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We determine the normalization of scalar and pseudoscalar current operators made from nonrelativistic b
quarks and highly improved staggered light quarks in lattice quantum chromodynamics (QCD) through
OðαsÞ and ΛQCD=mb. We use matrix elements of these operators to extract B meson decay constants and
form factors, and then compare to those obtained using the standard vector and axial-vector operators. This
provides a test of systematic errors in the lattice QCD determination of the B meson decay constants and
form factors. We provide a new value for the B and Bs meson decay constants from lattice QCD
calculations on ensembles that include u, d, s, and c quarks in the sea and those that have the u=d quark
mass going down to its physical value. Our results are fB ¼ 0.196ð6Þ GeV, fBs

¼ 0.236ð7Þ GeV, and
fBs

=fB ¼ 1.207ð7Þ, agreeing well with earlier results using the temporal axial current. By combining with
these previous results, we provide updated values of fB ¼ 0.190ð4Þ GeV, fBs

¼ 0.229ð5Þ GeV, and
fBs

=fB ¼ 1.206ð5Þ.

DOI: 10.1103/PhysRevD.97.054509

I. INTRODUCTION

Hadronic weak decay matrix elements containing b
quarks that are calculated in lattice quantum chromody-
namics (QCD) are critical to the flavor physics program of
overdetermining the Cabibbo-Kobayashi-Maskawa (CKM)
matrix in order to find signs of new physics. The accuracy
of the lattice QCD results often limits the accuracy with
which the CKM matrix elements can be determined and
with which the associated unitarity tests can be performed
[1]. It is therefore important both to improve and to test the
accuracy of the lattice QCD results. This includes deter-
mining the lattice QCD values using a variety of different

formalisms for b quarks and light quarks, in addition to
using different methodologies within a given formalism.
It is now becoming possible to study heavy quarks up to

the mass of the bottom quark using relativistic formalisms
[2,3], but this is relatively expensive numerically. Cons-
equently, to date, the most extensive studies of heavy
quarks in lattice QCD have been done with nonrelativistic
formalisms, such as NonRelativistic Quantum Chromo-
dynamics (NRQCD) [4] or the Fermilab formalism [5] and
its variants [6]. Relativistic formalisms have the advantage
of simple continuumlike current operators that couple to the
W boson that can be chosen to be absolutely normalized,
for example through the existence of a partially conserved
axial current (PCAC) relation [7]. The main issue with
these formalisms is then controlling discretization errors
[8]. In nonrelativistic formalisms the numerical calculation
itself is more tractable, along with the control of discre-
tization errors, but the current operators have a nonrela-
tivistic expansion and must have their normalization
matched to that of the appropriate continuum operator.
The expansion and the normalization are the main sources
of systematic uncertainty in these lattice QCD results. The
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comparison of lattice QCD values derived using non-
relativistic and relativistic formalisms provides a test of
systematic uncertainties (see, for example, [3,9]). However,
it is also important to provide tests of systematic uncer-
tainties within a given formalism using different methods.
Here we provide such a test of the NRQCD approach by
normalizing new sets of current operators that have not
been used in this formalism before, and then comparing
results for the decay constants and form factors obtained to
the previous determinations.
The archetypal heavy meson weak decay process is

annihilation of a B meson to τν. The hadronic parameter
which controls the rate of this process is the B meson decay
constant, proportional to the matrix element to create a B
meson from the vacuum with the temporal axial current
containing a heavyquark field and a light antiquark field. The
most precise calculation to date of the B meson decay
constant, fB, uses improved lattice NRQCD and highly
improved staggered light quarks on gluon field configura-
tions that includeu,d, s, and c quarks in the seawithmultiple
values of the lattice spacing and a u=d quark mass going
down to the physical point [9]. That calculation used lattice
QCD perturbation theory [10] to normalize the temporal
axial current operator through OðαsÞ, OðαsΛQCD=mbÞ, and
OðαsaΛQCDÞ and obtained a final uncertainty of 2%,
including uncertainties from current operator matching
and missing higher order current operators.
Decay constants can also be defined in continuum QCD

from pseudoscalar current operators using the PCAC
relation. This is typically the method of choice for lattice
QCD calculations using relativistic formalisms where a
lattice PCAC relation allows the pseudoscalar current to be
absolutely normalized. This enables the D and Ds decay
constants to be obtained with 0.5% uncertainties using the
highly improved staggered quarks (HISQ) formalism
[7,11,12]. Here we normalize the NRQCD-light pseudo-
scalar current through OðαsÞ, OðαsΛQCD=mbÞ, and
OðαsaΛQCDÞ and obtain a value for fB with similar
uncertainty to that determined from the temporal axial
current, providing a test of the systematic errors.
B meson exclusive semileptonic processes are important

for the determination of CKM matrix elements through the
matching of experimental decay rates to theoretical expect-
ations as a function of momentum transfer. Here the
hadronic parameters that encapsulate the information
needed on QCD effects are the form factors, calculable
in lattice QCD. For the case in which both initial and final
mesons are pseudoscalars (e.g. B → πlν) there are two
form factors, a vector form factor, and a scalar form factor.
It is the vector form factor that gives the decay rate in the
light lepton mass limit, but both form factors appear in
the lattice QCD determination of the matrix elements of the
vector current. The form factors can be separated by
comparing spatial and temporal vector current matrix
elements, but additional information can also be obtained

by determining the scalar form factor directly from the
scalar current. Indeed this method has been used for the
accurate determination of D and K meson semileptonic
form factors in lattice QCD using the HISQ formalism
[13–15]. Here we compare results using NRQCD-light
scalar currents to those obtained using vector currents for
B → πlν. We discuss how this method will be used in
improved “second generation” B meson semileptonic form
factor calculations now underway.
The paper is organized as follows: in Sec. II we derive

the normalization of the NRQCD-light scalar and pseudo-
scalar current operators; in Sec. III we combine this with
the lattice calculation of the matrix elements of different
components of the current to give results for decay
constants and form factors; Sec. IV gives our conclusions,
including planned future work using these results.

II. NORMALIZATION OF LATTICE NRQCD
CURRENT OPERATORS

Here we discuss the normalization of the lattice
NRQCD-HISQ current operators when the light quark is
taken to be massless and follow the methodology laid out in
[16,17], along with most of the notation. We will start with
a discussion of the temporal axial current and show the
modifications that need to be made to those results to yield
the normalization of the pseudoscalar current. Results for
the temporal vector/scalar case are then identical because of
the chiral symmetry of the HISQ action.
The matrix element of the appropriate temporal axial

current defined in continuum QCD between the vacuum
and pseudoscalar meson, H, at rest yields the meson decay
constant, fH, via the relation

h0jA0jHi ¼ fHMH; ð1Þ

whereMH is the meson mass. The continuum QCD current
operator can be systematically expanded in terms of lattice
NRQCD-HISQ current operators (whose matrix elements
can be determined in a lattice QCD calculation) as

A0 ¼
X
j

Cj;A0
ðαs; ambÞJðjÞA0;lat

; ð2Þ

where increasing j corresponds to operators that are higher
order in a relativistic expansion. The Cj are dimensionless
coefficients that compensate for the different ultraviolet
behavior between the continuum and lattice regularizations
of QCD, and hence they can be calculated in perturbation
theory as a power series in the strong coupling constant, αs.
The coefficients of powers of αs will depend on the bare
heavy quark mass in lattice units, amb, which is the
parameter appearing in the lattice NRQCD action (we
use b as the bare mass subscript rather than the generic label
h since, in our lattice calculations, this is always the b quark
mass). Here we work through OðαsÞ and include the three
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operators (j ¼ 0, 1, 2) that allow us to match the current
through OðαsΛQCD=mbÞ and OðαsaΛQCDÞ. The determi-
nation of the Cj is done most conveniently by choosing to
match matrix elements of the left- and right-hand sides of
Eq. (2) for a heavy quark to light quark scattering process
induced by the current. The procedure then [16,17] is as
follows:

(i) calculate the amplitude for such a process through
OðαsÞ in continuum QCD;

(ii) expand this amplitude through first order in powers
of 1=M where M is the heavy quark pole mass;

(iii) choose lattice NRQCD-HISQ operators that repro-
duce the terms in this expansion and calculate the
one-loop mixing matrix of these operators in lattice
QCD perturbation theory using the same infrared
regulation procedure as used in the continuum.
Infrared divergences must cancel between the con-
tinuum and lattice calculations in the end, since the
two only differ in ultraviolet physics. Note also that
the mixing matrix should be calculated at a pole
mass that matches that of the continuum calculation;

(iv) invert this mixing matrix to determine the (finite) Cj
coefficients that will give the correct linear combi-
nation of lattice currents to produce the same one-
loop scattering amplitude as in continuum QCD.

The continuum calculation for the temporal axial current
q̄ðxÞγ5γ0hðxÞ was done in [16] in the MS scheme using
Feynman gauge, on-shell mass and wave-function renorm-
alization, and a gluon mass (λ) to regulate infrared
divergences. qðxÞ is the light quark field and hðxÞ the
heavy quark field satisfying the Dirac equation, and the γ
matrices are the standard ones in Euclidean space-time. The
key diagram to be calculated in continuum QCD is shown
in Fig. 1, where the double line represents an incoming
heavy quark of momentum p, the single line represents an
outgoing massless quark of momentum p0, and the cross
represents the current. The self-energy diagram must also
be evaluated to determine the wave-function renormaliza-
tion. The result for the temporal axial current amplitude is
given through 1=M as a combination of five matrix

elements of Dirac spinors multiplied by factors of p0,
p0
0, and p · p0 in [16]. By using the Dirac equation for the

light quark, and expanding the heavy quark energy and
Dirac spinor to 1=M, this is reduced to

hqðp0ÞjA0jhðpÞiQCD¼ηð0ÞA0
Ωð0Þ

A0
þηð1ÞA0

Ωð1Þ
A0
þηð2ÞA0

Ωð2Þ
A0
: ð3Þ

The coefficients are

ηð0ÞA0
¼ 1þ αsB

ð0Þ
A0
;

ηð1ÞA0
¼ 1þ αsB

ð1Þ
A0
;

ηð2ÞA0
¼ αsB

ð2Þ
A0

ð4Þ

with

Bð0Þ
A0

¼ 1

3π

�
3 ln

M
λ
−
3

4

�
;

Bð1Þ
A0

¼ 1

3π

�
3 ln

M
λ
−
19

4

�
;

Bð2Þ
A0

¼ 1

3π

�
12 −

16π

3

M
λ

�
: ð5Þ

The constituent matrix elements are

Ωð0Þ
A0

¼ ūqðp0Þγ5γ0uQðpÞ;
Ωð1Þ

A0
¼ −iūqðp0Þγ5γ0

γ · p
2M

uQðpÞ;

Ωð2Þ
A0

¼ iūqðp0Þ γ · p
0

2M
γ0γ5γ0uQðpÞ; ð6Þ

where uQ is a two-component spinor related to the Dirac
spinor uhðpÞ [to Oð1=M2Þ] by

uhðpÞ ¼
�
1 −

i
2M

γ · p

�
uQðpÞ ð7Þ

and where uQ satisfies γ0uQðpÞ ¼ uQðpÞ.
We now carry out the continuum calculation to the same

order for a pseudoscalar current P ¼ q̄ðxÞγ5hðxÞ and obtain

hqðp0ÞjPjhðpÞiQCD ¼ a1ūqðp0Þγ5uhðpÞ

þa2
p ·p0

M2
ūqðp0Þγ5uhðpÞ; ð8Þ

where ūq and uh are Dirac spinors and

a1 ¼ 1þ αs
3π

�
13

4
þ 3 ln

μ

M
þ 3 ln

μ

λ

�
;

a2 ¼
αs
3π

�
4 −

8π

3

M
λ

�
: ð9Þ

FIG. 1. The Feynman diagram for the vertex renormalization in
continuum QCD perturbation theory. The heavy quark is denoted
by a double line, the light quark by a single line, and the exchange
of a gluon by a curly line. The current is denoted by a cross inside
a circle.
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Here μ is the scale parameter from dimensional regulari-
zation and λ is the gluon mass. We expand the heavy quark
energy and Dirac spinor to 1=M and obtain

hqðp0ÞjPjhðpÞiQCD ¼ ηð0ÞP Ωð0Þ
P þ ηð1ÞP Ωð1Þ

P þ ηð2ÞP Ωð2Þ
P ð10Þ

with ηðjÞP defined in an analogous way to Eq. (4) and

Bð0Þ
P ¼ Bð0Þ

A0
þ 1

π

�
2 ln

μ

M
þ 4

3

�
;

Bð1Þ
P ¼ Bð1Þ

A0
þ 1

π

�
2 ln

μ

M
þ 8

3

�
;

Bð2Þ
P ¼ Bð2Þ

A0
−

4

3π
: ð11Þ

Note that Bð0Þ
P and Bð1Þ

P have the same value
[ða1 − 1Þ=αs] coming from the first term on the right-hand
side of Eq. (8). A check on these results comes from
applying the continuum PCAC relation. This shows that the
leading order term Bð0Þ should differ between P and A0 by
an amount that is the one-loop conversion factor between
the pole and MS quark mass at scale μ. Using γ0uQ ¼ uQ
the relationship between the operator matrix elements for
the pseudoscalar and temporal axial current cases are

Ωð0Þ
P ¼ ūqðp0Þγ5uQðpÞ ¼ Ωð0Þ

A0
;

Ωð1Þ
P ¼ −iūqðp0Þγ5

γ · p
2M

uQðpÞ ¼ −Ωð1Þ
A0
;

Ωð2Þ
P ¼ iūqðp0Þ γ · p

0

2M
γ0γ5uQðpÞ ¼ Ωð2Þ

A0
ð12Þ

with a sign change for the leading relativistic correction,
j ¼ 1. Exactly the same relations are obtained for the scalar
case with respect to the temporal vector calculation.
The current operators needed in the lattice NRQCD

calculation are readily identified from the ΩðjÞ by replacing
spinors with fields and converting momentum factors to
derivatives. This gives, for the temporal axial-vector case,

Jð0ÞA0;lat
¼ q̄ðxÞγ5γ0QðxÞ;

Jð1ÞA0;lat
¼ −

1

2mb
q̄ðxÞγ5γ0γ · ∇⃗QðxÞ;

Jð2ÞA0;lat
¼ −

1

2mb
q̄ðxÞγ · ∇⃖γ0γ5γ0QðxÞ; ð13Þ

where mb is the bare lattice NRQCD quark mass and QðxÞ
is the two-component NRQCD field (i.e. a four-component
field with zero in the lower two components). The
analogous expressions for the pseudoscalar case mir-
ror Eq. (12).
The next step is to calculate the mixing matrix for the

lattice operators in lattice QCD perturbation theory through
one loop. For the A0 case

hqðp0ÞjJðjÞA0;lat
jhðpÞi ¼

X
j

ZA0;ijΩ
ðjÞ
A0

ð14Þ

with ZA0;ij written as [16,17]

ZA0;ij¼δijþαs

�
δij

�
ZqþZb

2
þZmb

ð1−δi0Þ
�
þζA0

ij

�
: ð15Þ

Zq is the coefficient of the one-loop term in the wave-
function renormalization for massless lattice quarks, here in
the HISQ formalism. Similarly, Zb is the coefficient of the
one-loop term in the lattice NRQCD wave-function
renormalization and Zmb

the coefficient of the one-loop
mass renormalization between the bare NRQCD quark
mass and the pole mass [18]. This latter factor appears for
j ¼ 1, 2 because of the explicit mass factor in the operator
and our choice to use the bare NRQCD mass in the
NRQCD operators relevant for the lattice calculation. ζij
are the coefficients of the one-loop terms obtained from the
renormalization of the vertex diagram with JðjÞ at the
vertex. Note that Zb, Zmb

, and ζij are all functions of amb

and must be evaluated at the value of amb being used in the
lattice QCD calculation.
Peeling off the external states we can then write, using A0

as an example,

A0 ¼
X
i;j

ηðiÞA0
Z−1
A0;ij

JðjÞA0;lat
; ð16Þ

which determines the Cj coefficients of Eq. (2). To make
the Cj explicit as a power series in αs we expand the inverse
of Z to OðαsÞ,

Z−1
A0;ij

¼δij−αs

�
δij

�
ZqþZb

2
þZmb

ð1−δi0Þ
�
þζA0

ij

�
: ð17Þ

Then, substituting in the results for the ηðiÞ from Eq. (4), we
have [16]

C0;A0
¼ 1þ αs

�
Bð0Þ
A0

−
Zq þ Zb

2
− ζA0

00 − ζA0

10

�
;

C1;A0
¼ 1þ αs

�
Bð1Þ
A0

−
Zq þ Zb

2
− Zmb

− ζA0

11 − ζA0

01

�
;

C2;A0
¼ αsðBð2Þ

A0
− ζA0

02 − ζA0

12Þ: ð18Þ

Zq and Zb have logarithmic infrared divergences with aλ as

do ζA0

00 and ζA0

11 . These cancel against the logarithmic

divergences in Bð0Þ
A0

and Bð1Þ
A0

[see Eq. (5)] so that C0;A0

and C1;A0
are finite. Similarly the linear infrared divergence

of Bð2Þ
A0

is canceled by a matching divergence in ζA0

02 . Note

that the explicit factors of aM remaining in the BðjÞ
A0

will
now be replaced by amb, which is the same as aM to this
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order in αs. Combinations of the ζA0

ij that allow the Cj;A0
to

be determined are given for the NRQCD-HISQ case in
[10], using techniques from [19]. The calculation is done
for the standard v4-accurate NRQCD action [20,21], but the
results are also correct for the αsv4-improved NRQCD that
we will use here [22], because the impact of the αsv4

improvement terms will only appear in the matching at α2s .
Here we recast the expansion of the QCD currents into a

more natural combination of lattice QCD currents as

A0 ¼ ð1þ αsz
A0

0 Þ
× ðJð0ÞA0;lat

þ ð1þ αsz
A0

1 ÞJð1ÞA0;lat
þ αsz

A0

2 Jð2ÞA0;lat
Þ; ð19Þ

where, to OðαsÞ, ð1þ αsz
A0

0 Þ ¼ C0;A0
, αsz

A0

2 ¼ C2;A0
and

αsz
A0

1 ¼ C1;A0
− C0;A0

. The values for zA0

0 , zA0

1 , and zA0

2 were
given in [9] and are reproduced here in Table II. The values
are the same for the temporal vector current from the chiral
symmetry of the HISQ action.
To perform the equivalent calculation for the pseudo-

scalar current we note that the ΩðjÞ
P are simply related to the

ΩðjÞ
A0

as in Eq. (12) and so the JðjÞP are similarly related to

JðjÞA0
. Hence we do not need to perform a new calculation in

lattice QCD perturbation theory. We simply need to
reconstruct the mixing matrix for the pseudoscalar case
from that of the temporal axial vector. We can then write

P ¼
X
j

Cj;PJ
ðjÞ
A0;lat

ð20Þ

and find

C0;P ¼ 1þ αs

�
Bð0Þ
P −

Zq þ Zb

2
− ζA0

00 þ ζA0

10

�
;

C1;P ¼ −1 − αs

�
Bð1Þ
P −

Zq þ Zb

2
− Zmb

− ζA0

11 þ ζA0

01

�
;

C2;P ¼ αsðBð2Þ
P − ζA0

02 þ ζA0

12Þ: ð21Þ
Note the overall minus sign for C1;P as well as the fact that
all of the ζij factors with either i or j equal to 1 now come in
with opposite sign. These factors are all finite, so the Cj;P

are still manifestly infrared finite.
Table I gives results for the finite ζ factors, ζA0

10 , ζ
A0

01 , and
ζA0

12 , as well as Zmb
that allow us to determine the Cj;P from

the Cj;A0
for a variety of values of the heavy quark mass in

lattice units, amb. These correspond to the values of b
quark masses used in our lattice NRQCD calculations that
will be discussed in Sec. III.
For the pseudoscalar current case, we multiply both sides

of Eq. (20) by the heavy quark mass in the MS scheme at
the scale μ and then, on the right-hand side, convert these
into lattice NRQCD bare quark masses using the relation

mMS
b ðμÞ ¼ mb

�
1þ αs

�
Zmb

−
2

π
ln

μ

M
−

4

3π

��
: ð22Þ

Values for Zmb
at a variety of amb values for lattice

NRQCD are given in Table I [10]. Then we have

PðμÞmMS
b ðμÞ ¼ mbð1þ αszP0 Þ

× ðJð0ÞA0;lat
− ð1þ αszP1 ÞJð1ÞA0;lat

þ αszP2 J
ð2Þ
A0;lat

Þ:
ð23Þ

TABLE I. Values for the 3 ζij one-loop mixing coefficients
[defined in Eq. (15)] needed to determine the renormalization of
the lattice NRQCD-HISQ pseudoscalar/scalar current from that
of the temporal axial vector/temporal vector current for massless
HISQ quarks. Column 5 gives the one-loop NRQCD mass
renormalization coefficient. These results were calculated and
presented as the linear combination relevant for Eq. (18) in [10]
using the standard v4-accurate NRQCD action (with stability
parameter n ¼ 4) and the individual values are given here. We
also include new results for a lighter b quark mass, amb ¼ 1.22,
suitable for the MILC “superfine” (0.06 fm) lattices.

amb ζA0

10 ζA0

01 ζA0

12 Zmb

3.297 −0.0958ð1Þ −0.1918ð1Þ 0.029(4) 0.167(1)
3.263 −0.0966ð1Þ −0.1941ð1Þ 0.030(4) 0.176(1)
3.250 −0.0970ð1Þ −0.1950ð1Þ 0.031(4) 0.178(1)
2.688 −0.1144ð1Þ −0.2379ð1Þ 0.060(4) 0.262(1)
2.660 −0.1156ð1Þ −0.2411ð1Þ 0.060(4) 0.264(1)
2.650 −0.1157ð1Þ −0.2414ð1Þ 0.061(4) 0.267(1)
2.620 −0.1171ð1Þ −0.2448ð1Þ 0.062(4) 0.272(1)
1.910 −0.1539ð1Þ −0.3256ð1Þ 0.093(4) 0.434(1)
1.890 −0.1553ð1Þ −0.3285ð1Þ 0.095(4) 0.448(1)
1.832 −0.1593ð2Þ −0.3361ð1Þ 0.097(4) 0.466(1)
1.826 −0.1595ð2Þ −0.3370ð1Þ 0.098(4) 0.468(1)
1.220 −0.2258ð5Þ −0.4625ð5Þ 0.116(5) 0.714(1)

TABLE II. Values for the one-loop renormalization factors for
the NRQCD-HISQ temporal axial vector current [defined in
Eq. (19)] for massless HISQ quarks. The results for the temporal
vector current are identical. These were calculated in [9] from
numbers in [10] and are reproduced here. The results for zA02 have
changed slightly for the heaviest masses because of an improved
calculation of ζ02.

amb zA0

0 zA0

1 zA0

2

3.297 0.0238(20) 0.0242(28) −1.014ð6Þ
3.263 0.0216(20) 0.0244(28) −1.009ð6Þ
3.250 0.0220(10) 0.0240(22) −0.999ð6Þ
2.688 0.0054(20) 0.0076(28) −0.712ð4Þ
2.660 0.0056(20) 0.0074(28) −0.698ð4Þ
2.650 0.0037(20) 0.0093(28) −0.696ð4Þ
2.620 0.0011(20) 0.0069(28) −0.690ð4Þ
1.910 −0.0071ð20Þ −0.0309ð36Þ −0.325ð4Þ
1.890 −0.0067ð20Þ −0.0313ð36Þ −0.318ð4Þ
1.832 −0.0027ð20Þ −0.0393ð36Þ −0.314ð4Þ
1.826 −0.0035ð30Þ −0.0395ð42Þ −0.311ð4Þ
1.220 0.0658(40) −0.0834ð58Þ 0.027(9)
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We find

zP0 ¼ zA0

0 þ 2ζA0

10 þ Zmb
;

zP1 ¼ zA0

1 þ 2ζA0

01 − 2ζA0

10 þ
4

3π
;

zP2 ¼ zA0

2 þ 2ζA0

12 −
4

3π
: ð24Þ

The values of appropriate ζij andZmb
given in Table I enable

us to determine the zPj values from the zA0

j . The zPj values are
given in Table III. The values are the same for the scalar
current due to the chiral symmetry of the HISQ action.
Figure 2 shows the different contributions to zA0

0 and zP0
as a function of amb. This includes the finite pieces of each
of the terms in Eq. (21) that vary with amb (thereby
excluding Zq). The different contributions are all of
moderate size and show mild dependence on amb over
the range of amb values that we use.

In Fig. 3 we plot z0 and z1 for the temporal axial vector
and pseudoscalar cases. The magnitudes of zA0

0 and zA0

1 are
both very small and both have very little dependence on
amb, a fact previously remarked on in [9]. zP0 and zP1 have
larger magnitude and somewhat more dependence on amb.
However, both are still smaller than 1 across the range of
amb values we use.
Note that using Jð0Þ alone in NRQCD to approximate

either the temporal axial vector or pseudoscalar currents
gives a larger renormalization factor at OðαsÞ. This is
because the coefficient that represents the “mixing-down”
of Jð1Þ into Jð0Þ, ζ10, reduces the size of the one-loop
renormalization of the combined current in both cases. That
Jð0Þ þ Jð1Þ is much closer to the continuum current than Jð0Þ
will be demonstrated in an order-by-order comparison of
results in Sec. III.
The coefficients zA0

2 and zP2 have stronger amb depend-
ence dominated by that in the mixing coefficient ζ02. This
grows linearly with amb at large values of amb so that, as
amb → ∞, the contribution of Jð2Þ becomes an αsaΛQCD

correction term. In Fig. 4 we show ζ02=amb up to large
values of amb (much above those that we use in practice)

TABLE III. The results from this paper are the values for the
one-loop renormalization factors for the NRQCD-HISQ pseu-
doscalar current [defined in Eq. (23)] for massless HISQ quarks.
Results for the scalar current are identical.

amb zP0 zP1 zP2

3.297 −0.0008ð22Þ 0.2566(28) −1.380ð10Þ
3.263 0.0044(22) 0.2538(28) −1.373ð10Þ
3.250 0.0060(14) 0.2524(22) −1.361ð10Þ
2.688 0.0386(22) 0.1850(28) −1.016ð9Þ
2.660 0.0384(22) 0.1808(28) −1.002ð9Þ
2.650 0.0393(22) 0.1823(28) −0.998ð9Þ
2.620 0.0389(22) 0.1759(28) −0.990ð9Þ
1.910 0.1191(22) 0.0501(36) −0.563ð9Þ
1.890 0.1307(22) 0.0467(36) −0.552ð9Þ
1.832 0.1447(22) 0.0315(36) −0.544ð9Þ
1.826 0.1455(32) 0.0299(43) −0.539ð9Þ
1.220 0.3278(40) −0.1324ð59Þ −0.165ð14Þ

FIG. 2. The different contributions that make up the renorm-
alization coefficients zA0

0 and zP0 as a function of the bare heavy
quark mass in the lattice NRQCD Hamiltonian, as given in
Eqs. (21) and (24). The infrared-finite pieces are plotted for
infrared-divergent contributions, and Zq is not included since it
does not vary with amb.

FIG. 3. The z0 and z1 factors for the OðαsÞ matching of the
temporal axial and pseudoscalar NRQCD-HISQ currents to
continuum QCD [Eqs. (19) and (23)] plotted against the bare
lattice b-quark mass.

FIG. 4. The one-loop mixing coefficient ζA002 for the temporal
axial vector NRQCD-HISQ current for massless HISQ quarks
divided by the bare heavy quark mass, amb, and plotted against
amb. This shows that ζ02 grows linearly with amb as amb → ∞.
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where this behavior becomes clear. At the amb values that
we use, the αsaΛQCD and αsΛQCD=mb behavior is inter-
twined. Values of zA02 and zP2 with the linear amb term
removed are shown in Fig. 3.
Lattice QCD results can be combined with Eqs. (19) and

(23) to determine the hadronic matrix elements of the
temporal axial vector/vector and pseudoscalar/scalar
currents up to systematic uncertainties coming from miss-
ing higher order radiative and relativistic corrections
(which will differ between the currents). In Sec. III we
will compare results for hadronic decay constants obtained
using temporal axial or pseudoscalar currents and form
factors from temporal vector and scalar currents. The extent
to which they agree is a test of our systematic uncertainties.

III. LATTICE CALCULATION AND RESULTS

A. Lattice configurations and simulation parameters

The gluon field configurations used here are listed in
Table IV. They are “second-generation” MILC configura-
tions [23,24] using a gluon action fully corrected through
αsa2 [25] and HISQ quarks [8] with u, d, s. and c
(nf ¼ 2þ 1þ 1) flavors in the sea. They include multiple
values of the lattice spacing and multiple values of the u=d
(taken to be degenerate) sea quark mass varying from
one-fifth of the s quark mass down to the physical value.
On these gluon field configurations the B and Bs decay
constants were calculated in [9] using a radiatively
improved (through αsv4b) NRQCD action for the b quark
[22,26], the HISQ action for the lighter quark, and an
NRQCD-HISQ temporal axial current matched to con-
tinuum QCD following the process described in Sec. II.
Here we will compare results using the pseudoscalar
current matched to the same level of accuracy. In a similar
way, the systematic uncertainties in the semileptonic form
factor for B → π obtained from (the traditional method of)
using a vector current can be tested by employing a scalar
current. Since we are largely reusing results from earlier
papers [9,27], we do not repeat technical details, for
example on the NRQCD Hamiltonian, but refer the reader
to those papers for more detail.

B. B and Bs meson decay constants

Using the PCAC relation of continuum QCD we can
determine the B meson decay constant, fB, from the matrix
element of the temporal axial current between the vacuum
and a B meson (at rest) as

h0jA0jBi ¼ fBMB ð25Þ

or from the product of the pseudoscalar density and the
quark masses as

ðmb þmlÞh0jPjBi ¼ fBM2
B: ð26Þ

Here MB is the B meson mass. In [9] the temporal axial
current relationship of Eq. (25) was used. A0 was con-
structed from the leading and next-to-leading NRQCD-
HISQ currents in a nonrelativistic expansion and was
matched to continuum QCD according to Eq. (19). This

involves writing A0 in terms of the lattice currents, Jð0ÞA0;lat
,

Jð1ÞA0;lat
, and Jð2ÞA0;lat

. In [9] the matrix elements of each current
between the vacuum and a B meson are determined in
lattice QCD, so that the matrix element of A0 in Eq. (25)
can be obtained to the specified level of accuracy (the

matrix elements for Jð1ÞA0;lat
and Jð2ÞA0;lat

are the same for a

meson at rest). Since Jð1Þ and Jð2Þ are relativistic corrections
to Jð0Þ, we expect their matrix elements to be of relative size
ΛQCD=mb (≈10%) compared to that of Jð0Þ for a Bmeson at
rest, where internal momenta are of OðΛQCDÞ.1 Terms
in which Jð1Þ and Jð2Þ matrix elements are multiplied
by αs might then be expected to be of relative size
αs × 10% ≈ 3%.
In Eq. (23) we give an expansion to the same order for

the combination of quark mass and pseudoscalar density,
mbP, in terms of the same NRQCD-HISQ currents

TABLE IV. Sets of MILC configurations [23,24] used here with their (HISQ) sea quark masses, ml½¼ ðmu þmdÞ=2�, ms, and mc in
lattice units. β ¼ 10=g2 is the QCD gauge coupling and the lattice spacing, a, is determined using the ϒð2S − 1SÞ splitting [9,22]. The
lattice size is L3

s × Lt. Each ensemble contains around 1000 configurations, and we take 16 time sources per configuration to increase
statistics.

Set β a [fm] amsea
l amsea

s amsea
c amval

s amval
b Ls=a Lt=a

1 5.80 0.1474(5)(14)(2) 0.013 0.065 0.838 0.0641 3.297 16 48
2 5.80 0.1463(3)(14)(2) 0.0064 0.064 0.828 0.0636 3.263 24 48
3 5.80 0.1450(3)(14)(2) 0.00235 0.0647 0.831 0.0628 3.25 32 48
4 6.00 0.1219(2)(9)(2) 0.0102 0.0509 0.635 0.0522 2.66 24 64
5 6.00 0.1195(3)(9)(2) 0.00507 0.0507 0.628 0.0505 2.62 32 64
6 6.00 0.1189(2)(9)(2) 0.00184 0.0507 0.628 0.0507 2.62 48 64
7 6.30 0.0884(3)(5)(1) 0.0074 0.0370 0.440 0.0364 1.91 32 96
8 6.30 0.0873(2)(5)(1) 0.0012 0.0363 0.432 0.0360 1.89 64 96

1Because of the mixing-down effects discussed in Sec. II, part
of the Jð1Þ and Jð2Þ matrix elements is proportional to αs times the
matrix element of Jð0Þ. This is a small effect here because the
relevant coefficient, ζ10, is small (see Fig. 2).
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multiplied by the bare NRQCD quark mass. Because the
matrix elements for each of the lattice NRQCD-HISQ
currents are given in [9], we can reconstruct the matrix
element of mbP required on the left-hand side of Eq. (26)
and so determine the decay constant in a different way. This
decay constant should agree with that determined from the
temporal axial current up to the uncertainties quoted. These
are dominated by systematic errors from missing higher
order matching terms and relativistic current correc-
tions [9].
Figure 5 shows how well this process works order-by-

order as relativistic current corrections and αs matching
terms are added in. The variations match our power-
counting expectations well, as we discuss further below.
The plot shows the ratio of the decay constant obtained
using the temporal axial current to that using the

pseudoscalar density. We use the results from [9], which
gives matrix elements for each contribution to the current
on each of the ensembles in Table IV. For each ensemble
the bare NRQCD quark mass amb is tuned to that of the b
quark using the spin average of ϒ and ηb masses, and the
u=d quark mass, aml, is given the value used for the light
quark mass in the sea. The s quark mass is tuned using a
fictitious ss̄ pseudoscalar meson whose properties are well
determined in lattice QCD [28]. Values for the π, K, and ηs
meson masses made from these light quarks are given in
[28,29]. We use αs in the V-scheme at a scale 2=a in the
operator matching as in [9].
In the determination of fB from the pseudoscalar density

in Eq. (26) there is a factor of ð1þml=mbÞ on the left-hand
side. We neglect this for the u=d quark because, at the
physical point, ml=mb ¼ 1=ð52.55 × 27.4Þ [30]. This is
negligible compared to the other uncertainties. For the
additional factor of mB on the right-hand side, which must
be removed to take a ratio of the two different decay
constants, we use the average of the charged and neutral
experimental B meson masses [1]. It has already been
demonstrated that the lattice QCD result for the B meson
mass, using NRQCD for the b quark, agrees with experi-
ment at the physical value of the u=d quark mass [29].
In the upper plot of Fig. 5 (for the B meson) the lowest

(zeroth) order result includes only the Jð0ÞA0;lat
current at tree

level, whose matrix element cancels in the ratio, and so the
result is simply mb=MB. Not surprisingly, substantial
differences are seen between the results of Oð20%Þ, being
the size of the binding energy of a B meson. A significant
improvement is seen on including αs radiative corrections

to the normalization of Jð0ÞA0;lat
in the open blue circles. Note

that, as remarked in Sec. II, the renormalization of Jð0ÞA0;lat

differs from that of Jð0ÞA0;lat
þ Jð1ÞA0;lat

because of mixing-down

effects encapsulated in ζA0

10 . The differences between the
two decay constants are now Oð10%Þ reflecting missing
relativistic corrections of OðΛQCD=mbÞ. The green pluses

and red crosses now successively include the effect of Jð1ÞA0;lat

at tree level and then αs corrections multiplying the matrix

elements of both Jð1ÞA0;lat
and Jð2ÞA0;lat

(which are the same here).
The green pluses and red crosses are very close together,
since the final αs corrections have little impact.
The final result, correct through αsΛQCD=mb, denoted by

the red crosses in Fig. 5 is close to the solid line at 1.0,
which indicates the same result is obtained for the decay
constant from both the temporal axial current and pseu-
doscalar density. More importantly the differences from the
value 1.0 of this ratio lie within the dashed lines that
correspond to the 2.2% relative uncertainty quoted for fB
from the temporal axial current in [9]. This uncertainty was
dominated by an estimate of the uncertainties expected
from missing higher order relativistic current corrections

FIG. 5. The ratio of the decay constant obtained using the
temporal axial current to that obtained using the pseudoscalar
density. Results are from lattice QCD calculations of the matrix
element from a nonrelativistic expansion of the appropriate
current operator between the vacuum and a B meson (upper
plot) or Bs meson (lower plot). Results from each of the
ensembles of Table IV are shown plotted against the square of
the lattice spacing. Purple open squares denote the lowest (zeroth)

order result, while blue open circles include only Jð0ÞA0;lat
but with

OðαsÞ matching for that current. Green pluses include Jð1ÞA0;lat
in a

matching through OðαsÞ and red crosses include the full match-
ing of Eqs. (19) and (23). Green pluses have been offset for
clarity. The dashed lines show the relative uncertainty on fB
values quoted in [9].
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and α2s matching errors. Since the results from the temporal
axial current and pseudoscalar density will have different
uncertainties from the missing α2s matching, the result
of Fig. 5 is a demonstration that the estimates of these
uncertainties are realistic.
The lower plot of Fig. 5 repeats this exercise for the

decay constant of the Bs meson, again using results from
[9]. In this case, using Eq. (26), we do not neglect the s
quark mass on the left-hand side. Instead we write�

1þ ms

mb

�
mbh0jPjBsi ¼ fBs

M2
Bs
; ð27Þ

and take ms=mb ¼ 1.0=52.55ð55Þ [30]. We use the exper-
imental value of the Bs meson mass to determine a ratio of
the decay constants from temporal axial current and
pseudoscalar density. The lower plot of Fig. 5 has identical
features to that of the upper plot. This is not surprising
because the relative effect of the matrix elements of the
relativistic current corrections is the same for u=d and s
quarks as can be seen from the results in [9].
We can complete the analysis by fitting the decay constant

results for fB and fBs
, obtained from the pseudoscalar

density, as a function of u=d quark mass and lattice spacing,
to extract physical results for comparison to the final
answers obtained using the temporal axial current. In the
temporal axial current case, because of a normalization
factor from the meson states, the hadronic quantity naturally
obtained from the lattice QCD calculation is fB

ffiffiffiffiffiffiffi
MB

p
,

denoted by Φ. The contributions to Φ from Jð0ÞA0;lat
and

Jð1ÞA0;lat
are tabulated in [9]. The equivalent hadronic quantity

corresponding tomatrix elements ofmbP is fBðMBÞ3=2. The
values we need for mbP matrix elements are obtained by
combining the appropriate Φ values for Jð0Þ and Jð1Þ as in
Eq. (23), including multiplication by amb and then by an
additional power of 1=a to convert to GeVunits. In this case,
the additional multiplication by 1=a will slightly increase
the uncertainty in the values we are fitting because of the
uncertainty in the determination of the lattice spacing.
We plot fBð

ffiffiffiffiffiffiffi
MB

p Þ3 for the B and Bs mesons in Fig. 6, as
well as plot our fits to the light quark mass and lattice
spacing dependence that enables us to extract a physical
result. Figure 7 shows a similar plot for the ratio for Bs to B.
Following [9] we use a fit form

fBð
ffiffiffiffiffiffiffi
MB

p
Þ3ða;MπÞ¼ fBð

ffiffiffiffiffiffiffi
MB

p
Þ3ð1þd1ðΛaÞ2þd2ðΛaÞ4Þ

×

�
1þb1;l

M2
π

Λ2
χ
−
3ð1þ3g2Þ

4Λ2
χ

lðM2
πÞ
�

× ð1þe1α2s ½1þe2δmbþe3δm2
b�Þ:

ð28Þ

Here d1 and d2 allow for discretization effects and are also
δmb dependent (suppressed for clarity). b1 allows for

dependence on the light quark mass, including the
chiral logarithm, lðM2

πÞ. For theBs case the chiral logarithm
term is not present and b1;l → b1;s. e1 allows for α2s
corrections from only matching to one loop in perturbation
theory, while e2;3 allow for the fact that the higher order
matching coefficients can in principle have amb depend-
ence. These priors are given identical values as in [9], except
for e1 ¼ 0.0ð3Þ as the pseudoscalar matching coefficients
are slightly larger than their temporal axial-vector counter-
parts. Extrapolating to the physical point in the absence of
electromagnetism, i.e.Mπ ¼Mπ0 , whereml¼ðmuþmdÞ=2,
we find fBðMBÞ3=2 ¼ 2.37ð7Þ GeV5

2, fBs
ðMBs

Þ3=2 ¼
2.94ð8Þ GeV5

2, and fBs
ðMBs

Þ3=2=fBðMBÞ3=2 ¼ 1.237ð7Þ.
Our complete error budget is given in Table V, with a

breakdown that follows [9]. Errors arising from statistics,
the lattice spacing, operator matching, and chiral param-
eters are estimated directly from the fit. The remaining
source of systematic error in the decay constants comes
from missing higher order relativistic corrections to the

FIG. 6. Results for the decay constants of B and Bs mesons
(multiplied by the 3=2 power of the meson mass) for the
ensembles in Table IV, obtained from the pseudoscalar current
and plotted against the light quark mass in units of the strange
quark mass (given as M2

π=M2
ηs ). The grey bands show the results

of the fit described in the text. Errors on the data points include
statistics/fitting only; the grey band includes the full error from
the fit to lattice spacing and quark mass effects along with the
perturbative matching uncertainty.

TABLE V. Full error budget for fBs
ðMBs

Þ3=2, fBðMBÞ3=2, and
their ratio as a percentage of the final answer.

Error % Ratio fBs
ðMBs

Þ3=2 fBðMBÞ3=2
a dependence 0.0 1.1 1.1
Chiral 0.02 0.12 0.13
g 0.0 0.01 0.01
Stat/scale 0.3 1.1 1.1
Operator 0.0 2.0 2.1
Relativistic 0.5 1.0 1.0
Total 0.6 2.8 2.8
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current. As discussed in [9], for the heavy-light system
under consideration the higher order relativistic corrections
will be of the size ðΛQCD=ambÞ2 ≃ 0.01, which we take for
this component of the error.
We can convert the above results into values of the decay

constants using the PDG masses [31] for MBl
¼ ðMB0

þ
MB�Þ=2 ¼ 5.279 63ð15Þ GeV and MBs

¼ 5.366 89ð19Þ.
Our final results for the decay constants obtained from
the pseudoscalar current are fB ¼ 0.196ð6Þ GeV,
fBs

¼ 0.236ð7Þ GeV, and fBs
=fB ¼ 1.207ð7Þ.

As the same matrix elements are used as input when
determining the decay constant from temporal axial-vector
and pseudoscalar currents, we must include correlations
when performing an average of the results obtained here
and in [9]. As the different values for fBðsÞ are slightly
outside the 1σ error, we scale the error of the weighted
averaged value by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=d:o:f

p
. when the χ2=d:o:f: ≥ 1. This

is a conservative option and gives the scaled weighted
averages as fB ¼ 0.190ð4Þ GeV, fBs

¼ 0.229ð5Þ GeV,
and fBs

=fB ¼ 1.206ð5Þ. These are shown and compared
to previous determinations, in Fig. 10, to be discussed
further in Sec. IV.

C. Scalar form factor for B → π decay

Another process where accurate determination of the
matrix elements of heavy-light currents is required is for the
weak semileptonic decays of B mesons to light mesons.
The archetypal process here is B → πlν. The hadronic
parameters needed to determine the rate for this decay are
known as form factors, and they are now functions of q2,
the squared 4-momentum transfer between the initial and
final mesons. For B → πlν there are two form factors
which we will denote fþ and f0, but the experimental rate
is sensitive to fþ (only) if the final state lepton is light. The
form factors are related to the matrix elements of vector and
scalar currents by

hπjVμjBi ¼ fþðq2Þ
�
pμ
B þ pμ

π −
M2

B −M2
π

q2
qμ
�

þ f0ðq2Þ
M2

B −M2
π

q2
qμ ð29Þ

and

hπjSjBi ¼ f0ðq2Þ
M2

B −M2
π

mb −ml
: ð30Þ

There is a kinematic constraint that fþð0Þ ¼ f0ð0Þ.
At the zero recoil, maximum q2, point we can compare

the matrix elements of the temporal vector and scalar
currents directly. At that point, where q0 ¼ MB −Mπ ,

hπjV0jBi ¼ f0ðq2maxÞðMB þMπÞ ð31Þ

and

mb −ml

MB −Mπ
hπjSjBi ¼ f0ðq2maxÞðMB þMπÞ: ð32Þ

For currents made of NRQCD b quarks combined with
HISQ light quarks, the chiral symmetry of the HISQ action
guarantees that the nonrelativistic expansion of the tem-
poral vector current has the same form as for the temporal
axial vector current given in Eq. (19). LikewisembS has the
same expansion asmbP given in Eq. (23). As for the case of
the decay constant discussed in Sec. III B, the currents that
appear in each order of the nonrelativistic expansion are the
same for S and V0. Thus we can construct the matrix
element of mbS given the lattice matrix elements of the
different current contributions for V0. These are given for
the zero recoil situation in [27] for the same 2þ 1þ 1
gluon field configurations as used for the decay constants in
Sec. III B, and listed in Table IV.
Figure 8 shows the ratio of the scalar form factor at zero

recoil determined from Eqs. (31) and (32) using succes-
sively more accurate representations of the NRQCD-HISQ
temporal vector and scalar currents from Eqs. (19) and (23).
The matrix elements for the individual lattice current pieces

are calculated in [27], noting that the matrix element of Jð2Þ
V0

is equal to that of Jð1Þ
V0 at zero recoil. In the additional mass

factors on the left-hand side of Eq. (32) we ignore ml
compared to mb as it is less than a 0.5% effect across our
range of light quark mass values. For MB we average the
charged and neutral B meson masses, as in Sec. III B, and
for Mπ we use the values appropriate to these ensembles
given in [9,29].
Figure 8 shows a very similar picture to that of Fig. 5

with the ratio of the two results becoming closer to 1.0 as

FIG. 7. Results for the ratio of Bs to B decay constants
(multiplied by the 3=2 power of the ratio of meson mass)
obtained from the pseudoscalar current. The data points are as
shown in Fig. 6, and the grey band is the result of the fit described
in the text, including uncertainties from lattice spacing and quark
mass effects along with uncertainties from higher-order relativ-
istic corrections to the current.
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nonrelativistic current corrections are included and radia-
tive corrections to them are added. In the case given here, in
which the π meson is at rest, the power-counting expect-
ations as higher order currents are added in are the same as
for the Bmeson decay constant case discussed in Sec. III B.
Not surprisingly the results mirror the B decay constant
case. With the most accurate matching that we have, the
ratio of the results for the scalar form factor differs from one
by less than the relative uncertainty on f0ðq2maxÞ of 3%
quoted in [27].
In [27] the ratio of f0ðq2maxÞ to the decay constant ratio

fB=fπ was calculated to see if this ratio became one in the
massless π meson limit, as expected from soft pion
theorems [32–35]. This was indeed found to be the case,
resolving a long-standing issue in the literature. The
quantity calculated in [27] was

RBπ ¼
f0ðq2maxÞð1þMπ=MBÞ

½fB=fπ�
; ð33Þ

which becomes f0ðq2maxÞfπ=fB as Mπ → 0. The piece of
this ratio that involves b quarks is f0ðq2maxÞ=fB, and this
was determined for NRQCD b quarks from the ratio of the
matrix element between π and B of the temporal vector
current divided by the matrix element between the vacuum
and B of the temporal axial vector current. Because of the
chiral symmetry of HISQ quarks the matching of these two
NRQCD-HISQ currents to their continuum counterparts is
the same. Then the overall renormalization factor ð1þ
αsz0 þ � � �Þ [see Eq. (19)] cancels between them, and the
renormalization uncertainty from missing α2s and higher
order terms is much reduced. The ratio RBπ can then be
determined to high accuracy. In [27] RBπ was mapped out

as a function ofMπ and extrapolated toMπ ¼ 0 using chiral
perturbation theory to show that RBπðMπ ¼ 0Þ was close to
1 with an uncertainty of 5%. The temporal vector current
was used for f0ðq2maxÞ and the temporal axial current for fB.
Here we can also calculate RBπ , using the scalar current

for f0ðq2maxÞ and the pseudoscalar current for fB. Again the
overall renormalization factor between the two will cancel
[see Eq. (23)]. Figure 9 shows the ratio of RBπ calculated in
these two different ways as, once again, successively more
accurate representations of the b-light currents are used.
Now, because of cancellation of the overall renormalization
factors, there is no difference between the zeroth order
result and the OðαsÞ result. Once αsΛQCD=mb corrections
are included, the ratio of RBπ values is very close to one and
well within the uncertainty of 2% on RBπðMπ ¼ Mπ;exptÞ
quoted in [27].

IV. CONCLUSIONS

Here we have given the matching calculation that enables
matrix elements of heavy-light scalar and pseudoscalar
currents accurate throughOðαsΛQCD=mbÞ to be determined
in lattice QCD using NRQCD b quarks and HISQ light
quarks. This expands the range of methods we can apply to
B physics using NRQCD and the tests we can do of our
systematic error budget.
In Sec. III B we determined the B and Bs meson decay

constants using the pseudoscalar current and then com-
pared to the previously determined values obtained from
using the temporal axial current [9]. Since there is no PCAC
relation connecting these two currents in lattice NRQCD,
they do not have to give the same answer. The way in which
the nonrelativistic approximation to the continuum current
is built up (albeit from the same ingredients) and the way in
which it is renormalized are both different in the two cases.

FIG. 9. The ratio of RBπ values (see text for definition) obtained
using a combination of temporal vector and temporal axial vector
currents to that from a combination of scalar and pseudoscalar
currents. Results from each of the ensembles of Table IV are
shown plotted against the square of the lattice spacing. Symbols
are as in Fig. 5, with the green pluses offset for clarity. The dashed
line gives the relative error on RBπ from using the temporal vector
current for f0 and temporal axial current for fB quoted in [27].

FIG. 8. The ratio of the scalar form factor at zero recoil for the B
to π decay obtained from the temporal vector current to that from
using the scalar current. Results are from lattice QCD calculations
of the matrix element of a nonrelativistic expansion of the
appropriate current operator between a π meson and a B meson.
Results from each of the ensembles of Table IVare shown plotted
against the square of the lattice spacing. Symbols are as in Fig. 5,
with the green pluses offset for clarity. The dashed line gives the
relative error on f0ðq2maxÞ quoted in [27].
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The systematic uncertainties from missing higher order
terms will then also be different. We see in Fig. 5 the results
coming closer together as we include higher orders in the
nonrelativistic expansion and matching on both sides. The
final results, at the best accuracy that we can currently
achieve, agree to within the expected remaining systematic
uncertainty. This uncertainty is dominated by unknown α2s
terms in the overall renormalization (multiplying the
leading current). The agreement is confirmation that the
error budget is a reasonable one. Our results for the B and
Bs decay constants from the pseudoscalar current are

fB ¼ 0.196ð6Þ GeV;
fBs

¼ 0.236ð7Þ GeV;
fBs

=fB ¼ 1.207ð7Þ: ð34Þ

Our new results for the B and Bs decay constants (and
their ratio) can be considered as independent values from
those obtained using the temporal axial current in [9]. They
use the same raw lattice data in the form of matrix elements
for the current components, and so their statistical uncer-
tainties are correlated. Their systematic uncertainties are
not the same, however, since they come largely from
unknown, and different, relativistic and α2s matching
corrections. We can then perform a weighted average of
the results arising from the two methodologies, including
the statistical correlations, to obtain

fB ¼ 0.190ð4Þ GeV;
fBs

¼ 0.229ð5Þ GeV;
fBs

=fB ¼ 1.206ð5Þ: ð35Þ

These results have very similar uncertainties to those in [9]
but do contain more information.
Figure 10 gives a summary of lattice QCD results for fB,

fBs
, and their ratio. It includes results from a variety of light

and heavy quark formalisms for calculations that have
included at least 2 flavors of quarks in the sea. The most
realistic version of QCD corresponds to the results in the
top box, including the values we give here, where u, d, s,
and c sea quarks are incorporated. Our results have the
additional advantage of including physical values for the
u=d sea quarks, taking mu ¼ md. The results for fB plotted
in Fig. 10 correspond to a Bmeson made with a light quark
with the u=d average mass. The grey bands show
average values from [1], where there is also discussion
of the effects of isospin breaking. The main message from
Fig. 10 is that of good agreement between the different
lattice QCD results, which is another good test of system-
atic uncertainties.
A similarly encouraging picture was given of the

comparison of temporal vector and scalar current results
for the scalar form factor for B → π decay in Sec. III C. The

calculations compared were done at zero recoil where the π
is at rest in the rest frame of the B. Here we discuss briefly
the potential uses of our new method to determine the
vector form factor fþ away from the zero recoil point,
where connection to experimental decay rates can be made
for the determination of Cabibbo-Kobayashi-Maskawa
matrix element jVubj.
Power counting in powers of the inverse heavy quark

mass must be modified for current matrix elements away
from the zero recoil point as the momentum of the light
meson in the final state increases. Subleading currents that
include a spatial derivative on the light quark field will have
matrix elements that grow as jp0j=mb, and these can
become relatively large compared to the leading order
current if p0 > ΛQCD. The issue is discussed for the

FIG. 10. A summary of lattice QCD calculations for fB, fBs
,

and their ratio. The new results reported here are those for the
pseudoscalar current given by the red open circles, showing good
agreement with earlier results (given by red open squares) using
the temporal axial current [9]. The average of these results is
given by blue diamonds. Other results in this summary are taken
from [36–42] and use a variety of different quark formalisms for
heavy and light quarks as well as working with gluon field
configurations that include different numbers of flavors of sea
quarks. The results for fB correspond to those for a light valence
quark of mass equal to the average of u and d quark masses
except for “RBC/UKQCD15” which correspond to the neutral bd̄
meson and “FNAL/MILC11” which correspond to the charged
bū meson. The experimental result for the charged B meson is an
average from the Particle Data Group [1], as are the grey bands.
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NRQCD-asqtad case in [43] where ratios of the subleading
matrix elements to the leading matrix elements between the
B meson and a heavy pion of the spatial vector current are

shown. The matrix elements for currents denoted Jð2Þk and

Jð4Þk grow as a proportion of the leading order (Jð0Þk ) matrix
element as the pion momentum is increased. This is also
true, although not shown there, for the matrix elements of

the temporal vector current Jð2Þ0 . These three currents are

analogous to the current Jð2ÞA0;lat
[Eq. (13)] considered here,

in having a derivative on the light quark field; for the spatial
vector there are two such currents with different γ matrix
structures. Note that the matrix elements for the subleading
currents that contain a derivative on the heavy-quark field
show much more benign behavior, as might be expected.
The subleading currents with derivatives on the light quark

field do not appear at tree level in the expansion of the
continuum heavy-light current [see Eq. (19)] and so are
suppressed by powers of αs. In the NRQCD-asqtad case the
αs coefficients of these subleading currents were calculated
and turned out to be small for the largest contribution, from

Jð4Þk [43]. For the NRQCD-HISQ case these coefficients are
only known for the temporal vector current (seeTable II [10]).
As we move away from zero recoil in B → π decay,
systematic uncertainties from these subleading currents will
grow if they are not included in our nonrelativistic expansion
of the continuum current. It is therefore important to work
with NRQCD-HISQ currents that do include the subleading
currents with derivatives on the light quark field so that
accuracy canbemaintained as far fromzero recoil as possible.
Here we have provided a way of doing this by using the

temporal vector and scalar currents [and Eqs. (29) and
(30)], as used for example in calculations with purely HISQ
quarks [13,14]. As we have shown, both of these con-
tinuum currents can be written as a nonrelativistic expan-
sion in NRQCD-HISQ currents that includes terms that will
become Oðαsjp0j=mbÞ away from the zero recoil point.
Using simple power-counting estimates these could be of

size 7% for p0 ≈ 1 GeV (double that at the zero recoil
point). Dropping these terms means that there could be
systematic uncertainties at this level. If the relativistic
expansion instead includes these correction terms, as we
show how to do here, uncertainties are then Oðα2s jp0j=mbÞ
and Oðαsjp0j2=m2

bÞ, which reduces them to the 3% level.
This improved approach will be used in NRQCD-HISQ
work on the second-generation 2þ 1þ 1 HISQ configu-
rations, extending [27] away from zero recoil.
It should also be noted that the expansion for the

pseudoscalar heavy-light current will allow more form
factors to be separated out in the analysis of B meson
decays to light vectors [44,45]. Processes such as Bs →
ϕlþl− and B → K�lþl− provide key opportunities for
stringent tests of the Standard Model [46,47] and will need
increasingly accurate lattice QCD results for comparison.
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