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Motivated by multiple phenomenological considerations, we perform the first search for the existence of
a b̄b̄bb tetraquark bound state with a mass below the lowest noninteracting bottomonium-pair threshold
using the first-principles lattice nonrelativistic QCDmethodology. We use a full S-wave color/spin basis for
the b̄b̄bb operators in the three 0þþ, 1þ− and 2þþ channels. We employ four gluon field ensembles at
multiple lattice spacing values ranging from a ¼ 0.06–0.12 fm, all of which include u, d, s and c quarks in
the sea, and one ensemble which has physical light-quark masses. Additionally, we perform novel
exploratory work with the objective of highlighting any signal of a near threshold tetraquark, if it existed,
by adding an auxiliary potential into the QCD interactions. With our results we find no evidence of a QCD
bound tetraquark below the lowest noninteracting thresholds in the channels studied.
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I. INTRODUCTION

Tetraquarks were first considered theoretically decades
ago in the context of light-quark physics in order to explain,
amongst other experimental features, the a0ð980Þ and
f0ð980Þ broad resonances [1].1 More recently, there has
been exciting experimental evidence indicating the poten-
tial existence of tetraquark candidates amongst the so-
called XYZ states—states whose behavior differs from
predictions of the heavy quark-antiquark potential model.
The observed XYZ states apparently contain two heavy
quarks, ðcc̄Þ or ðbb̄), and two light quarks [4]. The
dynamics of these systems involves both the short-distance
and long-distance behavior of QCD and hence theoretical
predictions are difficult. Consequently, many competing
phenomenological models currently exist for these states
[5]. Lattice QCD studies of the observed XYZ states are
also difficult because these states are high up in the
spectrum as well as being in the threshold region for
strong decays into two heavy flavor mesons. While there
are theoretical arguments that some tetraquark states with

doubly heavy flavor (e.g., bbūd̄, bbūs̄ and bbd̄s̄) should be
bound and stable against all strong decays [6], no general
arguments exist for tetraquarks with heavy quark-antiquark
content such as QQ̄0qq̄0 states.
A tetraquark system composed of four heavy quarks is a

much cleaner system to study theoretically as long-distance
effects from light quarks are expected not to be appreciable,
as opposed to systems which are a mixture of heavy and
light quarks. In the limit of very heavy quarks perturbative
QCD single-gluon exchange dominates [7] and so the
dynamics are relatively simple. This makes these systems
particularly useful to study in order to shed light on the
aforementioned XYZ states. In fact, there is a multitude of
phenomenological models (with a quark mass ranging from
the bottom to the very heavy limit) which predict the
existence of a Q̄Q̄QQ bound tetraquark [8–15]. However,
these are not calculations from first principles and have an
unquantifiable systematic error associated with the choice
of four-body potential. In reality, the heaviest possible
tetraquark system in nature would be a b̄b̄bb tetraquark.
For this, nonperturbative QCD cannot be ignored, making a
first-principles lattice QCD study essential. If such a bound
b̄b̄bb tetraquark did exist, how it would be observed at the
LHC has already been addressed [16,17].
Given these pressing theoretical motivations, in this

work we perform the first lattice QCD study of the
b̄b̄bb system. The sole objective of this exploratory work
is to determine if the dynamics of QCD generates enough
binding force between the b̄b̄bb to produce a tetraquark
state with a mass below the lowest noninteracting botto-
monium-pair threshold, ensuring that it is stable against
simple strong decays. Searching for such a bound b̄b̄bb
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1Recent lattice studies of the scattering amplitude pole do
indicate that these states are in fact resonances as opposed to cusp
effects etc. [2,3].
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tetraquark candidate is particularly well suited to the first-
principles lattice QCD methodology because this state, if it
existed, would be the ground state in the b̄b̄bb system. This
means that it should be relatively easy to identify. Further,
b̄b̄bb annihilation effects are strongly suppressed by the
heavy-quark mass, as in the bottomonium system, and so
can be ignored.
This paper is organized as follows: in Sec. II the inter-

polating operators used in this study are discussed, in Sec. III
the computational methodology is given, while the majority
of the results are presented in Sec. IV. In Sec. V we explore a
novel method of adding an auxiliary potential intoQCDwith
the objective of highlighting a possible tetraquark signal. We
then discuss our conclusions in Sec. VI.

II. INFINITE-VOLUME CONTINUUM
EIGENSTATES, OPERATORS AND

TWO-POINT CORRELATORS

The QCD Fock space contains all color-singlet single-
particle states such as the conventional mesons jηbðkÞi,
jΥðkÞi etc. and, if a b̄b̄bb bound state also exists, a
tetraquark state jT4bðkÞi. In addition, there are also the
two-particle states which can be labeled by appropriate
quantum numbers as jPtot; JPC; jkrelj; JP1C1

1 ; JP2C2

2 ; Lreli
where Ptot (JPC) is the total (angular) momentum of the
two-particle system, with JPiCi

i being the quantum numbers
of the individual particles and krel (Lrel) the relative (orbital
angular) momentum between the two particles.
The sole motivation of this work is to search for a

possible b̄b̄bb tetraquark candidate within QCD that
couples to a bottomonium pair and which lies below the
lowest threshold. The bottomonium mesons we study can
be classified as JPC ¼ 2Sþ1LJ. As any orbital angular
momenta are expected to raise the internal kinetic energy
of the state (and hence its rest mass) we focus on two-body
S-wave systems (L ¼ 0) with no orbital angular momen-
tum between them (Lrel ¼ 0).
With the quantum numbers of the Υ=ηb being

JPC ¼ 1−−=0−þ, the S-wave 2ηb and 2Υ can have (through
the addition of angular momenta) a quantum number of
0þþ, while theΥηb has 1þ− and the 2Υ can also be in a 2þþ
configuration. We now want to construct a full basis of S-
wave color/spin interpolating operators that has overlap
with these quantum numbers. To do so, we start by forming
all possible color combinations that the 2b̄ and 2b can be in.
These are specified in Table I.
We can construct meson interpolating operators as

O1ð8Þ
M ðt;xÞ ¼ G1ð8Þ

efg b̄fΓMbgðt;xÞ; ð1Þ
where ΓM ¼ iγ5; γk projects onto the quantum numbers of

the ηb and Υ respectively, and G1ð8Þ
efg is the color projection

onto the singlet (octet). In addition, it is also possible to
construct a (anti-) diquark operator as

O3̄ð6Þ
D ðt;xÞ ¼ G3̄ð6Þ

efg b̄
Ĉ
fΓDbgðt;xÞ; ð2Þ

O3ð6̄Þ
A ðt;xÞ ¼ G3ð6̄Þ

efg b̄fΓAbĈg ðt;xÞ; ð3Þ

where ðbĈÞα ¼ Cαβb̄β is the charge-conjugated field with
C ¼ −iγ0γ2.2 As the two quarks have the same flavor, the
Pauli-exclusion principle applies and the wave function has
to be completely antisymmetric. With our choice to focus on
S-wave combinations of particles, the spatial wave function
must be symmetric. As the color (triplet) sextet has a (anti)
symmetric color wave function, this forces the spin-wave
function to be in a (triplet) singlet with (Γ ¼ γk) Γ ¼ iγ5.
With these building blocks, we can form four classes of

b̄b̄bb color singlets by contracting the color factors G in any
irreducible representation (irrep) with its conjugate color
factors, i.e., 1c × 1c, 8c × 8c,

3
3c × 3̄c and 6c × 6̄c. These

SUð3Þ invariant color contractions are given in Table I.
After doing this, we need to project the operators onto a
specific angular momentum JP by using the standard
SOð3Þ Clebsch-Gordan coefficients (using a spherical basis
of spin matrices [18]) as

OJ;m
ðP;QÞðt;xÞ ¼

X
m1;m2

hJ;mjJ1; m1; J2; m2i

×OJ1;m1

P ðt;xþ rÞOJ2;m2

Q ðt;xÞ ð4Þ

with ðP;QÞ describing the blocks this configuration is built
from, i.e., ðηb; ηbÞ, ðΥ;ΥÞ, ðD;AÞ, etc. We also allow the
possibility of the two blocks being separated by a distance
r. For the r ¼ 0 case, the operators project onto a definite
total angular momentum J. For the r ≠ 0 case, one can
Taylor expand OJ1;m1

P ðt;xþ rÞ around r ¼ 0 to notice that
the operator projects onto a superposition of quantum

TABLE I. The color representations of the different quark
combinations. Note that, as described in the text, once the color
representation of the (anti-) diquark is chosen, the Pauli-exclusion
principle enforces certain spin combinations in S-wave. Also
given are the SUð3Þ color contractions needed for the b̄b̄bb
operators.

b b̄ b̄b b̄b̄ bb

Color irrep 3c 3̄c 1c, 8c 3c, 6̄c 3̄c; 6c

G1
efgG

1
ef0g0 δfgδf0g0

G8
efgG

8
ef0g0 2δfg0δf0g − 2δfgδf0g0=3

G3
efgG

3
ef0g0 ðδff0δgg0 − δfg0δgf0 Þ=2

G6
efgG

6
ef0g0 ðδff0δgg0 þ δfg0δgf0 Þ=2

2γ0 ¼ diagð1;−1Þ in the convention used by NRQCD.
3Since the 8c irrep of SUð3Þ is the adjoint, it is similar to its

conjugate 8̄c.
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numbers. Consequently, it is possible to utilize this to further
search for the lowest ground state of the four quark system.
When dealingwith the diquark components, to project onto a
definite value of charge conjugation in Eq. (4) one can form
the linear combination O1;m1

D O1;m2

A �O1;m2

D O1;m1

A .
In fact, not all of these color combinations are indepen-

dent. Fierz relations constrain the number of independent
color-spin operators that are possible. For the local oper-
ators in S-wave, the relations between the two-meson and
diquark-antidiquark states are given in Table II.
The simplest quantity that can be calculated on the lattice

in order to extract particle masses is the Euclidean two-
point correlator. This is defined as

CJPC
i;j ðt;Ptot ¼ 0Þ ¼

Z
d3xhOJ;mi

i ðt;xÞOJ;mj

j ð0; 0Þ†i ð5Þ

where we choose to project to zero spatial momentum and
i, j label potentially different operators at the source and
sink with the same JPC, e.g., i ¼ ðηb; ηbÞ, j ¼ ðΥ;ΥÞ. The
single-particle contributions to the correlator are deter-
mined by inserting a complete set of single-particle states in
the Hilbert-space formalism into Eq. (5) to yield

CJPC
i;j ðt;Ptot ¼ 0Þ ¼

X
n

Zi
nZ

j;�
n e−Ent ð6Þ

with Zi
n ¼ h0jOJ;mi

i jni being the nonperturbative overlap of
the operator to the eigenstate jni and Enjni ¼ Hjni the
energy eigenvalue. Note that all states jni with the same
quantum numbers contribute to this correlator, e.g., for the
bottomonium 0−þ pseudoscalar correlator the jηbi as well
as all radial excitations contribute.
The two-particle contributions to the correlator are

slightly more complicated. In this case, as derived in
Appendix A, the nonrelativistic two-particle states give a
contribution to the correlator that is

CJPC
i;j ðt;Ptot¼ 0Þ¼

�
μr
2πt

�3
2X
X2

e−ðMS
1
þMS

2
Þt

×

�
Z0
X2
þZ2

X2

3

ðtμrÞ
þZ4

X2

15

ðtμrÞ2
þ���

�

ð7Þ
where the sum is over all distinct two-particle states X2 with
quantum numbers JPC and Ptot ¼ 0, MS

i (MK
i ) is the static

(kinetic) mass of the particles, as defined in Eq. (14), μr ¼
MK

1 M
K
2 =ðMK

1 þMK
2 Þ is the reduced mass and Z2l

X2
are

nonperturbative coefficients.
Energies of states can be extracted using the above

functional form once the correlator has been computed.
Examining Eq. (5) in the path-integral formalism we can
perform the connected Wick contractions4 so that the
correlator can be written as an integral over the gluon
fields with the integrand consisting of products of b-quark
propagators. For each two-meson-type operator, e.g.,
O1c

ηbO
1c
ηb , as all quarks have the same flavor there are four

connected Wick contractions. These are shown diagram-
matically in Fig. 1.
The first Wick contraction for the two-meson correlator,

called Direct1 and shown in Fig. 1(a), has the expression

GR
AdeG

R
Ad0e0G

R
BghG

R
Bg0h0

X
x

Tr½ΓM1
K−1ðt;x; 0; zÞe0g

× Γ†
M1
K−1ðt;x; 0; zÞ†hd0 �Tr½ΓM2

K−1ðt;x0; 0; z0Þeg0
× Γ†

M2
K−1ðt;x0; 0; z0Þ†h0d� ð8Þ

TABLE II. Fierz relations in the b̄b̄bb system relating the two-
meson and the diquark-antidiquark bilinears.

JPC Diquark antidiquark Two meson

0þþ 3̄c × 3c − 1
2
j0;ΥΥi þ

ffiffi
3

p
2
j0; ηbηbi

0þþ 6c × 6̄c
ffiffi
3

p
2
j0;ΥΥi þ 1

2
j0; ηbηbi

1þ− 3̄c × 3c
1ffiffi
2

p ðj1;Υηbi þ j1; ηbΥiÞ
2þþ 3̄c × 3c j2;ΥΥi

(a) Direct1 (b) Xchange2

(c) Direct3 (d) Xchange4

FIG. 1. There are four connected Wick contractions for the two-
meson-type correlator when the quarks have the same flavor. The
grey region represents a color neutral meson, the blue line a quark
and the red line an antiquark. We call these the (a) Direct1
contraction where each meson propagates to itself, (b) Xchange2
where an antiquark is exchanged between the meson pair,
(c) Direct3 where each meson propagates to the other, and
(d) Xchange4 where a quark is exchanged between the meson
pair.

4Annihilation diagrams are suppressed by powers of the
heavy-quark mass [19] and are expected to be negligible.
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while the second, called Xchange2, is given by

− GR
AdeG

R
Ad0e0G

R
BghG

R
Bg0h0

X
x

Tr½ΓM1
K−1ðt;x; 0; zÞe0g

× Γ†
M1
K−1ðt;x0; 0; zÞ†hdΓM2

K−1ðt;x0; 0; z0Þeg0
× Γ†

M2
K−1ðt;x; 0; z0Þ†h0d0 � ð9Þ

where x0 ¼ xþ r. The other diagrams, Direct3 and
Xchange4, have similar expressions. For the diquark-

antidiquark-type operators, e.g., O6c
DO

6̄c
A , there are also

four Wick contractions which can be combined into one
expression as

CJPCðt;Ptot ¼ 0Þ
¼ ½1� sgnðCΓDÞT � sgnðCΓAÞT
þ sgnðCΓDÞTsgnðCΓAÞT �GR

AdeG
R
Ad0e0G

R
BghG

R
Bg0h0

×
X
x

Tr½CΓDK−1ðt;x; 0; zÞeg0Γ†
DCK

−1ðt;x; 0; zÞTdh0 �

× Tr½ΓACK−1ðt;x0; 0; z0Þ�e0gCΓ†
AK

−1ðt;x0; 0; z0Þ†hd0 �
ð10Þ

where the sign function is defined by sgnðXÞT ¼ �1 if
XT ¼ �X. The� in Eq. (10) corresponds to the 3 or 6 color
representation. It is this prefactor with the signs which
enforces the Pauli-exclusion principle: the sum cancels for
spin combinations that do not make the wave function
overall antisymmetric. The spin-triplet/singlet configura-
tions we consider here obey ðCγkÞT ¼ þðCγkÞ and
ðCγ5ÞT ¼ −ðCγ5Þ. Diagrammatically the four connected
Wick contractions contributing to the diquark correlator are
shown in Fig. 2.
To calculate the two-point correlators described above

within the first-principles Feynman path-integral approach
to QCD needs the methodology of lattice QCD. We now
discuss our lattice QCD approach.

III. LATTICE QCD METHODOLOGY

A. Second generation Nf = 2 + 1 + 1 gluon ensembles

Our lattice calculation uses gauge field configurations
generated by the MILC collaboration [20]. For the gauge
fields, they used the tadpole-improvedLüscher-Weisz gauge
action correct toOðαsa2Þ [21] and include 2þ 1þ 1 flavors
in the sea, the up and down quarks (treated as two degenerate
light quarks with massml), the strange quark, and the charm
quark. The sea quarks are included using the highly
improved staggered quark formulation [22].
Four ensembles are chosen in this study. As one might

expect roughly double the discretization errors in a 2b̄b
system relative to the b̄b one, to ensure that the heavy-quark
potential is accurately represented (where short-distance

detailsmay be important for a compact tetraquark candidate)
we utilize three ensembles that span relatively fine lattice
spacings ranging from a ¼ 0.06–0.12 fm. Details of the
ensembles are given in Table III. Due to the computational
expense, most of the ensembles use heavier ml than in the
real world. However, to test ml dependence, we use one
ensemble (set 2 in Table III) that has physical aml=ams.
Additionally, the ensembles have been fixed to Coulomb
gauge to allow nongauge invariant nonlocal operators to be
used [as constructed in Eq. (4)].

B. b-quarks using iNRQCD

A nonrelativistic effective field theory is appropriate
for physical systems where the relative velocity of the

(a) (b)

(c) (d)

FIG. 2. There are four connected Wick contractions for the
diquark-antidiquark-type correlator when the quarks have the
same flavor. The blue shaded region represents a diquark, the red
shaded region the antidiquark, a blue line a quark and the red line
an antiquark. The uncrossing of the lines in Fig. 2(b) to produce
Fig. 2(a) gives a �, as discussed in the text, which enforces the
Pauli-exclusion principle.

TABLE III. Details of the gauge ensembles used in this study. β
is the gauge coupling. a (fm) is the lattice spacing [23,24], amq

are the sea quark masses, Ns × NT gives the spatial and temporal
extent of the lattices in lattice units and ncfg is the number of
configurations used for each ensemble. We use 16 time sources
on each configuration to increase statistics. Ensembles 1 and 2 are
referred to as “coarse,” 3 as “fine,” and 4 as “superfine”.

Set β a (fm) aml ams amc Ns × NT ncfg

1 6.00 0.1219(9) 0.0102 0.0509 0.635 24 × 64 1052
2 6.00 0.1189(9) 0.00184 0.0507 0.628 48 × 64 1000
3 6.30 0.0884(6) 0.0074 0.037 0.440 32 × 96 1008
4 6.72 0.0592(3) 0.0048 0.024 0.286 48 × 144 400
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constituent particles inside the bound state is much smaller
than 1 (in Planck units). When applied to the strong force,
this framework is called nonrelativistic QCD (NRQCD). It
is well known that b-quarks are very nonrelativistic inside
their low-lying bound states, where v2 ≈ 0.1 [25].
For lattice NRQCD, the continuum NRQCD action is

discretized onto the lattice [25] with operators included to a
predetermined level in v2. Here we use an action accurate
through Oðv4Þ with additional spin-dependent terms at
Oðv6Þ.5 Operators are also added to correct for discretiza-
tion effects. We make the further systematic improvement
here, introduced in [23], to include coefficients of Oðv4Þ
operators that have been matched to continuum QCD
through OðαsÞ. We call this improved NRQCD
(iNRQCD). This action has already been used to success-
fully determine bottomonium S, P and D wave mass
splittings [23,26], precise hyperfine splittings [27,28], B
meson decay constants [29], Υ and Υ0 leptonic widths [30],
B, D meson mass splittings [28] and hindered M1 radiative
decays between bottomonium states [31].
The iNRQCD Hamiltonian evolution equations can be

written as

Gðx; tþ 1Þ ¼ e−aHGðx; tÞ
Gðx; tsrcÞ ¼ δx;x0 ð11Þ

with

e−aH ¼
�
1 −

aδHjtþ1

2

��
1 −

aH0jtþ1

2n

�
n
U†

t ðxÞ

×

�
1 −

aH0jt
2n

�
n
�
1 −

aδHjt
2

�
ð12Þ

aH0 ¼ −
Δð2Þ

2amb
;

aδH ¼ aδHv4 þ aδHv6 ;

aδHv4 ¼ −c1
ðΔð2ÞÞ2
8ðambÞ3

þ c2
i

8ðambÞ2
ð∇ · ~E − ~E · ∇Þ

− c3
1

8ðambÞ2
σ · ð ~∇ × ~E − ~E × ~∇Þ

− c4
1

2amb
σ · ~Bþ c5

Δð4Þ

24amb
− c6

ðΔð2ÞÞ2
16nðambÞ2

aδHv6 ¼ −c7
1

8ðambÞ3
fΔð2Þ; σ · ~Bg

− c8
3

64ðambÞ4
fΔð2Þ; σ · ð ~∇ × ~E − ~E × ~∇Þg

− c9
i

8ðambÞ3
σ · ~E × ~E: ð13Þ

The parameter n is used to prevent instabilities at large
momentum from the kinetic energy operator. A value of
n ¼ 4 is chosen for all amb values. We evaluate the
propagator using local sources Eq. (11). Here, amb is
the bare b quark mass,∇ is the symmetric lattice derivative,
with ~∇ being the improved version, and Δð2Þ, Δð4Þ are the
lattice discretizations of ΣiD2

i , ΣiD4
i respectively. ~E, ~B are

the improved chromoelectric and chromomagnetic fields,
details of which can be found in [23]. Each of these fields,
as well as the covariant derivatives, must be tadpole
improved. We take the mean trace of the gluon field in
Landau gauge, u0L ¼ h1

3
TrUμðxÞi, as the tadpole param-

eter, calculated in [23,29]. The matching coefficients c1, c2,
c4, c5, c6 in the above Hamiltonian have been computed
perturbatively to one loop [23,32]. c3 was found to be close
to the tree-level value of one nonperturbatively [23] and we
set it, as well as the rest of the matching coefficients, to their
tree-level values. The quark mass amb is tuned fully
nonperturbatively in iNRQCD [27] using the spin-averaged
kinetic mass of theΥ and ηb (which is less sensitive to spin-
dependent terms in the action). The above Hamiltonian
neglects the four-fermion operators which appear at
Oðα2sv3Þ, as well as other operators which appear at higher
order in the nonrelativistic expansion. Simple power-
counting estimates [23,27] would lead us to expect con-
tributions of order a few percent (or a few MeV) at most to
binding energies from these terms. In the case where a
tetraquark bound state is observed then we can estimate the
systematic effect from neglecting these contributions.
The parameters used in this study are summarized in

Table IV. There, c1, c5 and c6 are the correct values for an
Oðv4Þ iNRQCD action [23]. For set 4, all parameters are
those for the Oðv4Þ action. The small changes to these
coefficients in going to an Oðv6Þ iNRQCD action (which
are similar in magnitude to the two-loop corrections) are
not appreciable for the purpose of this work: whether or not
a tetraquark candidate exists below the lowest bottomo-
nium-pair threshold. All other parameters listed in Table IV
are taken from [27,31].
Within iNRQCD the single-particle energy eigenstates

can be decomposed in the standard nonrelativistic expan-
sion as

TABLE IV. Parameters used for the valence quarks. amb is the
bare b-quark mass in lattice units, u0L is the tadpole parameter
and the ci are coefficients of terms in the NRQCD Hamiltonian
[see Eq. (13))]. Details of their calculation can be found in
[23,32]. c3, c7, c8 and c9 are included at tree level.

Set amb u0L c1, c6 c2 c4 c5

1 2.73 0.8346 1.31 1.02 1.19 1.16
2 2.66 0.8350 1.31 1.02 1.19 1.16
3 1.95 0.8525 1.21 1.29 1.18 1.12
4 1.22 0.8709 1.15 1.00 1.12 1.10

5The spin-independent Oðv6Þ terms are subleading effects for
the b̄ b̄ bb energies relevant to this study.
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EðPÞ ¼ MS þ jPj2
2MK þ � � � ð14Þ

with MS, MK being the static and kinetic masses respec-
tively [23]. Because the quark mass term is removed from
the iNRQCD Hamiltonian, the static mass is unphysical,
differing by a constant shift from the physical (kinetic)
mass. This means that only static mass differences deter-
mined fully nonperturbatively can be compared to exper-
imental results. However, this constant shift can be
calculated in lattice perturbation theory if required [33],
or by using an additional experimental input. The kinetic
mass does not suffer this problem as it acquires the quark
mass contributions from the quark kinetic terms [23]. Also,
within iNRQCD the Dirac fieldΨ can be written in terms of
the quark ψ and antiquark χ as Ψ ¼ ðψ ; χÞT . The propa-
gator is then

K−1ðxjyÞ ¼
�
Gψ ðxjyÞ 0

0 −GχðxjyÞ
�

ð15Þ

where GψðxjyÞ is the two-spinor component quark propa-
gator and GχðxjyÞ is the two-spinor component antiquark
propagator. Taken together, we can now compute the b-
quark propagator via the iNRQCD evolution equations on
the gluon ensembles listed in Table III. The last piece
needed to calculate the two-point correlators, and hence
energies, is the discretized finite-volume versions of the
interpolating operators.

C. Discrete finite-volume operators

Together, the isotropic discretization and the periodic
finite volume break the infinite-volume continuum SOð3Þ
symmetry of NRQCD to the octahedral group, Oh [34].
Thus, while the operators constructed in Sec. II have well-
defined JPC quantum numbers associated with SOð3Þ, we
need to construct operators which transform within the
irreps of the Oh symmetry group (relevant for lattice
calculation). This can be achieved by the method of
subduced representations, where an operator with a specific
JPC can be taken to a specific lattice irrep6 ΛPC by using the
subduction coefficients found in Appendix A of [18]. At
rest, each of our JPC ¼ 0þþ and JPC ¼ 1þ− operators
trivially subduce into a single lattice irrep labeled by Aþþ

1

and Tþ−
1 respectively. However, the JPC ¼ 2þþ case is

slightly more complicated and subduces into two lattice
irreps labeled by Tþþ

2 and Eþþ (which are three and two
dimensional). We construct both the T2=E operators asffiffiffi
2

p
O½2�

T2=E
¼ OJ¼2;m¼2 �OJ¼2;m¼−2, which are correctly

subduced from the J ¼ 2þþ operators defined in Sec. II.
In principle, each lattice irrep allows mixing between
different J states, e.g., the A1 irrep contains not only the
J ¼ 0 states but also the J ¼ 4 [34]. However in practice
since we are only looking for the ground state of the b̄b̄bb
correlators we are not sensitive to these mixing effects.
A complete list of b̄b̄bb interpolating operators used to

produce the correlator data herein is given in Table V. In
fact, this is an overconstrained set due to the Fierz identities
(shown in Table II) which relate the two-meson and
diquark-antidiquark correlators. We include this overcon-
strained system and ensure that we reproduce the Fierz
relations to numerical precision, performing a nontrivial
check on our data. Additionally, we also reproduce the
relations between the 8c × 8c color combination and the
others [36] on a subset of the data.
It has been found [37] that separating each hadron within

the two-hadron interpolating operator by a specific distance
r can significantly aid in the extraction of the (ground) state
energy. In this direction, we use three different spatial
configurations of the b̄b̄bb correlators where the individual
building blocks are separated by a distance of rx ¼ 0, 1 or 2
lattice units in the x-direction.7

Finally, the subduced lattice interpolating operators are
defined in terms of the Dirac fields as in Eq. (1), and the
correlators are defined analogously, as in Eq. (10). We can
then use the decomposition of K−1ðxjyÞ given in Eq. (15)
with suitable boundary conditions to write the correlator in
terms of the iNRQCD quark propagator Gψ ðxjyÞ. Due to

TABLE V. The b̄b̄bb interpolating operators used in this study.
Operators in each column are subduced from the infinite-volume
continuum quantum numbers JPC given in the first row. The
superscript on each operator denotes the lattice irrep of that
operator and the subscript denotes the building blocks of the
operator, as explained in the text. We generate each operator with
three different spatial configurations as shown in Eq. (4): where
the building blocks are separated by a distance rx ¼ 0, 1 or 2
lattice units in the x-direction.

0þþ 1þ− 2þþ

Source Sink Source/sink Source/sink

OA1

ðηb;ηbÞ OA1

ðηb;ηbÞ OT1

ðΥ;ηbÞ OT2

ðΥ;ΥÞ
OA1

ðηb;ηbÞ OA1

ðΥ;ΥÞ OT1

ðD3̄c ;A3c Þ
OE

ðΥ;ΥÞ

OA1

ðΥ;ΥÞ OA1

ðηb;ηbÞ OT2

ðD3̄c ;A3c Þ
OA1

ðΥ;ΥÞ OA1

ðΥ;ΥÞ OE
ðD3̄c ;A3c Þ

OA1

ðD3̄c ;A3c Þ OA1

ðD3̄c ;A3c Þ
OA1

ðD6c ;A6̄c Þ
OA1

ðD6c ;A6̄c Þ

6The conserved quantum numbers of a symmetry group are
determined using the little group, which for SOð3Þ and Oh
depend on the momenta type [35]. In this study we focus on states
at rest.

7The ηb and Υ energies used to determine the noninteracting
2ηb and 2Υ thresholds (needed to determine if a state exists below
them) are found from locally smeared meson correlators only.
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our use of iNRQCD, there are no backward propagating
valence antiquarks in our calculation. Consequently, the
appreciable finite-temporal effects seen in relativistic two-
meson lattice correlators8 [38] do not arise in our calcu-
lation, simplifying the analysis. With this methodology, it is
now possible to compute the lowest energy levels asso-
ciated with the b̄b̄bb system.

IV. THE LOW-LYING ENERGY EIGENSTATES OF
THE 0+ + , 1+ − AND 2+ + b̄b̄bb SYSTEM

In order to determine if there is an energy eigenstate below
the 2ηb threshold, we first need to find the noninteracting
thresholds on each ensemble listed in Table III. This is
achieved by computing the bottomonium ηb and Υ two-
point correlators as described above, then fitting them to the
functional form given in Eq. (6) to extract the single-particle
energies. As in the range of studies listed in Sec. III B,
amongst others, we utilize the well-established Bayesian
fitting methodology [39] in this work and refer the reader to
[23] for technical details. Although we fit the correlator data
in order to extract fit parameters, in the followingwe display
effective mass plots so the reader can visualize the data. The
single-particle effective mass is constructed as

aEeff
JPC ¼ log

�
CJPC
i;j ðtÞ

CJPC
i;j ðtþ 1Þ

�
ð16Þ

¼aEJPCþ
Zi
1Z

j;�
1

Zi
0Z

j;�
0

e−ðE1−E0Þtð1−e−ðE1−E0ÞÞþ��� ð17Þ

⟶
t→∞

aEJPC: ð18Þ
As can be inferred from Eq. (17), the greater the mass gap
E1 − E0 or the larger the ground state overlapZ0, the quicker
aEeff

JPC converges to a plateau, which gives aEJPC . The ηb and
Υ effective masses are shown in Fig. 3, where the returned
fitted ground-state energy from the correlator fits is also
shown overlaid in black. The large difference in energy
between theη0b (Υ0) and theground state ηb (Υ)means that the
effective mass plots fall rapidly to a plateau given by the
ground-state energy, indicating that the fit to the correlator
data extracts the ground-state energy precisely.
Also evident from the effective mass plot is the constant

signal to noise in the ηb data, as might be expected from
straightforward application of the Parisi-Lepage arguments
[40,41] for noise growth in a system where all the quarks are
the same and no 0þþ bound tetraquark exists. The argument
specifies that the noise of the two-point correlator should
behave like expfðEJPC − EGS=2Þtgwhere EJPC is the lowest

energy eigenstate of the bottomonium operator OJPC con-
structed to have the quantum numbers JPC and EGS is the
lowest energy eigenstate of the mean squared correlator
which controls the noise. Thus, it would be surprising if a
tetraquark candidate did exist below the 2ηb threshold from
the lattice perspective alone as thenEGS < 2Eηb and the noise
of the ηb datawould grow exponentially. However, the lattice
calculation still needs to be performed for a conclusive
statement to be made about the existence of this tetraquark
candidate since the Parisi-Lepage arguments do not allow for
raw crossedWick contractions thatwould contribute to either
the full two-meson or tetraquark correlator.
Lattice correlators are affected by both the discrete nature

of the space-time lattice and separately by its finite volume.
Each has a separate but calculable effect on the extracted
lattice energies. Corrections in energies due to discretization
effects are proportional toak, where k depends on the level of
improvement. Here systematic discretization errors are
reduced to α2sa2 by the improvements made, as for those
studies listed in Sec. III B, and we expect this to be small
enough to have little impact. We can assess this from our
results with different values of the lattice spacing.
Finite-volume effects for single-particle energies (arising

from the lightest particle in the sea propagating around the
spatial boundaries) are known to behave like expð−aMπNsÞ
[42] and are not appreciable for the ensembles used here
which have aMπNs ≈ 4 [43]. In fact,Ns on set 1 and 2 differ
by a factor of 2, giving a basic test of volume dependence.
However, finite-volume interactions can shift a two-particle
energy by an amount that depends on the infinite-volume
scattering matrix. Further, these shifts are nontrivial to
parameterise (see for example [44–50]). As the specific
purpose of this study is to search for a hypothetical tetraquark
bound state below the lowest threshold, we do not attempt to
quantify these finite-volume interactions.
Equation (7) describes the nonrelativistic two-particle

contribution to the correlator after t ¼ 1 fm (as shown in

FIG. 3. The effective mass plot for the ηb andΥ on the superfine
ensemble (set 4 listed in Table III). The effective mass plots on the
other ensembles are qualitatively identical.

8These arise in lattice two-meson calculations when a rela-
tivistic formulation of valence quark is used due to one of the
mesons propagating forward in time while the other propagates
around the temporal boundary backwards in time [38].

SEARCHING FOR BEAUTY-FULLY BOUND TETRAQUARKS … PHYS. REV. D 97, 054505 (2018)

054505-7



Appendix A). In this case, because of the additional 1=t
3
2

time dependence, the effective mass formula for these
contributions differs from their single-particle counterparts.
Removing the leading order time dependence yields an
effective mass defined as

aEeff;t
JPC ¼ log

�
t
3
2CJPC

i;j ðtÞ
ðtþ 1Þ32CJPC

i;j ðtþ 1Þ

�
: ð19Þ

For the 0þþ, 1þ− and 2þþ operators that are constructed,
if a stable tetraquark exists below the 2ηb, ηb þ Υ or 2Υ
thresholds then it would show up as the ground state of each
correlator and hence also in the effective masses.
Otherwise, each threshold would be the lowest energy
eigenstate. Higher energy states also appear in each
correlator. For example, the 2Υ and ηbη

0
b in the 0þþ case,

the Υη0b in the 1þ− and the ΥΥ0 and χb0χb2ð1PÞ in the 2þþ.
Of these, if no tetraquark state is present, only the 2Υ in the
0þþ might be noticeable while studying the ground state, as
it is Oð100Þ MeV above the 2ηb. All other excited states
have similar energy differences to those appearing in the
ηb=Υ effective masses shown in Fig. 3, which rapidly falls
to the ground state.
It is helpful at this stage to generate mock correlator data

to illustrate how we might expect the b̄b̄bb correlator
results to behave in the presence or absence of a low-lying
tetraquark state (neglecting two-particle finite-volume
effects). Using the extracted lattice ηb and Υ masses, we
can compute the noninteracting 2ηb and 2Υ thresholds on
our ensembles. Further, for a fixed value of Z0

X2
, we can

also compute their leading order two-particle contribution
to the correlator from Eq. (7). Additionally we can infer the
values of the noninteracting ηbη

0
b and ΥΥ0 masses on our

ensembles using the experimental PDG [4] values as input
in order to include their two-particle contributions in the
mock correlator data also. Further, in the 0þþ channel, if we
assume a tetraquark bound state exists 100 MeV below the
2ηb threshold,9 for a fixed value of the tetraquarks non-
perturbative overlap, Z4b, this hypothetical state’s contri-
bution to the correlator is given by Eq. (6). Then, given the
effective mass formula defined in Eq. (16), for each
different choice of the nonperturbative coefficients we
can generate a separate effective mass curve. In practice,
we choose different values of the coefficients from a normal
distribution with zero mean and unit variance. Figure 4
shows such a plot for the superfine ensemble (set 4 in
Table III) where the solid blue curves represent different
values of the normally distributed coefficients. As the
nonperturbative coefficients show up through the ratio
Z0
X2
=Z4b in the effective mass formula, analogously to

Eq. (17), once the energy difference E1 − E0 is set the
effective mass is only sensitive to the relative size of the
tetraquark overlap to that of the lowest threshold (once
the contribution of excited states has become negligible).
With this knowledge, the lower red dotted curve gives
mock data in the situation where there is only a new state
present in the correlator data (Z0

X2
¼ 0), the middle red

dashed curve indicates the case when the tetraquark and
two-meson states have the same value of coefficient
(Z0

X2
¼ Z4b), while the upper dot-dashed red curve is the

mock data in the case where there is no new state in the data
(Z4b ¼ 0). The blue curves below the middle red one have a
larger overlap onto the new state while those above have an
increasingly vanishing one. With our overconstrained
color-spin basis of S-wave operators at least one operator
should have an appreciable overlap onto a tetraquark state
below threshold (if it exists) and, as illustrated by the mock
data, give an easy/clean signal similar to the middle red
dashed curve where the effective mass drops below the 2ηb
threshold. Even though Fig. 4 is mock data, the upper red
curve with no tetraquark state present looks very like the
real data shown in Figs. 5 and 6.
One important point to note is the additional factor of

1=t
3
2 appearing in the two-particle contribution in Eq. (7)

relative to the single-particle one in Eq. (6). This factor
suppresses the two-particle contribution relative to the
single-particle state; e.g., t ¼ 100 gives a suppression of
the two-particle state of ð0.01Þ1.5. This is one reason why
the middle red dashed curve has a particularly rapid fall to
the new state which lies only 100 MeV below the 2ηb
[compared to Fig. 5(d) where the 2Υ isOð100Þ MeV above
the 2ηb]. Overall this effect would produce an enhancement
of the stable tetraquark state if it exists. Further, while we
used the superfine ensemble for illustrative purposes, the
other ensembles with larger lattice spacings have similar
features but with less temporal resolution due to the larger
numerical value of the lattice spacing.

FIG. 4. Assuming a tetraquark exists 100 MeV below the 2ηb
threshold, different normally distributed couplings in b̄b̄bb
correlator mock data produce different effective mass curves
on the superfine ensemble (set 4 listed in Table III) as described in
the text.

9The smallest binding of a below threshold b̄b̄bb tetraquark
from the phenomenological studies (which are shown in Fig. 17)
was 108 MeV [9].
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If one is searching for a bound state below threshold then
both single- and two-particle contributions appear in the
correlator and one may use the single-particle effective
mass formula given in Eq. (18) in order to highlight the
bound ground-state mass (as done in the mock data above).
However if no bound state exists in the data, which we do
not know a priori, then not removing the 1=t

3
2 dependence

from the two-particle contributions has an important effect:
an additional factor of 1.5 logð1þ 1=tÞ is introduced into
the effective mass formula in Eq. (18), giving a contami-
nation that vanishes slowly as t → ∞. This would produce
a confusing picture of what is actually contributing. The
two-particle effective mass formula Eq. (19) removes this
contribution. In the results to be reported now, we overlay
both single- and two-particle effective masses on the same
plot for the reader’s convenience.
We generate the b̄b̄bb correlator data for the operators

given in Table V using the ensembles listed in Table III and
fit these data simultaneously with the bottomonium meson

data to include correlations between data sets. All the b̄b̄bb
data within a specific irrep and those which are unrelated by
a Fierz relation10 are fit using Eq. (7) for the two-particle
contributions and Eq. (6) for a hypothetical tetraquark state
below threshold. The mean of the prior energy of the 2ηb,
ηb þ Υ and 2Υ thresholds is roughly estimated based on the
effective masses and then given a suitably wide prior width
of 100 MeV while a tetraquark state prior energy is taken to
be 250(100) MeV below each threshold. As can be seen in
Fig. 5, since the data plateau to the noninteracting 2ηb
threshold, no energy eigenstate is found below this thresh-
old and variations of the tetraquark prior energy are
insignificant. Similar behavior is seen with the other
quantum numbers.

(a)

(c) (d)

(b)

FIG. 5. The b̄b̄bb effective masses for the 0þþ ðM1;M1Þ → ðM2;M2Þ correlators whereM1,M2 are the ηb or Υ. Eeff and Eeff;t are the
single- and two-particle effective masses defined in Eqs. (18) and (19) respectively. The mesons are separated by a distance rx in the
x-direction when constructing the two-meson interpolating operator as given in Eq. (4). Gray points are not used when fitting the data
(cf., Appendix A).

10Simultaneously fitting data sets related by a Fierz identity
would mean the correlation matrix would have a zero eigenvalue
and thus not be invertable for use in a least-squares minimization.
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Again, while we fit the correlator data in order to extract
particle energies, so that the reader can visualize these data,
we display effective mass plots on the different ensembles.
The superfine ensemble (set 4) 0þþ two-meson effective
masses are shown in Figs. 5, while the 0þþ diquark-
antidiquark effective masses are given in Fig. 6, the
physical coarse (set 2) 1þ− two-meson and diquark-anti-
diquark effective masses in Fig. 7 and the fine (set 3) 2þþ
two-meson and diquark-antidiquark effective masses sub-
duced into the T2 lattice irrep are shown in Fig. 8. Each plot
has the fitted ground-state energy overlaid in black for
comparison. The 2þþ subduced into the E irrep is similar to
the T2 case. Further, the behavior of the lattice data on all
ensembles is qualitatively similar to those shown. The
extracted ground-state energies in each channel are given in
Table VI and a comparison of the energies is shown in
graphical form in Fig. 9.
It should also be noted that the numerical value of the

effective mass (shift) plateau in two-hadron correlators has
been shown, in certain cases, to be sensitive to the choice of
interpolating operators [51,52]. There, the authors found that

when the noise growth in the correlator data restricts the
study of effective masses to a maximum propagation time of
approximately 2 fm, fake plateaus can appear. These fake
plateaus can be a consequence of different choices of source
and sink (smeared) operators: this can cause a negative sign
in theZ1 term in the effectivemass formula Eq. (17) and a dip
below threshold can appear for a short time range which can
be misinterpreted as a bound state. Wall sources were shown
to be particularly prone to this behavior of producing a “false
dip” and obtaining an appreciably different plateau than a
Gaussian source. Here we only use local quark sources. In
addition, the elastic scattering states can also have a depend-
ence on the choice of operator, which can cause a slow decay
to the ground state andmimic a slowly varying effectivemass
that can be mistaken for a plateau over a short time range. As
noted in these studies, a necessary check for a real effective
mass plateau when using different source and sink operators
is the convergenceof all data to a single plateau at times larger
than approximately 2 fm. As we separate the operators by
rx ¼ 0, 1 and 2 lattice units (as described in Sec. III C) and
propagate to t > 8 fm, this is a consistency check we satisfy.
A few notable features of the b̄b̄bb effective mass

plots are evident. First and foremost, no value of the

FIG. 6. The b̄b̄bb effective masses for the 0þþ diquark-
antidiquark 3̄ × 3̄ and 6 × 6̄ correlators. Eeff and Eeff;t are the
single- and two-particle effective masses defined in Eqs. (18) and
(19) respectively. The diquarks are separated by a distance rx in
the x-direction when constructing the diquark-antidiquark inter-
polating operator as given in Eq. (4).

FIG. 7. The b̄b̄bb effective masses for the 1þ− Υηb and
diquark-antidiquark 3̄ × 3̄ correlators. Eeff and Eeff;t are the
single- and two-particle effective masses defined in Eqs. (18)
and (19) respectively.
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effective mass is observed below the lowest noninteracting
bottomonium-pair threshold in any channel, in line with
what one would expect if no stable tetraquark candidate
existed below threshold. Indeed, the b̄b̄bb effective mass
plots are strikingly similar to the upper dot-dashed curve in
the mock data in Fig. 4 where no bound tetraquark state is
present. Additionally, the 2ηb → 2ηb effective mass shown
in Fig. 5(a) plateaus very early due to the larger overlap
onto the 2ηb threshold, while the 0þþ 2Υ → 2Υ effective
mass shown in Fig. 5(d) falls more slowly to the 2ηb
threshold due to the larger overlap onto the nearby 2Υ
threshold. The cross correlators 2ηb → 2Υ show how the
different operators converge to a single plateau at a time

greater than t ≈ 4 fm, a necessity for a true plateau as
discussed above. The local diquark-antidiquark 0þþ corre-
lator data are a linear combination of the 2ηb and 2Υ two-
meson data, related by the Fierz identities given in Table II,
and the effective masses shown in Fig. 6 reflect this. It is
empirically observed that separating the diquark from the
antidiquark by too large a distance rx results in larger noise
due to the separation of color sources. The 1þ− Υηb and
diquark-antidiquark effective masses are shown in Fig. 7,
where the noise starts to increase after t ≈ 7 fm due to the
Parisi-Lepage argument mentioned above with the noise
being set by at least the 2ηb threshold. Based on this, one
would also expect the signal to noise to be worse for the
2þþ data, which is also evident from the correlator data
subduced into the T2 irrep shown in Fig. 8. As set 2 has
physical ml=ms corresponding to a pion mass of
Oð131Þ MeV, while the other ensembles have nonphysical
ml=ms corresponding to pion masses ofOð300Þ MeV [53],
no sensitivity to light sea quarks is observed. This would be
expected from the smallness of the Van-der-Waals potential
generated by the two-pion exchange between two 1S
bottomonium mesons [54]. As can be seen in Figs. 8
and 9, the 2þþ ground state obtained from the lattice is
slightly higher than that of the noninteracting threshold.
However, this is the state which has the largest signal to
noise, restricting the data to shorter time regions and it is
possible that we are sensitive to the same aforementioned
issue of a slowly varying fake plateau. Alternatively, this
positive shift in the two-particle energy could potentially
indicate appreciable infinite-volume continuum scattering
arising from finite-volume interactions [44], but quantify-
ing these phase shifts is outside the remit of this study.
Regardless, these effects do not indicate that a bound
tetraquark state exists in this channel.
For illustration purposes, we also show the effective

masses of the individual Wick contractions contributing to
the 2ηb → 2ηb correlator in Fig. 10. As is evident, in each
individual Wick contraction the effective mass drops
below the 2ηb threshold but then rises slowly to threshold.
However, importantly, when all Wick contractions
are added together to yield the full correlator [shown
Fig. 5(a)] the effective mass falls rapidly to threshold from
above. This behavior is discussed further in Sec. VI.
After analyzing all our data, as hinted by the effective

mass plots, there is no indication of a bound tetraquark state
below the noninteracting thresholds on any ensemble, as

FIG. 8. The b̄b̄bb effective masses for the 2þþ ΥΥ and diquark-
antidiquark 3̄ × 3̄ correlators subduced into the T2 irrep. Eeff and
Eeff;t are the single- and two-particle effective masses defined in
Eqs. (18) and (19) respectively.

TABLE VI. The ground-state static masses extracted from the lattice b̄b̄bb correlator data as described in the text.

Set aMηb aMΥ aM0þþ aM1þ− aM2þþ
T2

aM2þþ
E

1 0.25548(13) 0.29180(22) 0.5121(7) 0.5500(12) 0.5840(22) 0.5863(29)
2 0.25741(19) 0.29365(39) 0.5162(12) 0.5534(21) 0.5921(20) 0.5911(28)
3 0.26570(8) 0.29288(13) 0.5321(16) 0.5594(11) 0.5899(21) 0.5888(18)
4 0.43288(8) 0.45209(12) 0.8658(10) 0.8865(23) 0.9083(36) 0.9079(35)
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shown in Fig. 9. We see no evidence of any change in the
ground-state energies (with respect to the thresholds) as we
vary lattice spacing or sea quark masses.
Searching for a new tetraquark candidate has at least a

two-dimensional parameter space: the hypothetical state
would have an energy and also an overlap onto a specific
operator. Using the lattice data presented here, we can
determine a relationship between these parameters.
Assuming that a tetraquark does exist below the lowest
bottomonium-pair threshold in our data, at a certain time t�
the correlator can be modeled with a two-state ansatz.
Specifically for the 0þþ channel, given that the tetraquark
has an energy E4b and an overlap Z4b onto a particular
operator, at a large enough time the only other appreciable
contribution will come from the higher 2ηb threshold which
has an overlap Z2ηb with the same operator. In this case the
correlator is given by

Cðt�Þ ¼ Z2
4be

−aE4bt� þ Z2
2ηb

e−aE2ηb
t�
�
aMηb

4πt�

�3
2

: ð20Þ

Using this ansatz in the effective mass formula Eq. (16) and
rewriting the equation in terms of the nonperturbative
overlaps yields the constraint

Z2
4b

Z2
2ηb

¼
�
1 − ð t�

t�þ1
Þ32 expðaEeffðt�Þ − aE2ηbÞ

expðaEeffðt�Þ − aE4bÞ − 1

�

× e−aΔEt
�
�
aMηb

4πt�

�3
2 ð21Þ

with aΔE ¼ aE2ηb − aE4b > 0. As can be seen, if the
tetraquark is not observed by a time t� then the overlap onto
this new state must be (at least) exponentially suppressed
with the binding of the tetraquark state, e.g., with −ΔE.
This point illustrates that if a tetraquark did exist with

E4b < E2ηb then it is possible that it was not observed in our
data because Z4b ≈ 0 within statistical precision. In this
scenario, we can use the constraint Eq. (21) to estimate an
upper bound on the magnitude of the overlaps given that no
clear evidence of the tetraquark is observed within our
statistical precision. The needed inputs for the constraint
include the value of t� where the two-state ansatz is valid,
aEeffðt�Þ from correlator data constructed with a specific
operator, as well as aE2ηb ¼ 2aMηb . For the local Oðηb;ηbÞ
operator on the a ¼ 0.06 fm ensemble, by examining
Fig. 5(a), a choice of t� ¼ 143 ensures that the two-state
ansatz is valid (given the long plateau at the 2ηb threshold).
Here, aEeffðt� ¼ 143Þ ¼ 0.87634ð61Þ can also be precisely
obtained. The value of aMηb , given in Table VI, is found
from the ηb-meson data. Then, using this data in the
constraint, for a certain choice of E4b, a numerical value

FIG. 9. A summary of the b̄b̄bb ground-state energies with the
lowest noninteracting bottomonium-pair threshold subtracted,
across the different lattice ensembles listed in Table III, statistical
error only. Note, as shown in Table III, fewer configurations were
used on the a ¼ 0.06 fm ensemble than on the others.

FIG. 10. The individualWick contraction effective masses of the
2ηb → 2ηb correlators. The upper figure is the Direct1 and the
lower is the Xchange2 contraction [each shown diagrammatically
in Figs. 1(a) and 1(b)].Eeff andEeff;t are the single- and two-particle
effective masses defined in Eqs. (18) and (19) respectively.
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of the ratio of overlaps is found such that it is consistent
with 0 within its small 1σ statistical error. Any value of the
ratio of overlaps larger than this 1σ error is inconsistent, at
this level of confidence, with our data observing a tetra-
quark at this value of E4b.
We use this model to estimate how small the hypo-

thetical tetraquark overlap would need to be so that the
tetraquark was not observed within our statistical pre-
cision. A 1σ, 3σ and 5σ exclusion plot of the parameter
space is given in Fig. 11. As the input data into the
constraint has a long propagation time past t� > 8 fm and
a statistically precise value of aEeffðt�Þ which does not
fall below the threshold, a significant amount of param-
eter space is excluded. It should be understood that this
figure is only valid for a particular operator in a certain
channel. The given 0þþ channel in Fig. 11 excludes the
largest amount of parameter space as it is the most
statistically precise. Also Fig. 11 is constructed from
data on the superfine ensemble alone, where discretiza-
tion effects are smallest and would not change the
quantitative behavior significantly.
To conclude this section, we find no evidence of a stable

tetraquark candidate below the noninteracting thresholds
by studying a full S-wave color-spin basis of QCD
operators. In the next section we perform an exploratory
and complementary study of an alternative approach to
ensure the robustness of our conclusions.

V. NRQCD WITH A HARMONIC
OSCILLATOR POTENTIAL

A stable tetraquark state in the 0þþ, 1þ− and 2þþ
channels would overlap with the full basis of S-wave
color-spin operators utilized above. In this section, we go
one additional step by exploring an alternative approach in
order to further investigate the possibility of a tetraquark
state. Adding a central confining potential to the quark
interactions can produce a more deeply bound tetraquark

relative to the threshold as the strength of this interaction is
increased (as we see below). Furthermore, an appropriate
choice of additional interaction can reduce the fiducial
volume of the lattice and thus thin the allowed discrete
momenta states of the two-meson degrees of freedom.
Adding an external attractive scalar central potential to the
QCD interactions yields these desired effects.
The harmonic oscillator potential is a particularly suitable

choice of scalar interaction between quarks. For a particle of
massm at position x away from the center x0 the potential is
just κr2=2≡ κjx − x0j2=2. Defining ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiðκ=mÞp

, the
ground-state energy and wave function are E0 ¼ 3ω=2
and ψðrÞ ¼ C exp ð−mωr2=2Þ. Additionally, the separabil-
ity of the combined QCD and harmonic oscillator potential
into total and relative coordinates ensures that solutions of
multiquark systems can be split into two parts with the total
coordinate piece analytically solvable. This follows from the
nature of the harmonic oscillator potential.11 Thus we expect
that for small values of ω the ground state for 2ηb mesons is
approximately 2MηbðωÞ þ 3ω. The 3ω term comes from two
color-singlet ηb mesons in the harmonic oscillator potential
and the mass of the ηb is shifted slightly from the value at
ω ¼ 0 because of the additional harmonic oscillator inter-
action combinedwith the QCD interactions that bind the two
heavy quarks into a ηb.

12 However, for a compact tetraquark
state the mass would be Mðb̄b̄bbÞðωÞ þ 3ω=2, as there is
only one color-singlet state in the central harmonic oscillator
potential (3ω=2) and if the tetraquark state is also a compact
state (on the scale of ηb and much less than the effective
lattice volume), then its mass will also receive only a modest
positive correction due to ω.
Hence if there were a tetraquark state near threshold

then this additional interaction could drive it further below
threshold, giving a much cleaner and distinct signal for the
tetraquark candidate in our calculation. As the potential
model framework describing the ηb has been largely
successful, we can use this framework as a general guide
for the exploratory nonperturbative lattice calculation when
including the harmonic oscillator potential. Of course, we
are mainly interested in QCD (and not the harmonic
oscillator) and, as such, if we do find a stable tetraquark
state when including the harmonic oscillator potential
then we must take the ω → 0 limit. Thus, the objective of
this section is to determine if a stable tetraquark state exists
when the quarks are exposed to an auxiliary potential (which
could push the tetraquark increasingly lower than the
threshold) and if it does, whether it will survive the
QCD limit.

FIG. 11. The excluded region for the ratio of tetraquark/2ηb
overlaps, Z4b=Z2ηb , onto the Oðηb;ηbÞ operator, assuming a
tetraquark with mass, E4b, lying below the 2ηb threshold,
E2ηb . The red hashed region is excluded at 5σ by the data as
described in the text. The 1σ − 3σ and 3σ − 5σ exclusion bands
are also shown for reference.

11Defining r ¼ jx1 − x2j and Rcm ¼ ððx1 þ x2Þ=2 − x0Þ, we
can separate κ½ðx1 − x0Þ2 þ ðx2 − x0Þ2�=2 into relative and
center-of-mass coordinates ½ðκ=2Þr2 þ ð2κÞR2

cm�=2.
12For sufficiently small ω the shift in ηb is directly related to

the rms radius of the ηb state since from perturbation theory it is
given by hηbðω ¼ 0Þjkr2=2jηbðω ¼ 0Þi.
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The harmonic oscillator potential is defined as13

δHHO ¼ mbω
2

2
jx − x0j2 ð22Þ

where the quarks are pulled towards the fixed point x0 with
a strength ω. We choose x0 to be the same position as the
source. Intuitively, as the quarks/ηb’s start to propagate
further away from the source, the harmonic oscillator
potential pulls them closer together. In turn, this restricts
the quarks/ηb’s to be in a certain volume.
First, it is necessary to determine which volumes the

quarks/ηb’s are confined into by the addition of the
harmonic oscillator potential. The root mean square dis-
tance, rrms, gives an indication of this. We determine the
rrms of the ηb based on solutions of the Schrodinger
equation using a Cornell potential.14 The Matthieu equation
can describe the behavior of two free ηb’s in a harmonic
oscillator potential on a periodic box, and the solutions of
which can yield rrms for the 2ηb state. The results from such
a calculation are plotted in Fig. 12.
Based on this, in order to confine the quarks sufficiently so

that the two ηb’s overlap, and also to study the dependence on
ω, values of ω ¼ ð75; 150; 300; 350Þ MeV and ω ¼
ð75; 150; 350; 500Þ MeV are chosen for the lattice
ensembles called set 1 and set 3 in Table III. In lattice
units, the simulated values of κ=2 ¼ ðambÞðaωÞ2=2 are
(0.0029,0.0117,0.0469,0.638) and (0.0011,0.0044,0.0240,
0.0489) respectively.
The harmonic oscillator is implemented through a minor

modification of the NRQCD evolution equations via

e−a ~H ¼
�
1 −

aδHHO

2l

�
l
e−aH

�
1 −

aδHHO

2l

�
l

ð23Þ

where e−aH is the purely NRQCD evolution equation
defined in Eq. (12). This implementation was chosen so

that the evolution equation is still time-reversal symmetric.
Here, l is a stability parameter akin to n in Eq. (12) which is
used to prevent possible numerical instabilities [25]. Values
of l ¼ 13 and 10 were chosen for the calculations on set 1
and 3 respectively. Following these details, we are now
able to present results from the nonperturbative lattice
calculations.

A. Numerical results

All correlator data from set 1 and 3 discussed in Sec. IV
were generated again with the inclusion of the harmonic
oscillator potential at the four different ω values given
above. The harmonic oscillator alters both the single- and
two-particle contributions to the correlator so that they
become (as derived in Appendix B) dependent on ω as

CJPC
i;j ðt;ωÞ ¼

X
n

Zi
nZ

j;�
n

ð1þ e−2ωtÞ32 e
−ðMðωÞnþ3

2
ωÞt ð24Þ

CJPC
i;j ðt;ωÞ ¼

X
X2

Zi
X2
Zj;�
X2

�
2ωμrπ

−1

1 − e−4ωt

�3
2

e−ðMS
1
ðωÞþMS

2
ðωÞþ3ωÞt

þ � � � : ð25Þ
First, Fig. 13 shows the effective masses, as defined in
Eq. (16), of the ηb when including the harmonic oscillator.
Also overlaid are the effective masses when removing the
1þ e−2ωt dependence to enable a better comparison with
the data when no harmonic oscillator is included. As can be
seen, the dip in the harmonic oscillator effective masses is
from this additional time dependence. Physically, this can
be understood to be due to the b-quarks travelling non-
relativistically and so it takes time for the harmonic
oscillator to have an effect.

FIG. 12. The root mean square distance rrms of the ηb and the
2ηb as a function of the harmonic oscillator strength calculated
from a potential model with the different ensemble parameters
listed in Table III as discussed in the text.

FIG. 13. The effective mass plot for the ηb when including the
harmonic oscillator potential on set 3. Eeff is given by Eq. (16)
while Eeff;ξ removes the leading 1þ e−2ωt dependence from the
correlator (24) to enable a better comparison with the data when
no harmonic oscillator potential is included.

13In a periodic box of length L the harmonic oscillator is also
periodic.

14The potential form is − 4αs
3r þ r

b2 with αs ¼ 0.36, b ¼
2.34 GeV and reduced mass 2.59 GeV.
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The ηb correlator data when including the harmonic
oscillator potential are fit to the functional form given by
Eq. (24) in order to extract the lowest energy eigenstate
MðωÞηb þ 3ω=2 from the asymptotic behavior. We show
the fitted result overlaid on the effective mass plot in
Fig. 13. As before, the long plateau indicates that the
ground state will be extracted accurately. To compare to the
potential model predictions, we subtract the ηb mass with
no harmonic oscillator included [Mðω ¼ 0Þηb ] and then
plot the energy differences against ω, as shown in Fig. 14.
Good qualitative agreement between the lattice results and
the potential model predictions is observed.
For the b̄b̄bb system,we show the 0þþ effectivemasses on

set 3 in Fig. 15. It is evident that the 0þþ and the ηb data
contain more noise when a harmonic oscillator potential is
included.While fitting the data to the form in Eq. (25) can be
performed, it is not necessary as the purpose of this

FIG. 14. The lattice ηb energy MðωÞηb þ 3ω=2 when including
the harmonic oscillator potential with Mðω ¼ 0Þηb subtracted
compared to the model predictions as discussed in the text.

(a) (b)

(c) (d)

FIG. 15. The b̄b̄bb effective masses for the 0þþ correlators when including the harmonic oscillator potential on set 3. Eeff is given by
Eq. (16), while Eeff;‡ removes the leading 1 − e−4ωt dependence from the correlator (25) to enable a better comparison with the data
when no harmonic oscillator potential is included.
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exploratory work is to determine if a stable tetraquark exists
when ω ≠ 0. As can be seen, there is no fall below the 2ηb
threshold for any value ofω. Similar behavior is seenwith the
data on set 1.
We show the effective masses for the individual Direct1

and Xchange2 Wick contractions of the 2ηb → 2ηb corre-
lator in Fig. 16. As before, the effective masses of the
individual Wick contractions drop below the 2ηb threshold,
even though importantly, when added together to yield the
full correlator shown in Fig. 15(a) the effective mass is
always above threshold. As this was also seen in the pure
NRQCD data shown in Sec. IV, it may be a problematic
feature of models that utilize a phenomenologically moti-
vated four-body potential for this system.
To conclude this section, despite adding an auxiliary

potential into the QCD interactions that should push a near
threshold tetraquark candidate increasingly lower we find
no indication of any state below the 2ηb threshold. The
conclusions of this section then agree with those of Sec. IV.

VI. DISCUSSION AND CONCLUSIONS

In this workwe have studied the low-lying spectrum of the
b̄b̄bb system using the first-principles lattice nonrelativistic
QCD methodology in order to search for a stable tetraquark
state below the lowest noninteracting bottomonium-pair
threshold in three different channels: the 0þþ which couples
to the 2ηb and 2Υ, the 1þ−which couples toΥηb and the 2þþ
which couples to 2Υ. In Sec. III we describe our numerical
methodology. Four gluon ensembles were employed with
lattice spacings ranging from a ¼ 0.06–0.12 fm, and one
ensemblewhich has physical light-quarkmasses. All ensem-
bles have u, d, s and c quarks in the sea.
In Sec. IV we presented the majority of the results in this

work. Here, we determined the lowest energy eigenstate of
the b̄b̄bb system with the quantum numbers 0þþ, 1þ− and
2þþ using an overconstrained S-wave color/spin basis
(arising fromFierz relations between thediquark-antidiquark
and two-meson systems as shown in Table II). We did not
observe any state below the lowest noninteracting bottomo-
nium-pair threshold in any channel, as can be seen in
Figs. 5–8, and a summary of our results from this section
is given in Fig. 9.
In Sec. V, to ensure the robustness of our conclusions, we

performed an exploratory calculation of a novel method
which added an auxiliary scalar potential into the QCD
interactions with the objective of pushing a near threshold
tetraquark increasingly lower than the threshold. This would
give a more distinct and cleaner signal for its presence in our
calculation. The harmonic oscillator was found to be a
suitable central scalar potential. For the ηb-meson with this
potential, we first verified agreement between the non-
perturbative lattice calculations and a potential model (as
shown in Fig. 14) and then used this potential model as a
general guide to choose multiple appropriate values of the
potential strength. Despite studying the b̄b̄bb system with
this additional scalar potential on the lattice, no indication of
the QCD tetraquark was observed.
This work is the only first-principles study of the low-

lying b̄b̄bb spectrum in the literature. However, there are
others which utilize different methodologies. For example,
Ref. [8] predicts the tetraquark mass by solving the two-
particle Schrodinger equation with a phenomenologically
motivated nonconfining potential between the pointlike
diquark and antidiquark, and finds a 0þþ; 1þ− and 2þþ
tetraquark to be bound by 44, 51 and 5 MeV respectively.15

The authors of [14] used a diquark model including a
confining linear potential, but neglected spin effects, and
found a 0þþ tetraquark to be bound by 48 MeV. However, it
has also been found that the root mean square distance

FIG. 16. The effective masses for the individual 2ηb → 2ηb
Wick contraction correlator data when including a harmonic
oscillator potential on set 3. The upper figure is the Direct1 and
the lower is the Xchange2 contraction [each shown diagram-
matically in Figs. 1(a) and 1(b)].

15A model in which the diquarks are taken to be fundamental
particles cannot determine the two-meson threshold from the
Schrodinger equation because the diquarks cannot recombine
into mesons. Thus, the experimental meson masses [4] are used to
determine the lowest threshold.
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between the diquark and antidiquark inside the tetraquark in
this model is similar in magnitude to the distance between
the quarks inside each diquark [9]. Consequently, such an
approach is internally inconsistent. More recently, [10] used
a Hamiltonian including only spin-spin interactions medi-
ated by a one-gluon exchange. Here, all other effects such as
the chromoelectric interactions, color confinement and b-
quark mass need to be set separately. The authors set these
additional contributions in two ways: by estimating the
effects using an effective heavy quark [10] or by using the
experimental mesonmasses as input. In this way, the authors
find that the tetraquark state could be either below the 2ηb
threshold or lie in between the 2ηb and 2Υ thresholds (where
in both cases the thresholds were determined using the
experimental meson masses). In [55] the author also uses a
model including only chromomagnetic interactions and
finds an unbound tetraquark. Within the QCD sum-rules
framework, [11] finds a tetraquark candidate approximately
300 MeV below the experimental 2ηb threshold while [12]
finds a tetraquark lying in between the experimental 2ηb and
2Υ thresholds. Using phenomenological arguments, [13]
also finds a tetraquark candidate lying in between the
thresholds. Indeed, in the limit of very heavy quarks where
the force proceeds through one-gluon exchange containing
only color-Coulomb contributions (safely neglecting spin
and long-distance effects), the authors of [7] used a
variational methodology to determine that a bound tetra-
quark exists for a QQQ̄0Q̄0 system when mQ=mQ0 ≲ 0.15
(where both mQ and mQ0 are heavy relative to ΛQCD).
However, if mQ=mQ0 is varied and the tetraquark becomes
unbound, then as the free two-meson eigenstate becomes the
ground state of the system this numerical methodology has
an increasingly slow convergence to a solution [7] (being
numerically ill posed) due to a redundant degree of freedom
in the minimization procedure. Indeed [7] indicates that for
mQ=mQ0 ¼ 1 the solution is unstable, a hint that no bound
tetraquark exists for all identical quarks in the very heavy
mass limit. The authors of [14] assume that the b-quark is
sufficiently heavy to use the one-gluon exchange with only
color-Coulomb contributions, and by also neglecting the
mixing between different color components of the 2 × 2
potential matrix, find a tetraquark bound by 78(20)MeV (by
using the experimental ηb mass to determine the threshold).
In an orthogonal direction to the above work, the authors of
[15] only include a linear string contribution in the one-
gluon exchange (neglecting spin effects and the appreciable
short-distance Coulomb contributions), and without mixing
between the different color components of the potential
matrix, find a bound tetraquark when mQ=mQ0 ¼ 1.
However, in subsequent work [56,57], by modelling the
aforementioned mixing they concluded that no bound
tetraquark exists. Perhaps the most sophisticated non
first-principles methodology used to study the four-body
b̄b̄bb tetraquark is the diffusion Monte Carlo method
utilized by [9]. Here, one determines the ground state of a

phenomenologically motivated Hamiltonian by solving the
Schrodinger equation and examining the stability ofP

ne
−ðEn−E0ÞtΨnðxÞ to determine E0, where En (Ψn) is the

n-th energy-eigenstate (eigenfunction). The authors include
both the color-Coulomband linear contributions in the gluon
exchange but neglect the mixing between the different color
components in the potential matrix, and find a stable
tetraquark candidate 108 MeV below the 2ηb threshold
(determined from the experimental meson mass).
Consequently, there is no study in the literature which is
not from first principles that includes all the appreciable
effects relevant for the bbb̄b̄ system: treating the bottom
quarks as fundamental particles, including both short- and
long-distance effects in the gluon exchange and including
the mixing between the different color components in the
2 × 2 potential matrix.
It should be emphasized however that these studies,

unlike ours, are not from first principles and thus have an
unquantifiable systematic error associated with the choice
of four-body potential. To emphasize this further, thinking
of each Wick contraction (shown diagrammatically in
Fig. 1) as a different potential contributing to the QCD
dynamics, then only studying a subset of these interactions
can change the energies of states. This can lead to the
misidentification of a new state below threshold. For
example, the effective masses of the individual Wick
contractions contributing to the 2ηb → 2ηb correlator are
shown in Fig. 10. As is evident there, in each individual
Wick contraction the effective mass drops below the 2ηb
threshold but rises slowly to threshold even though when
all Wick contractions are added together to yield the full
correlator [shown Fig. 5(a)] the effective mass falls rapidly
to threshold from above. This behavior is even more
pronounced in the data with the additional scalar potential,
shown in Fig. 16, possibly indicating that this may be a
problematic feature of models that utilize a phenomeno-
logically motivated four-body potential: a subset of the
interactions show behavior that may be misinterpreted as a
bound state below threshold, while when all interactions are
included no bound state is seen. Particularly, the slow rise
to threshold from below could make the diffusion
Monte Carlo method practically difficult due to the slowly
varying stability condition combined with the fact that a
long evolution time (greater than 8 fm) is necessary.
In conclusion, we find no evidence of a b̄b̄bb tetraquark

with a mass below the lowest noninteracting bottomonium-
pair thresholds in the 0þþ, 1þ− or 2þþ channels. We give a
constraint in Eq. (21) that future phenomenological models
must satisfy if such QCD states are postulated. For the 0þþ
channel, we use this constraint to estimate how small the
nonperturbative overlap of the hypothetical tetraquark
(onto a particular operator) would need to be, relative to
the 2ηb, so that it was not observed within our statistical
precision. A 1σ, 3σ and 5σ exclusion plot of the parameter
space is shown in Fig. 11, and discussed in Sec. IV. As we
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have propagation times longer than 8 fm and statistically
precise data, we can exclude all but the most finely tuned
parameter space. Our lattice results then rule out the
phenomenological models discussed above that predict a
tetraquark below the lowest bottomonium-pair thresholds
which have a value of nonperturbative overlap that is
excluded by Fig. 11. A comparison of these results with
ours is shown in Fig. 17.
Further studies of possible heavy tetraquark channels that

include orbital angularmomentum either between themesons
in the tetraquark or between the quarks in the meson could be
performed with the methodology used here.16 Similarly one

could also study whether stable c̄c̄cc, b̄c̄bc or b̄b̄cc
tetraquarks exist or not. Additionally, two-hadron systems
receive a finite-volume energy shift which depends on the
infinite-volume scattering amplitude which is nontrivial to
parametrize. Here we do not calculate these finite-volume
energy shifts. Doing so in amore extended studywould allow
statements to be made about the existence of resonant
tetraquark states above the lowest thresholds, that likely do
exist in nature. Quantifying these shifts would be an exciting
avenue for future work.
Finally, recent work based on heavy-quark symmetry [6]

and phenomenological arguments [58] indicates that a
JP ¼ 1þ b̄b̄ud tetraquark is stable in QCD. In fact, by
extracting a potential from the lattice in the static
heavy-quark limit and solving the Schrodinger equation
[59–61] also find binding in this channel. Initial lattice
calculations hint that such a state exists [62], but calcu-
lations are difficult because of a signal-to-noise problem for
heavy-light states [63]. Lattice QCD calculations in this
direction are essential for a conclusive first-principles
statement to be made and to give further motivation
for a targeted experimental search for these tetraquark
configurations of nature.
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APPENDIX A: TWO-POINT CORRELATOR
FIT FUNCTIONS

Here we derive the nonrelativistic two-particle contri-
bution to the correlator on our ensembles. To begin, the
correlator is given in Eq. (5). For clarity, the i, j subscripts
are dropped. The completeness relation for a two-hadron
system is [64]

−600 −400 −200 0 200
E4b −E2ηb (MeV)

This Calc.

Lattice QCD
Pheno.
Models

CLSZ17

BLO16

AFGSZ17

KNR17

W17

WLCZ16†

BLN11

AFGSZ17

VVR13ξ

FIG. 17. A comparison of our result for the b̄b̄bb ground-state
energy in the0þþ channel (statistical error only) andpredictions from
phenomenological models. The hatched region indicates the ex-
clusion of a bound tetraquark with an energyE4b subject to the value
of its nonperturbative overlap as given in Fig. 11. In this comparison,
we take our ground-state energy obtained on the superfine ensemble
(set 4 in Table III) as a representative because it has the smallest
discretization effects and the statistical error encompasses the results
on the other ensembles as shown in Fig. 9. The y-axis labels results
from different phenomenological models [7–13] by last initial of
authors and year of publication. An error is plotted if given in the
reference. The two results from WLCZ16† differ by how the mass
scale was set. The result VVR13ξ finds no bound tetraquark and we
indicate this by placing their result on threshold.

16It should be noted that although we focused on S-wave
combinations of quarks, the channels we study also exclude certain
combinationsoforbital angularmomentumfromproducing abound
tetraquark. For example, the 0þþ overlaps with 2Υ in an orbital
angular momentum D-wave configuration. If this state produced a
low-lying bound tetraquark itwould also showup in our calculation.
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I ¼
X
X2

Z
d3Ptot

ð2πÞ3
d3k
ð2πÞ3

1

2EðX2Þ jX
2
ðPtot;kÞihX2

ðPtot;kÞj ðA1Þ

where jX2
ðPtot;kÞi ¼ jM1ðkÞM2ðPtot − kÞi is a two-hadron

state (with quantum numbers suppressed) and to avoid
superfluous notation, we also set Ptot ¼ 0. A key difference
from the one-hadron system is the internal relative momen-
tum, k, which contributes an additional three-integral.
Substituting the completeness relation Eq. (A1) into the
correlator Eq. (5) and performing the momentum conserv-
ing integrals yields

CðtÞ ¼
X
X2

Z
d3k
ð2πÞ3 ZX2ðkÞ2e−EðX2Þt ðA2Þ

where ZX2ðkÞ is a nonperturbative coefficient.
However, on a discrete finite volume the above integral

over elastic states is replaced by a finite sum with km ∈
ð−Ns=2þ 1;…; ; Ns=2Þ in units of ð2π=aNsÞ. In turn, for
Ptot ¼ 0, Eq. (A2) becomes a sum over back-to-back
hadronic states which have values of the discrete momenta
that are equal in magnitude but opposite in direction. One
can expand the two-particle energy using a nonrelativistic
dispersion relation, appropriate since we are using
NRQCD, as

EðX2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 þ jkj2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

2 þ jkj2
q

ðA3Þ

≈MS
1 þMS

2 þ
jkj2
2μr

ðA4Þ

wherewe have defined the static, kinetic and reducedmasses
byMS,MK and μr ¼ MK

1 M
K
2 =ðMK

1 þMK
2 Þ respectively. In a

finite volume there is an additional contribution to Eq. (A4)
dependent on the infinite-volume scattering phase shift,
which is discussed further below. Equation (A4) also
illustrates the density of back-to-back states on our ensem-
bles. As an example, examining the a ¼ 0.09 fm ensemble,
and taking Mηb ¼ 9.399ð2Þ GeV from the PDG [4], the
smallest allowed jkj2=2μr ≈ 20 MeV or 0.0092 in lattice
units with all other back-to-back states separated by multi-
ples of this value. Consequently, due to the bottomonium
mass being large compared to the smallest allowed momen-
tum, adjacent back-to-back states are sufficiently close in
energy that fitting the momentum states as a discrete sum
would require a vast set of correlators projected onto each
separate jkj2=2μr (with the methodology used in [38]).
Practically, this would be overly computationally expensive
and instead, the fact that the states with k ≠ 0 are related by
the dispersion relation (and are not independent as the sum
would assume) should be included.
This can be achieved by first expanding the nonpertur-

bative coefficient ZX2ðkÞ as a polynomial in jkj2=μ2r , as
dictated by rotational symmetry and by ensuring the Taylor
coefficients have the same dimension, then keeping all

terms needed to a certain precision. After this the correlator
can be written as

CðtÞ ¼
X
X2

e−ðMS
1
þMS

2
ÞtX

k

�X∞
i¼0

Z2l
X2

jkj2l
μ2lr

�
e−

jkj2
2μr

t ðA5Þ

¼
X
X2

e−ðMS
1
þMS

2
Þt
Z π

a

−π
a

d3k
ð2πÞ3

�X∞
i¼0

Z2l
X2

jkj2l
μ2lr

�
e−

jkj2
2μr

t ðA6Þ

where going from the first to the second line we have
replaced the finite sum by an integral. Taking the limits of
the integral to �∞ and performing the integrals over k
analytically yields the fit function given in Eq. (7). Once it
is shown that it is possible to replace the finite sum by the
indefinite integral within our statistical precision then it is
valid to use the above fit function with our data.
To do so, using spherical coordinates in Eq. (A6), we

define the quantities that we need to compare as

IðlÞðtÞ ¼ 1

μ2lr

Z
∞

−∞
djkjjkj2lþ2e−

jkj2
2μr

t; ðA7Þ

DðlÞðtÞ ¼ 1

μ2lr

X
jkj

jkj2lþ2e−
jkj2
2μr

t: ðA8Þ

The integrands of both are shown diagrammatically in
Fig. 18, where it is observed that due to the Gaussian time
dependence the peaks of the integrand move towards the
originwith larger t. As such, one objective is to choose a large
enough t̂ such that a sufficient majority of the integrand is
within the maximum momentum π=a. We can replace the
discrete finite-volume fit function with its infinite-volume

FIG. 18. The integrands of the moments given in Eq. (A8) at
multiple times. The crosses represent the discrete finite-volume
momentum contributions on the coarse (set 1) ensemble as
discussed in the text. Due to the Gaussian time dependence,
the integrand peak moves towards the origin for larger times.
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counterpart if the relative difference between them is less
than our statistical errors. Specifically if

����
Plmax

l¼0 Z
2;ðlÞIðlÞðtÞ −P∞

l¼0 Z
2;ðlÞDðlÞðtÞPlmax

l¼0 Z
2;ðlÞIðlÞðtÞ

���� ðA9Þ

≤
jPlmax

l¼0 Z
2;ðlÞIðlÞðtÞ −P∞

l¼0 Z
2;ðlÞDðlÞðtÞj

jZ2;ð0ÞIð0Þj ðA10Þ

≤
Xlmax

l¼0

Z2;ðlÞ

Z2;ð0Þ
jIðlÞðtÞ −DðlÞðtÞj

Ið0Þ
þ

X∞
l¼lmaxþ1

Z2;ðlÞ

Z2;ð0Þ
DðlÞðtÞ
Ið0Þ

≤
Xlmax

l¼0

jIðlÞðtÞ −DðlÞðtÞj
Ið0Þ

þ
X∞

l¼lmaxþ1

DðlÞðtÞ
Ið0Þ

ðA11Þ

≤
δCðtÞ
CðtÞ ðA12Þ

where lmax is the maximum number of moments to be
included in the fit function, the inequality in the second line
holds as the moment integrands are positive (shown dia-
grammatically in Fig. 18), in the third line the Cauchy
inequality has been used, and in the fourth line it is assumed
that the leading moment gives the dominant contribution
(Z2;ðlÞ ≤ Z2;ð0Þ). Studying Eq. (A11) instead of Eq. (A9) is a
conservative option.
Each part of the first term in Eq. (A11) represents how

similar IðlÞðtÞ and DðlÞðtÞ need to be in order to be
considered equivalent within statistical precision. This is
shown in Fig. 19. For a particular lmax, the second term
represents when the higher moments look like noise within
statistical precision, also shown in Fig. 19. Each figure was
generated with the coarse ensemble parameters (listed as set

1 in Table III) as this ensemble has the largest lattice
spacing (and hence smallest π=a value—the upper limit on
the integral of interest) and also the smallest Ns (the
number of discrete momenta used in the finite-volume
sum). As such, the other ensembles give better approx-
imations and studying set 1 is conservative. Overlaid on
each plot is the smallest relative statistical error from the
data on any ensemble. Due to the constant signal-to-noise
ratio, the number of configurations and the size of the
lattice spacing, the smallest statistical error was the 2ηb
correlator on the fine ensemble. Only examining situations
below this curve is the most conservative option for all data
generated. As can be observed in Fig. 19, the discrete finite-
volume sums are well represented by the indefinite inte-
grals. Additionally, in order to neglect the higher moments
within our statistical precision, a choice of t̂ ¼ 1 fm and
lmax ¼ 2 is sufficient.
Expanding the finite-volume two-particle energy non-

relativistically in Eq. (A4) neglected a possible finite-volume
energy shift which depends on the infinite-volume scattering
amplitude. In the small scattering-length limit, the energy
shift is known to be volume suppressed [40]. The two-
particle systems under study are in this limit as the ηb and Υ
are compact due to the heavy-quark mass, with a size of 0.2–
0.3 fm. As such, the low-momentum energy shifts are not
expected to be appreciable given the large volume ensembles
we employ. Energy shifts in higher momentum states from
Eq. (A4) are exponentially suppressed due to the Gaussian
integral in Eq. (A6). Consequently, these too are not
appreciable and no large influence of finite-volume energy
shifts is seen (cf., the effective mass figures in Sec. IV).
Quantifying these finite-volume scattering shifts is outside
the remit of this study. Regardless, the scattering shiftswould
be positive and push the finite-volume two-particle energy
higher and not contribute to a misidentification of a bound
tetraquark below the noninteracting threshold.

APPENDIX B: TWO-POINT CORRELATOR FIT
FUNCTIONS WITH A HARMONIC OSCILLATOR

In the nonrelativistic limit the free propagator (to leading
order) is

Δðx; tÞ ¼
Z

d3p
ð2πÞ3 exp ðip · xÞ exp

�
−
�
mþ p2

2m

�
t
�
:

ðB1Þ
The free two-meson propagator with Ptot ¼ 0, both starting
at common origin x0 ¼ ð0; 0Þ and ending at time t, is
given by

~ΔðtÞ ¼
Z

d3xΔ1ðx; tÞΔ2ðx; tÞ: ðB2Þ

Using Eq. (B1) in Eq. (B2) produces the large-time behavior
of the free two-meson propagator as

FIG. 19. The difference between the discrete finite-volume and
infinite-volume continuum moments (upper) and which moments
can be neglected compared to our statistical precision (lower) as
discussed in the text.
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~ΔðtÞ ¼
�
μr
2πt

�
3=2

e−ðm1þm2Þt: ðB3Þ

This agreeswith the leadingbehavior derived inAppendixA.
Next, for the harmonic oscillator case, the one-dimensional
Hamiltonian is

∂ψ
∂t ¼ Eψ ¼ −

1

2m
∂2ψ

∂x2 þ κ

2
x2ψ : ðB4Þ

Solutions of this system can be related to the solutions of the
Mehler differential equation via

∂ϕ
∂~t ¼ ∂2ϕ

∂ρ2 − ρ2ϕ ðB5Þ

with the identifications ω ¼ ffiffiffiffiffiffiffiffiffi
κ=m

p
, t ¼ 2~t=ω and

r ¼ ðκmÞ−1=4ρ. The Greens function (propagator) for the
Mehler differential equation is given by

Δðρ1; ρ2; ~tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π sinhð2~tÞ
p exp

�
− coth ð2~tÞ ðρ

2
1 þ ρ22Þ
2

þ cschð2~tÞρ1ρ2
�
: ðB6Þ

To normalize this propagator one can first compare the
large t behavior of this solution with the known behavior

of the harmonic oscillator propagator, limt→∞GðtÞ ¼
jΨð0Þj2e−1

2
ωt, where the wave function at the origin is given

by Ψð0Þ ¼ ðmω=πÞ1=4. As such, the harmonic oscillator
solution is

Δðx;0; tÞ¼
ffiffiffiffiffiffiffi
mω

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sinhðωtÞp exp

�
−
mωx2

2
cothðωtÞ

�
: ðB7Þ

The three-dimensional solution can then be obtained using
the separability of each spatial direction, so that the zero
spatial-momentum single-particle correlator in a harmonic
oscillator potential is given by

Z
d3xΔðx; 0; tÞ ¼

�
1

coshðωtÞ
�

3=2
e−mt: ðB8Þ

Finally, the equal mass two-particle propagator starting at a
common origin x0 ¼ ð0; 0Þ and ending at a time t with
Ptot ¼ 0, in the presence of an external harmonic oscillator
potential, is found from using Eq. (B7) in Eq. (B2), to give

~ΔðtÞ ¼
�
mω

2π

1

sinhð2ωtÞ
�

3=2
e−2mt: ðB9Þ

By comparing (B9) to (B3), and noting thatm ¼ 2μr, we see
that the free two-meson harmonic oscillator propagator
reduces to the nonharmonic oscillator case as ω → 0.
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