appear to be precisely set at

dawn via prior post‐transcriptional regulation.

The importance of intron‐mediated regulatory mechanisms and

the control of gene expression levels are increasingly recognized. The

classic example of intron‐mediated regulation in plants is the epige-

netic‐mediated regulation of FLOWERING LOCUS C (FLC) levels in

“over‐wintering” plants (Song et al., 2013). Here, vernalization‐induced

changes at the FLC locus in Arabidopsis occur specifically within intron

1, resulting in progressive gene silencing to enable competency to

flower when suitable temperatures prevail. In cereals, the vernalization

response is mediated by the stable induction of VERNALIZATION1

http://wileyonlinelibrary.com
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(Greenup, Peacock, Dennis, & Trevaskis, 2009; Oliver, Finnegan,

Dennis, Peacock, & Trevaskis, 2009) and natural variation in intron 1

length in VERNALIZATION1 seems to modulate vernalization sensitiv-

ity in a manner that reflects Spring and Winter flowering time habits

(Szucs et al., 2007). Regulation of the MADs box FLOWERING LOCUS

M (FLM) component of the ambient temperature flowering pathway

also appears to be regulated by an intron‐associated mechanism. In

vernalization‐insensitive Arabidopsis accessions flowering in ambient

temperatures is largely under control of the precise balance of FLM

α‐ and β‐alternatively spliced isoforms (Capovilla et al., 2017; Pose

et al., 2013; Sureshkumar et al., 2016) and natural variation within

intron 1 of FLM results in varying splicing sensitivities that likely are

advantageous for flowering time adaptation in the ambient tempera-

ture range (Lutz et al., 2015). Here, the primary sensing mechanism

feeding into FLM splicing is unknown, but as with LHY splicing may

conceivably involve the perturbation of a network of temperature‐

associated isoform switching RNA binding proteins that include

PTB1, U2 auxiliary factor 65A, and SUA (James et al., 2018).

At this stage, we cannot rule out the possibility that other SNPs

cosegregate with the LHY SNPs to provide the correlation patterns

presented here, and future work will require the assessment of the

influence of LHY SNPs for temperature‐associated splicing sensitivity

in isogenic or near isogenic backgrounds. We conclude that LHY 5′

UTR haplotypes—possessing distinct pre‐mRNA folding stabilities

and/or biological stabilities display a range of temperature specialisms

that may have enabled Arabidopsis to colonize new temperature hab-

itats. Given that global climate change is likely to have major but

unpredictable effects on plant diversity and crop yields (Chakraborty

& Newton, 2011; Hatfield et al., 2014; McClung & Davis, 2010; Moore

& Lobell, 2015; Mora et al., 2015; Thuiller, Lavorel, Araujo, Sykes, &

Prentice, 2005; Wheeler & von Braun, 2013), insights as to how plants

perceive and integrate temperature information via the clock to phys-

iologically relevant outputs and how evolution drives innovations in

plants responses to temperature is likely of value to enhanced crop

breeding programs.

ACKNOWLEDGMENTS

This work was supported by funding from the Biotechnology and

Biological Sciences Research Council (BBSRC; BB/H000135/1, BB/

K006835/1, and BB/P006868/1 to H.G.N.). We thank Dr. Peter

Dominy, University of Glasgow, for critical reading of the manuscript

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

A.B.J. and H.G.N. planned the research. A.B.J. and S.S. performed the

experiments. A.B.J. analysed the data. A.B.J. and H.G.N. wrote the

manuscript.

ORCID

Allan B. James http://orcid.org/0000-0003-4472-7095

Stuart Sullivan http://orcid.org/0000-0002-1042-7855

Hugh G. Nimmo http://orcid.org/0000-0003-1389-7147
REFERENCES

Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model‐based esti-
mation of ancestry in unrelated individuals. Genome Research, 19,
1655–1664.

Arana, M. V., Tognacca, R. S., Estravis‐Barcala, M., Sanchez, R. A., & Botto,
J. F. (2017). Physiological and molecular mechanisms underlying the
integration of light and temperature cues in Arabidopsis thaliana seeds.
Plant, Cell & Environment, 40, 3113–3121.

Bentley, D. L. (2014). Coupling mRNA processing with transcription in time
and space. Nature Reviews. Genetics, 15, 163–175.

Berry, S., & Dean, C. (2015). Environmental perception and epigenetic
memory: Mechanistic insight through FLC. The Plant Journal, 83,
133–148.

Bieniawska, Z., Espinoza, C., Schlereth, A., Sulpice, R., Hincha, D. K., &
Hannah, M. A. (2008). Disruption of the Arabidopsis circadian clock is
responsible for extensive variation in the cold‐responsive tran-
scriptome. Plant Physiology, 147, 263–279.

Box, M. S., Huang, B. E., Domijan, M., Jaeger, K. E., Khattak, A. K., Yoo, S. J.,
… Wigge, P. A. (2015). ELF3 controls thermoresponsive growth in
Arabidopsis. Current Biology, 25, 194–199.

Brachi B. (2014) The genetics of local adaptation in Swedish Arabidopsis
thaliana populations: A dual ecological‐genomic approach, Bergelson
lab/research/adaptation.

Buratti, E., & Baralle, F. E. (2004). Influence of RNA secondary structure on
the pre‐mRNA splicing process. Molecular and Cellular Biology, 24,
10505–10514.

Calixto, C. P. G., Simpson, C. G., Waugh, R., & Brown, J. W. S. (2016). Alter-
native splicing of barley clock genes in response to low temperature.
PLoS One, 11, e0168028.

Capovilla, G., Pajoro, A., Immink, R. G., & Schmid, M. (2015). Role of alter-
native pre‐mRNA splicing in temperature signaling. Current Opinion in
Plant Biology, 27, 97–103.

Capovilla, G., Symeonidi, E., Wu, R., & Schmid, M. (2017). Contribution of
major FLM isoforms to temperature‐dependent flowering in Arabidopsis
thaliana. Journal of Experimental Botany, 68, 5117–5127.

Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and
food security: An overview. Plant Pathology, 60, 2–14.

Christie, J. M., Arvai, A. S., Baxter, K. J., Heilmann, M., Pratt, A. J., O'Hara, A.,
… Getzoff, E. D. (2012). Plant UVR8 photoreceptor senses UV‐B by
tryptophan‐mediated disruption of cross‐dimer salt bridges. Science,
335, 1492–1496.

Clerte, C., & Hall, K. B. (2009). The domains of polypyrimidine tract binding
protein have distinct RNA structural preferences. Biochemistry, 48,
2063–2074.

Comes, H. P., & Kadereit, J. W. (1998). The effect of Quaternary climatic
changes on plant distribution and evolution. Trends in Plant Science, 3,
432–438.

Consortium T.G (2016). 1,135 Genomes Reveal the Global Pattern of
Polymorphism in Arabidopsis thaliana. Cell, 481–491.

Covington, M. F., Maloof, J. N., Straume, M., Kay, S. A., & Harmer, S. L.
(2008). Global transcriptome analysis reveals circadian regulation of
key pathways in plant growth and development. Genome Biology, 9,
R130.

Ding, Y., Tang, Y., Kwok, C. K., Zhang, Y., Bevilacqua, P. C., & Assmann, S. M.
(2014). In vivo genome‐wide profiling of RNA secondary structure
reveals novel regulatory features. Nature, 505, 696–700.

Dodd, A. N., Salathia, N., Hall, A., Kevei, E., Toth, R., Nagy, F., …Webb, A. A.
(2005). Plant circadian clocks increase photosynthesis, growth, survival,
and competitive advantage. Science, 309, 630–633.

Edwards, K. D., Anderson, P. E., Hall, A., Salathia, N. S., Locke, J. C., Lynn, J.
R., … Millar, A. J. (2006). FLOWERING LOCUS C mediates natural var-
iation in the high‐temperature response of the Arabidopsis circadian
clock. Plant Cell, 18, 639–650.

http://orcid.org/0000-0003-4472-7095
http://orcid.org/0000-0002-1042-7855
http://orcid.org/0000-0003-1389-7147


1536 JAMES ET AL.
Edwards, K. D., Lynn, J. R., Gyula, P., Nagy, F., & Millar, A. J. (2005). Natural
allelic variation in the temperature‐compensation mechanisms of the
Arabidopsis thaliana circadian clock. Genetics, 170, 387–400.

Ezer, D., Jung, J. H., Lan, H., Biswas, S., Gregoire, L., Box, M. S., … Wigge,
P. A. (2017). The evening complex coordinates environmental and
endogenous signals in Arabidopsis. Nat Plants, 3, 17087.

Fernandez, V., Takahashi, Y., Le Gourrierec, J., & Coupland, G. (2016). Pho-
toperiodic and thermosensory pathways interact through CONSTANS
to promote flowering at high temperature under short days. The Plant
Journal, 86, 426–440.

Filichkin, S. A., Cumbie, J. S., Dharmawardhana, P., Jaiswal, P., Chang, J. H.,
Palusa, S. G., … Mockler, T. C. (2015). Environmental stresses modulate
abundance and timing of alternatively spliced circadian transcripts in
Arabidopsis. Molecular Plant, 8, 207–227.

Filichkin, S. A., & Mockler, T. C. (2012). Unproductive alternative splicing
and nonsense mRNAs: A widespread phenomenon among plant circa-
dian clock genes. Biology Direct, 7, 20.

Filichkin, S. A., Priest, H. D., Givan, S. A., Shen, R., Bryant, D. W., Fox, S. E.,
… Mockler, T. C. (2010). Genome‐wide mapping of alternative splicing
in Arabidopsis thaliana. Genome Research, 20, 45–58.

Fowler, S. G., Cook, D., & Thomashow, M. F. (2005). Low temperature
induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock.
Plant Physiology, 137, 961–968.

Gould, P. D., Locke, J. C., Larue, C., Southern, M. M., Davis, S. J., Hanano, S.,
… Hall, A. (2006). The molecular basis of temperature compensation in
the Arabidopsis circadian clock. Plant Cell, 18, 1177–1187.

Gould, P. D., Ugarte, N., Domijan, M., Costa, M., Foreman, J., Macgregor, D.,
… Hall, A. J. (2013). Network balance via CRY signalling controls the
Arabidopsis circadian clock over ambient temperatures. Molecular
Systems Biology, 9, 650.

Green, R. M., Tingay, S., Wang, Z. Y., & Tobin, E. M. (2002). Circadian
rhythms confer a higher level of fitness to Arabidopsis plants. Plant
Physiology, 129, 576–584.

Greenham, K., & McClung, C. R. (2015). Integrating circadian dynamics
with physiological processes in plants. Nature Reviews. Genetics, 16,
598–610.

Greenup, A., Peacock, W. J., Dennis, E. S., & Trevaskis, B. (2009). The
molecular biology of seasonal flowering‐responses in Arabidopsis and
the cereals. Annals of Botany, 103, 1165–1172.

Gueroussov, S., Weatheritt, R. J., O'Hanlon, D., Lin, Z. Y., Narula, A.,
Gingras, A. C., & Blencowe, B. J. (2017). Regulatory expansion in mam-
mals of multivalent hnRNP assemblies that globally control alternative
splicing. Cell, 170, 324, e323–339.

Hagmann, J., Becker, C., Muller, J., Stegle, O., Meyer, R. C., Wang, G., …
Weigel, D. (2015). Century‐scale methylome stability in a recently
diverged Arabidopsis thaliana lineage. PLoS Genetics, 11, e1004920.

Hahne, F., & Ivanek, R. (2016). Visualizing genomic data using Gviz and
bioconductor. Methods in Molecular Biology, 1418, 335–351.

Harmer, S. L., Hogenesch, J. B., Straume, M., Chang, H. S., Han, B., Zhu, T., …
Kay, S. A. (2000). Orchestrated transcription of key pathways in
Arabidopsis by the circadian clock. Science, 290, 2110–2113.

Hatfield, J., Takle, G., Grotjahn, R., Holden, P., Izaurralde, R. C., Mader, T., …
Liverman, D. (2014). Climate change impacts in the United States: The
third national climate assessment. In J. M. Melillo, T. C. Richmond, &
G. W. Yohe (Eds.), U.S. Global Change Research Program (pp. 150–174).

Hepworth, J., & Dean, C. (2015). Flowering Locus C's lessons: Conserved
chromatin switches underpinning developmental timing and adapta-
tion. Plant Physiology, 168, 1237–1245.

Hewitt, G. M. (1999). Post‐glacial re‐colonization of European biota.
Biological Journal of the Linnean Society, 68, 87–112.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005).
Very high resolution interpolated climate surfaces for global land areas.
International Journal of Climatology, 25, 1965–1978.
Hinnebusch, A. G., Ivanov, I. P., & Sonenberg, N. (2016). Translational con-
trol by 5′‐untranslated regions of eukaryotic mRNAs. Science, 352,
1413–1416.

Hotta, C. T., Gardner, M. J., Hubbard, K. E., Baek, S. J., Dalchau, N., Suhita,
D., … Webb, A. A. (2007). Modulation of environmental responses of
plants by circadian clocks. Plant, Cell & Environment, 30, 333–349.

Hughes, P. D., Woodward, J. C., & Gibbard, P. L. (2006). Quaternary glacial
history of the Mediterranean mountains. Progress in Physical Geography,
30, 334–364.

James, A. B., Calixto, C. P. G., Tzioutziou, N. A., Guo, W., Zhang, R., Simpson,
C. G., & Nimmo, H. G. (2018). How does temperature affect splicing
events? Isoform switching of splicing factors regulates splicing of LATE
ELONGATED HYPOCOTYL (LHY). Plant, Cell & Environment.

James, A. B., Monreal, J. A., Nimmo, G. A., Kelly, C. L., Herzyk, P., Jenkins, G.
I., & Nimmo, H. G. (2008). The circadian clock in Arabidopsis roots
is a simplified slave version of the clock in shoots. Science, 322,
1832–1835.

James, A. B., Syed, N. H., Bordage, S., Marshall, J., Nimmo, G. A., Jenkins, G.
I., … Nimmo, H. G. (2012). Alternative splicing mediates responses of
the Arabidopsis circadian clock to temperature changes. Plant Cell, 24,
961–981.

James, A. B., Syed, N. H., Brown, J. W., & Nimmo, H. G. (2012). Thermoplas-
ticity in the plant circadian clock: How plants tell the time‐perature.
Plant Signaling & Behavior, 7, 1219–1223.

Jung, J. H., Domijan, M., Klose, C., Biswas, S., Ezer, D., Gao, M., … Wigge, P.
A. (2016). Phytochromes function as thermosensors in Arabidopsis.
Science, 354, 886–889.

Kalyna, M., Simpson, C. G., Syed, N. H., Lewandowska, D., Marquez, Y.,
Kusenda, B., … Brown, J. W. (2012). Alternative splicing and non-
sense‐mediated decay modulate expression of important regulatory
genes in Arabidopsis. Nucleic Acids Research, 40, 2454–2469.

Koini, M. A., Alvey, L., Allen, T., Tilley, C. A., Harberd, N. P., Whitelam, G. C.,
& Franklin, K. A. (2009). High temperature‐mediated adaptations in
plant architecture require the bHLH transcription factor PIF4. Current
Biology, 19, 408–413.

Kumar, S. V., Lucyshyn, D., Jaeger, K. E., Alos, E., Alvey, E., Harberd, N. P., &
Wigge, P. A. (2012). Transcription factor PIF4 controls the
thermosensory activation of flowering. Nature, 484, 242–245.

Kumar, S. V., & Wigge, P. A. (2010). H2A.Z‐containing nucleosomes medi-
ate the thermosensory response in Arabidopsis. Cell, 140, 136–147.

Kwon, Y. J., Park, M. J., Kim, S. G., Baldwin, I. T., & Park, C. M. (2014). Alter-
native splicing and nonsense‐mediated decay of circadian clock genes
under environmental stress conditions in Arabidopsis. BMC Plant Biol-
ogy, 14, 136.

Lai, D., Proctor, J. R., Zhu, J. Y., & Meyer, I. M. (2012). R‐CHIE: A web server
and R package for visualizing RNA secondary structures. Nucleic Acids
Research, 40, e95.

Legris, M., Klose, C., Burgie, E. S., Rojas, C. C., Neme, M., Hiltbrunner, A., …
Casal, J. J. (2016). Phytochrome B integrates light and temperature sig-
nals in Arabidopsis. Science, 354, 897–900.

Li, F., Zheng, Q., Vandivier, L. E., Willmann, M. R., Chen, Y., & Gregory, B. D.
(2012). Regulatory impact of RNA secondary structure across the
Arabidopsis transcriptome. Plant Cell, 24, 4346–4359.

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression
data using real‐time quantitative PCR and the 2(‐Delta Delta C(T))
Method. Methods, 25, 402–408.

Lorenz, R., Bernhart, S. H., Honer Zu Siederdissen, C., Tafer, H., Flamm, C.,
Stadler, P. F., & Hofacker, I. L. (2011). ViennaRNA Package 2.0. Algo-
rithms for Molecular Biology, 6, 26.

Lutz, U., Pose, D., Pfeifer, M., Gundlach, H., Hagmann, J., Wang, C., …
Schwechheimer, C. (2015). Modulation of ambient temperature‐depen-
dent flowering in Arabidopsis thaliana by natural variation of
FLOWERING LOCUS M. PLoS Genetics, 11, e1005588.

Mancini, E., Sanchez, S. E., Romanowski, A., Schlaen, R. G., Sanchez‐Lamas,
M., Cerdan, P. D., & Yanovsky, M. J. (2016). Acute effects of light on



JAMES ET AL. 1537
alternative splicing in light‐grown plants. Photochemistry and Photobiol-
ogy, 92, 126–133.

Marcer, A., Vidigal, D. S., James, P. M., Fortin, M. J., Mendez‐Vigo, B.,
Hilhorst, H. W., … Pico, F. X. (2017). Temperature fine‐tunes Mediterra-
nean Arabidopsis thaliana life‐cycle phenology geographically. Plant
Biology (Stuttgart, Germany).

Marquez, Y., Hopfler, M., Ayatollahi, Z., Barta, A., & Kalyna, M. (2015).
Unmasking alternative splicing inside protein‐coding exons defines
exitrons and their role in proteome plasticity. Genome Research, 25,
995–1007.

Marshall, C. M., Tartaglio, V., Duarte, M., & Harmon, F. G. (2016). The
Arabidopsis sickle mutant exhibits altered circadian clock responses to
cool temperatures and temperature‐dependent alternative splicing.
Plant Cell, 28, 2560–2575.

McClung, C. R., & Davis, S. J. (2010). Ambient thermometers in plants: From
physiological outputs towards mechanisms of thermal sensing. Current
Biology, 20, R1086–R1092.

McClung, C. R., Lou, P., Hermand, V., & Kim, J. A. (2016). The importance of
ambient temperature to growth and the induction of flowering.
Frontiers in Plant Science, 7, 1266.

Médail, F., & Diadema, K. (2009). Glacial refugia influence plant diversity
patterns in the Mediterranean Basin. Journal of Biogeography, 36,
1333–1345.

Melzer, R. (2017). Regulation of flowering time: A splicy business. Journal of
Experimental Botany, 68, 5017–5020.

Mendez‐Vigo, B., Pico, F. X., Ramiro, M., Martinez‐Zapater, J. M., & Alonso‐
Blanco, C. (2011). Altitudinal and climatic adaptation is mediated by
flowering traits and FRI, FLC, and PHYC genes in Arabidopsis. Plant
Physiology, 157, 1942–1955.

Mikkelsen, M. D., & Thomashow, M. F. (2009). A role for circadian evening
elements in cold‐regulated gene expression in Arabidopsis. The Plant
Journal, 60, 328–339.

Moore, F. C., & Lobell, D. B. (2015). The fingerprint of climate trends on
European crop yields. Proceedings of the National Academy of Sciences
of the United States of America, 112, 2670–2675.

Mora, C., Caldwell, I. R., Caldwell, J. M., Fisher, M. R., Genco, B. M., &
Running, S. W. (2015). Suitable days for plant growth disappear under
projected climate change: Potential human and biotic vulnerability.
PLoS Biology, 13, e1002167.

Nomoto, Y., Kubozono, S., Miyachi, M., Yamashino, T., Nakamichi, N., &
Mizuno, T. (2013). Circadian clock and PIF4‐mediated external
coincidence mechanism coordinately integrates both of the cues
from seasonal changes in photoperiod and temperature to regulate
plant growth in Arabidopsis thaliana. Plant Signaling & Behavior, 8,
e22863.

O'Donnell M.S., & Ignizio D.A. (2012) Bioclimatic predictors for supporting
ecological applications in the conterminous United States.

Oliver, S. N., Finnegan, E. J., Dennis, E. S., Peacock, W. J., & Trevaskis, B.
(2009). Vernalization‐induced flowering in cereals is associated with
changes in histone methylation at the VERNALIZATION1 gene.
Proceedings of the National Academy of Sciences of the United States of
America, 106, 8386–8391.

Pittendrigh, C. S. (1960). Circadian rhythms and the circadian organization
of living systems. Cold Spring Harbor Symposia on Quantitative Biology,
25, 159–184.

Pose, D., Verhage, L., Ott, F., Yant, L., Mathieu, J., Angenent, G. C., …
Schmid, M. (2013). Temperature‐dependent regulation of flowering by
antagonistic FLM variants. Nature, 503, 414–417.

Quint, M., Delker, C., Franklin, K. A., Wigge, P. A., Halliday, K. J., &
van Zanten, M. (2016). Molecular and genetic control of plant
thermomorphogenesis. Nat Plants, 2, 15190.

Salome, P. A., & McClung, C. R. (2005). PSEUDO‐RESPONSE REGULATOR
7 and 9 are partially redundant genes essential for the temperature
responsiveness of the Arabidopsis circadian clock. Plant Cell, 17,
791–803.
Schlaen, R. G., Mancini, E., Sanchez, S. E., Perez‐Santangelo, S., Rugnone,
M. L., Simpson, C. G., … Yanovsky, M. J. (2015). The spliceosome assem-
bly factor GEMIN2 attenuates the effects of temperature on alternative
splicing and circadian rhythms. Proceedings of the National Academy of
Sciences of the United States of America, 112, 9382–9387.

Seo, P. J., Park, M. J., Lim, M. H., Kim, S. G., Lee, M., Baldwin, I. T., &
Park, C. M. (2012). A self‐regulatory circuit of CIRCADIAN CLOCK‐
ASSOCIATED1 underlies the circadian clock regulation of tempera-
ture responses in Arabidopsis. Plant Cell, 24, 2427–2442.

Shikata, H., Hanada, K., Ushijima, T., Nakashima, M., Suzuki, Y., &
Matsushita, T. (2014). Phytochrome controls alternative splicing
to mediate light responses in Arabidopsis. Proceedings of the
National Academy of Sciences of the United States of America, 111,
18781–18786.

Simpson, C. G., Lewandowska, D., Liney, M., Davidson, D., Chapman, S.,
Fuller, J., … Brown, J. W. (2014). Arabidopsis PTB1 and PTB2 proteins
negatively regulate splicing of a mini‐exon splicing reporter and affect
alternative splicing of endogenous genes differentially. The New
Phytologist, 203, 424–436.

Singh, R., Valcarcel, J., & Green, M. R. (1995). Distinct binding specificities
and functions of higher eukaryotic polypyrimidine tract‐binding pro-
teins. Science, 268, 1173–1176.

Soemedi, R., Cygan, K. J., Rhine, C. L., Glidden, D. T., Taggart, A. J., Lin, C. L.,
… Fairbrother, W. G. (2017). The effects of structure on pre‐mRNA
processing and stability. Methods, 125, 36–44.

Song, J., Irwin, J., & Dean, C. (2013). Remembering the prolonged cold of
winter. Current Biology, 23, R807–R811.

Staiger, D., & Brown, J. W. (2013). Alternative splicing at the intersection of
biological timing, development, and stress responses. Plant Cell, 25,
3640–3656.

Sureshkumar, S., Dent, C., Seleznev, A., Tasset, C., & Balasubramanian, S.
(2016). Nonsense‐mediated mRNA decay modulates FLM‐dependent
thermosensory flowering response in Arabidopsis. Nat Plants, 2, 16055.

Syed, N. H., Kalyna, M., Marquez, Y., Barta, A., & Brown, J. W. (2012). Alter-
native splicing in plants—Coming of age. Trends in Plant Science, 17,
616–623.

Szucs, P., Skinner, J. S., Karsai, I., Cuesta‐Marcos, A., Haggard, K. G., Corey,
A. E., … Hayes, P. M. (2007). Validation of the VRN‐H2/VRN‐H1 epi-
static model in barley reveals that intron length variation in VRN‐H1
may account for a continuum of vernalization sensitivity. Molecular
Genetics and Genomics, 277, 249–261.

Thomashow, M. F. (1999). PLANT COLD ACCLIMATION: Freezing
tolerance genes and regulatory mechanisms. Annual Review of Plant
Physiology and Plant Molecular Biology, 50, 571–599.

Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T., & Prentice, I. C. (2005).
Climate change threats to plant diversity in Europe. Proceedings of the
National Academy of Sciences of the United States of America, 102,
8245–8250.

Vandivier, L. E., Anderson, S. J., Foley, S. W., & Gregory, B. D. (2016). The
conservation and function of RNA secondary structure in plants. Annual
Review of Plant Biology, 67, 463–488.

Verhage, L., Severing, E. I., Bucher, J., Lammers, M., Busscher‐Lange, J.,
Bonnema, G., … Immink, R. G. (2017). Splicing‐related genes are alterna-
tively spliced upon changes in ambient temperatures in plants. PLoS
One, 12, e0172950.

Wachter, A., Ruhl, C., & Stauffer, E. (2012). The role of polypyrimidine tract‐
binding proteins and other hnRNP proteins in plant splicing regulation.
Frontiers in Plant Science, 3, 81.

Wang, X., Wu, F., Xie, Q., Wang, H., Wang, Y., Yue, Y., …Ma, L. (2012). SKIP
is a component of the spliceosome linking alternative splicing and the
circadian clock in Arabidopsis. Plant Cell, 24, 3278–3295.

Wheeler, T., & von Braun, J. (2013). Climate change impacts on global food
security. Science, 341, 508–513.

Wigge, P. A. (2013). Ambient temperature signalling in plants. Current
Opinion in Plant Biology, 16, 661–666.



1538 JAMES ET AL.
Wu, H. P., Su, Y. S., Chen, H. C., Chen, Y. R., Wu, C. C., Lin, W. D., & Tu, S. L.
(2014). Genome‐wide analysis of light‐regulated alternative splicing
mediated by photoreceptors in Physcomitrella patens. Genome Biology,
15, R10.

Yamashino, T. (2013). From a repressilator‐based circadian clock mecha-
nism to an external coincidence model responsible for photoperiod
and temperature control of plant architecture in Arabodopsis thaliana.
Bioscience, Biotechnology, and Biochemistry, 77, 10–16.

Yerushalmi, S., & Green, R. M. (2009). Evidence for the adaptive signifi-
cance of circadian rhythms. Ecology Letters, 12, 970–981.

Zhang, H., Lin, C., & Gu, L. (2017). Light regulation of alternative Pre‐mRNA
splicing in plants. Photochemistry and Photobiology, 93, 159–165.

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridiza-
tion prediction. Nucleic Acids Research, 31, 3406–3415.
SUPPORTING INFORMATION

Additional Supporting Information may be found online in the

supporting information tab for this article.

How to cite this article: James AB, Sullivan S, Nimmo HG.

Global spatial analysis of Arabidopsis natural variants

implicates 5′UTR splicing of LATE ELONGATED HYPOCOTYL

in responses to temperature. Plant Cell Environ. 2018;41:

1524–1538. https://doi.org/10.1111/pce.13188

https://doi.org/10.1111/pce.13188

