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Abstract: Hepatic oval cells (HOCs) are considered the progeny of the intrahepatic stem cells that
are found in a small population in the liver after hepatocyte proliferation is inhibited. Due to their
small number, isolation and capture of these cells constitute a challenging task for immunosensor
technology. This work describes the development of a 3D-printed continuous flow system and
exploits disposable screen-printed electrodes for the rapid detection of HOCs that over-express the
OV6 marker on their membrane. Multiwall carbon nanotube (MWCNT) electrodes have a chitosan
film that serves as a scaffold for the immobilization of oval cell marker antibodies (anti-OV6-Ab),
which enhance the sensitivity of the biomarker and makes the designed sensor specific for oval
cells. The developed sensor can be easily embedded into the 3D-printed flow cell to allow cells to
be exposed continuously to the functionalized surface. The continuous flow is intended to increase
capture of most of the target cells in the specimen. Contact angle measurements were performed to
characterize the nature and quality of the modified sensor surface, and electrochemical measurements
(cyclic voltammetry (CV) and square wave voltammetry (SWV)) were performed to confirm the
efficiency and selectivity of the fabricated sensor to detect HOCs. The proposed method is valuable
for capturing rare cells and could provide an effective tool for cancer diagnosis and detection.
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1. Introduction

Cancer is one of the leading causes of death worldwide, and the number of newly diagnosed
patients is expected to rise. Hence, early detection of cancer is sought to increase the chances for
successful treatment and survival rates [1–3]. Currently, most research efforts in cancer diagnosis
focus on developing biosensors with high selectivity and sensitivity, and inexpensive, rapid and
easy operation. Current routine techniques to detect cancer include polymerase chain reaction
(PCR), immunohistochemistry, and flow cytometry. Although these methods are effective in cancer
diagnosis, they are expensive, time-consuming, and require highly skilled operators [3–6]. By contrast,
electrochemical methods offer many advantages compared with other techniques, such as rapidity,
low cost, ease of operation, use of small reagent/sample volumes, and, most importantly, high
selectivity and sensitivity in the detection of specific antigens [7–9]. Several researchers have
incorporated electrochemical biosensors in a microfluidic system to perform chemical and biomedical
analysis [10,11]. There are many significant contributions of microfluidic technology that enhance
clinical and biological assays and that involve the ability to isolate rare cells from blood on the
single-cell scale as an alternative to bulk isolation/detection methods. Devices using continuous flow
allow the easy control of physical and chemical environments and provide high levels of experimental
automation. Moreover, since rare cells are low in number, continuous-flow devices allow samples to
be exposed to the sensor surface continuously, which enhances the capability of capturing the rare
cells [12–14].

Diagnosis of cancer at an early stage is the key aim in the fabrication of novel biosensors to
diagnose patients with not only the metastatic disease but also screen patients with relapse after
treatment [15–17]. In recent years, rare circulating tumor cells (CTCs) have attracted more attention
for improving cancer diagnosis and therapy. However, these cells represent a small percentage of
the total blood cells in circulation; among >109 red and white blood cells, there are approximately
1–100 CTCs/mL blood [18,19]. Therefore, targeting CTCs and cancer stem cells (CSCs) requires efficient
techniques to capture these rare cells and exclude other cell types [20–24]. Capturing CSCs can be
achieved by the detection of cell surface biomarkers, such as CD13, CD24, CD44, CD90, CD133, EpCAM,
and OV6, that are highly expressed by cancer cells but not by normal cells [25,26]. In hepatocellular
carcinoma (HCC), the third leading cause of cancer mortality worldwide, CSCs can be recognized by
several surface antigens. Hepatic oval cells (HOCs) are defined as liver stem/progenitor cells in the
liver Herring pipe; they are considered one of the most important origins of liver stem cells [27,28].
Among many markers, OV6 is widely chosen as the best marker to capture and quantify HOCs.

High-efficiency fabricated biosensors can be achieved through careful surface architecture design.
Nanomaterials such as carbon nanotubes and graphene have been widely exploited in biosensing
applications [29,30]. Among these nanostructured materials, multi-wall carbon nanotubes (MWCNTs)
can serve as scaffolds that provide a self-supported structure and possess several features that can be
functionalized through conjugation for detection purposes. MWCNTs are long, thin, hollow cylinders
of carbon with additional graphene tubes around the core. MWCNTs are strong, stiff fibers due to
their well-ordered arrangement of carbon atoms linked via sp2 bonds [31,32]. These tubes are in high
demand for engineering new devices in different fields because of their unique combination of chemical,
optical, electrical, mechanical, and magnetic properties. To design sensitive biosensors, MWCNTs
offer several advantages including high surface area, promotion of electron transfer reactions between
electroactive compounds and electrodes, minimization of fouling of the electrode surface, enhancement
of electro-catalytic activity and immobilization of molecules on their surfaces. Modification of MWCNT
platforms with a polymer enables the generation of an efficient immobilization matrix for biosensing
technology [33,34]. Chitosan (CS) is a naturally occurring polysaccharide that is derived by the
partial deacetylation of chitin. Chitosan provides several advantages such as low cost, non-toxicity,
biodegradability, biocompatibility and excellent film-forming ability [35–37]. Its multiple functional
groups and capability to be chemically modified make chitosan a promising matrix for biosensors.



Genes 2018, 9, 89 3 of 11

In the present work, MWCNT electrodes covered by a chitosan film and functionalized with
anti-OV6 antibody were developed to target HOCs (Figure 1). The fabricated sensor was embedded
with a 3D-printed flow cell to allow for continuous exposure of the cancer cells over the sensor
architecture. The electrochemistry of the functionalized sensor was examined using cyclic voltammetry
(CV) and square wave voltammetry (SWV). The fabricated system exhibited an excellent cell capture
response and may be an effective tool for tumor biomarker detection.
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Figure 1. Schematic representation of the fabrication of the electrochemical biosensor for detection
of oval cells in the HepG2 cancer cell line in a circulatory platform (not shown to scale). (1) Working
electrode (WE) of multiwall carbon nanotube (MWCNTs); (2) modification of electrode surface with
chitosan; (3) chitosan film crosslinked with glutaraldehyde (GA); (4) immobilization of anti-OV6
antibody onto the activated surface; (5) blocking the surface with bovine serum albumin (BSA);
(6) embedding the developed sensor into the 3D-printed flow cell; and (7) connecting to a flow control
system to allow for continuous exposure of the cancer cells over the sensor architecture. SPE: screen
printed electrode; Ab: antibody.

2. Materials and Methods

2.1. 3D-Printing Process of the Flow Cell

The flow cell was manufactured using a digital light processing (DLP)-3D-printer (Fab 12,
procedure medical GmbH, Dortmund, Germany). Digital light processing is an additive manufacturing
method based on selective exposure (UV-light) of a photo polymeric system. Due to the use of a digital
mirror device (DMD-chip) a whole layer can be printed at one time. Digital light processing is
characterized by its high printing speed, good resolution in x, y and z directions as well as the good
surface quality of the printed parts. The used material was an acrylate-based photopolymer optimized
for cell-based medical products. The photopolymer is characterized by its good biocompatibility.
In several cytotoxicity tests according to German Institute of Standardization—European Standards
(DIN-EN) ISO 10993-5, no cytotoxic effects could be observed. The layer thickness during the printing
process was 100 µm. After the printing process, the flow cell was cleaned in a 99% isopropanol solution
using an ultrasonic bath for 15 min. After the cleaning process, the flow cell was post-cured in a
UV-light chamber for 7 min.
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2.2. Preparation of the Functionalized Chitosan Matrix on the Multiwall Carbon Nanotubes Electrode

As shown in Figure 1, 5 µL of 0.5% w/v chitosan (Sigma Aldrich, San Luis, MI, USA) in 1%
v/v acetic acid was dropped on an MWCNT electrode and dried at room temperature for 3 h.
After rinsing with water, the modified electrode was incubated with 5 µL of 2.5% v/v glutaraldehyde
(GA) (Sigma Aldrich) in phosphate-buffered saline (PBS) for 2 h and then washed with water. Five µL
of 200 mg/mL human/rat OV-6 antibody (R&D Systems, Abingdon, UK) in PBS was dropped
onto the activated surface and incubated at 4 ◦C overnight. Excess antibodies were removed by
washing with PBS before the modified electrode surface was blocked with 1% bovine serum albumin
(BSA) and incubated at room temperature for 90 min to prevent any unspecific adsorption and block
any remaining active sites. After a final washing step with PBS, the developed sensors were used
immediately or stored at 4 ◦C.

2.3. Contact Angle Measurements

The contact angles of water on the modified film were measured using a goniometer (Easy Drop,
Krüss, Hamburg, Germany) at room temperature. Three µL of Milli-Q water was deposited onto the
surface, and the angle was measured immediately. All contact angle measurements were repeated at
least in triplicate.

2.4. Cell Lines and Cell Culture

The liver and breast cancer cells were cultured according to standard mammalian tissue protocols
with a sterile technique. Briefly, human liver hepatocellular carcinoma cell line (HepG2) and human
breast adenocarcinoma cell line (MCF-7) (American Type Culture Collection) were cultured in DMEM
(PAA Laboratories GmbH, Pasching, Austria) supplemented with 10% fetal bovine serum (FBS) or
10 µg/mL insulin, respectively, and a 1% antibiotic/antimycotic solution at 37 ◦C in 5% CO2 and
95% air humidified atmosphere as adherent monolayers in 25 cm2 cell culture flasks. After 48 h,
the cells were detached from the flask using Trypsin, separated from the medium via centrifugation
and counted using an automated cell counter (NanoEntek, Waltham, MA, USA). Trypan blue was
used to count and discriminate between viable and non-viable cancer cells. This dye selectively stains
non-viable cells and exhibits distinctive blue under the microscope. Briefly, a suspension of cancer
cells (HepG2 or MCF-7) in PBS was diluted in Trypan blue solution (0.4%) at a 1:1 ratio. When cell
viability was above 85%, the cells were used for further experiments.

2.5. Flow Cytometry Analysis

Flow cytometry was conducted for HepG2 and MCF-7 cancer cells using a Beckman Coulter
Elite Xl (Nyon, Switzerland) with OV-6 phycoerythrin monoclonal antibody (R&D Systems). Briefly,
both cell lines (1 × 106 cells/mL) were incubated with 10 µL of antibody for 30 min in the dark
followed by washing with PBS; the cells were resuspended in fresh PBS and analyzed by flow
cytometer immediately. The cells were passed through the laser beam in the flow cytometer at a
rate of 10,000 cells/second.

2.6. Electrochemical Measurements

The three-electrode system was printed on ceramic substrates with dimensions:
L3.4 × W1.0 × H0.05 cm, and three-electrode configuration was incorporated: counter electrode
(CE, carbon), reference electrode (RE, silver), and working electrode (WE, MWCNT, 400 µm diameter).
All CV and SWV measurements were performed at least in duplicate using a potentiostat (Zimmer
and Peacock, Royston, UK). Cyclic voltammetry measurements were recorded for each functionalized
layer of the developed sensor after rinsing with PBS. The modified electrodes were embedded into
the 3D-printed flow cell, which then connected to a flow control system (Fluigent, Paris, France) that
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allows cancer cell injection at different concentrations, and SWV measurements were recorded after
rinsing with PBS to remove unbound cells.

3. Results and Discussion

3.1. Contact Angle Measurements and Surface Sensor Characterization

Measurement of the contact angle between water and the modified surface is typically used as
an indicator for surface hydrophilicity/hydrophobicity characteristics. However, the surface wetting
properties determine the quality of the fabricated sensor, which affects cell attachment and proliferation.

Chitosan is a hydrophilic substance and its wettability can be affected by physical or chemical
crosslinking. Glutaraldehyde (GA) is an organic crosslinking agent that normally increases the
mechanical strength but reduces the hydrophilicity of the chitosan membrane [38]. Figure 2 shows that
the contact angle of 0.5% un-crosslinked chitosan films was 76.4 ± 0.54◦ and increased to 84.7 ± 0.05◦

for crosslinked chitosan films. This result may be attributed to a reduction of hydrophilic groups
(-OH or -NH2) in the membrane due to the reaction of the functional groups (-OH or -NH2) of chitosan
and the aldehyde groups (-CHO) of GA, which makes chitosan film more hydrophobic and consists
of long hydrophobic alkyl chains [39,40]. It has been reported that a hydrophobic surface yields
higher affinity for functionalized adsorption of protein or antibody than a hydrophilic surface [41].
When the substrate was functionalized with the antibody, the contact angle was reduced to 49.9 ± 3.18◦

indicating hydrophilic surfaces, which might enhance cell attachments.
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Figure 2. Measurements of contact angles of a water droplet on a 0.5% chitosan (CS) layer, crossed
linked with glutaraldehyde (GA), and after immobilization of anti-OV6 antibodies.

3.2. Detection of the OV6 Marker in Human Cancer Cell Lines via Flow Cytometry

The flow cytometry technique was conducted to confirm the presence of HOC in the HepG2 cell
line that highly expresses the OV6 marker. Because breast cancer stem cells lack this surface marker,
the MCF-7 cell line was used as a negative control (Figure 3).

Flow cytometry showed positive expression of the OV6 marker in hepatic cancer cells but not in
breast cancer cells. The fluorescence intensity was higher in the hepatic cancer cell line (HepG2) than in
the negative control breast cancer cell line (MCF-7). These results indicate that OV6 is a discriminating
marker of hepatic cancer stem cells.
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Figure 3. Flow cytometry detection of OV6 in HepG2 and MCF-7 cell lines. The figure shows OV6 +
(positive) on HepG2 (A) and OV6- (negative) on MCF-7 (B).

3.3. Electrochemical Behavior of the Fabricated Biosensor

Electrochemical analysis has many applications for biomedical sensors and is a very effective tool
for detecting changes in surface characteristics. Cyclic voltammetry is a convenient electrochemical
method that is widely used to monitor the features of modified sensor surfaces [9,42]. In this
work, to confirm the successful functionalization of the fabricated sensor on the MWCNT
electrode, CV measurements were conducted after each electrode modification step, and the results
are presented in Figure 4. The CV behavior was recorded in the potential range of−0.3 to
0.6 V in 10 mM Fe(CN3)3− containing 100 mM KCl as a supporting electrolyte, and monitored
for bare MWCNT, MWCNT/0.5%CS, MWCNT/CS/GA, MWCNT/CS/GA/anti-OV6 Ab, and
MWCNT/CS/GA/anti-OV6 Ab/BSA electrodes. The current response decreased noticeably after
each fabrication step of the biosensor.
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The significant decrease in the peak current for MWCNT/CS compared to that of the bare
MWCNT electrode indicates the formation of an insulation layer by chitosan that decreases the electron
transport during oxidation and reduction processes. The further reduction in the CV current peak for
MWCNT/CS/GA/anti-OV6 Ab confirms the immobilization of anti-OV6 antibodies. Subsequently,
a 1% BSA solution was used to block the residual active carboxyl groups on the surface, which resulted
in a decrease in the peak current due to the steric hindrance of BSA molecules in electron transfer.
These changes in the electron transfer rate at each step indicate the successful fabrication of the
electrochemical immunosensor.

3.4. Detection of Hepatic Oval Cells on the Fabricated Sensor

The HepG2 human liver cancer cell line was chosen in this study because it most resembles HCC
and has the highest correlation of gene expression between HCC tumors and HCC cell lines [43].
However, it has been demonstrated that the HepG2 cancer cell line contains CSCs that can be identified
by several cell surface markers, and OV6 is considered the best available marker of hepatic stem
cells [44,45]. Due to the small number of CSCs and the difficulty of isolating these cells in a sample,
a continuous flow system may enhance the capturing efficiency by allowing for continuous exposure
of the sample to the functionalized sensor. Therefore, in this work, a disposable functionalized
screen-printed electrode was embedded into a 3D-printed flow cell (Figure 5) and connected to a flow
control system that allows continuous injection of cancer cell line as shown in Figure 1.
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Figure 5. 3D-printed flow cell parts before and after hand-assembly with the functionalized
electrochemical sensor.

The specificity of the developed MWCNT/CS/GA/anti-OV6 Ab electrode to HOC was proven
by the SWV results (Figure 6). The oval cells in the HepG2 cell line were captured by the anti-OV6
antibodies immobilized on the chitosan film. Treatment of the developed sensor using the HepG2 cell
line dramatically changed the interfacial electron transfer resistance because captured cells blocked
direct access of the ions to the electrode surface. The experimental results reveal well-defined
voltammetric peaks that can be observed even at a low cells number (100 cells/mL). The SWV
spectra show that the peak current increases negatively with increasing cell numbers. The changes in
peak values indicate more coverage of the electrode surface by specifically captured cells. The SWV
measured for the hepatic cells compared a blank test (no cells) to increased cell numbers, namely,
1 × 102, 1 × 103, 1 × 104, 1 × 105, and 5 × 105 cells/mL, which took into consideration the limited
number of stem cancer cells in each sample. The current response changed with the increase in the
number of cells captured on the sensor. The dependency of current signal on the cell intensities may
attributed to a electrochemical catalytic (EC’) mechanism. Figure 6B shows that the proposed sensor
can detect HOCs in HepG2 cell line from 1 × 102 to 5 × 105 cells/mL range following sigmoidal fit.
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The reproducibility is shown as error bars, and electrodes exhibit a correlation coefficient of 0.998.
It is well known that the MWCNT-modified electrode surface enhances electro-catalytic activity and
molecule immobilization on functionalized surfaces. Indeed, modifying the MWCNT electrode with a
chitosan film improves sensor stability and peak shape [31–34]. All these advantages with the high
surface area possibly enhanced the sensitivity of the developed sensor to detect HOCs, which were
present in a small number in the sample.
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In previous work [9], an acoustic sensor was successfully developed to detect the CD133 marker
on liver cancer stem cells. A quartz crystal microbalance with a dissipation monitoring (QCM-D)
technique allows for a continuous flow of sample or buffer through the chamber and for control of
the rate. However, the efficiency of the fabricated biosensor to detect the target cells was limited.
By contrast, electrochemical sensors provide an alternative solution that has shown high sensitivity.
Hence, in this work, the modified electrode was embedded with a 3D-printed flow cell to mimic the
continuous flow chamber, which provides a promising strategy to enhance the capture efficiency of
rare cells.

To examine the specificity of the proposed sensor for OV6 detection, the functionalized electrode
was incubated with a breast cancer cell line (MCF-7) that lacks the OV6 marker on the cell surface
as confirmed by the flow cytometry analysis (Figure 7). No remarkable change of electrochemical
current was observed when breast cancer cells (1 × 105 cells/mL) were incubated with the proposed
sensor due to the lack of OV6, which prevents the cells from being captured on the modified electrode.
The clear difference in the peaks for hepatic and breast cancer cells indicates that the designed sensor
can efficiently distinguish the cells that express OV6, although MCF-7 cells exhibited a small change of
electrochemical signal that can be attributed to non-specific adsorption.
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4. Conclusions

In summary, this work provides a promising strategy for diagnostic purposes that allows the use
of disposable electrodes and exploits a 3D-printed flow cell for continuous exposure of the sample to
the functionalized sensor. The developed electrochemical sensor is efficient in detecting hepatic oval
cells via recognition of the OV6 marker and in discriminating between liver and breast cancer cells that
lack this surface marker. The chitosan-modified MWCNT sensor is an effective, non-toxic, selective
and sensitive sensing platform with a simple preparation process. The developed sensor can detect
highly expressed markers on the cancer cell surface with good sensitivity due to the synergistic effects
of MWCNT and chitosan that enhance electron transfer. This electrochemical method could be further
exploited with other biomarkers to detect more tumor types and may be helpful for point-of-care
diagnostics, monitoring the spread of tumors and assessing the response to therapy.
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