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Abstract

The present study aims to assess capability of mostly used hybrid URANS/LES

methods in dealing with a complex swirled configuration/reactor when the resi-

dence time characteristics need to be predicted at acceptable level of accuracy

and fidelity. The configuration is quite complex and out of reach of the classical

RANS turbulence models as it consists of different, partly swirled inlet channels

and a large variety of time and length scales. In this work only the flow field is

considered and is investigated using three different hybrid URANS/LES simula-

tion methods. The models: the Scale Adaptive Simulation (SAS), the Improved

Delayed Detached Eddy Simulation(SA-IDDES) and the k−ω−DES, use differ-

ent triggering mechanisms and underlying RANS models. The results of the flow

field, the residence time characteristics and all related quantities are compared

with both the Large Eddy Simulation (LES) and experimental data reported in
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Doost et.al[17]. It turns out that none of the considered hybrid methods is able to

predict the residence time characteristics as well as LES does mainly due to the

inaccurate prediction of the flow field. It was found that there is a need to improve

the hybrid approaches by addressing the shortcomings, particularly those regard-

ing triggering mechanism to make hybrid approaches a reliable computational tool

for study complex turbulent flows inside full scale configurations where LES can

be prohibitively expensive.

Keywords: Complex swirled flow, Residence time characteristics, Hybrid URANS/LES

approach

1 Introduction

Swirled flow configurations are often considered as appropriate generic test cases to

assess capability of turbulence models as they are mostly encountered in real engineering

applications[23, 24]. Among them, combustion systems recently have attracted a good

amount of attention to reduce air pollution as they use generally fossil fuel that leads

to produce high amount of pollution[15, 16, 25]. Fossil fuels including coal and natural

gas remain inevitable as the major source of energy at least for next decade due to the

slow advancement in renewable energy technology development and thus, there is an

immediate need to optimize/redesign combustion reactors.

Gas residence time, i.e. the mean time fluid element remains inside the reactor/combustor

that provides useful clues on mixing pattern inside the system is one of the key param-

eters necessary for optimization purposes [32, 31, 33]. In this study, for the first time,

hybrid URANS/LES methodology has been applied to predict residence time charac-

teristics inside a complex geometry. Hybrid URANS/LES Methods integrated with the

appropriate high performance computing (HPC) techniques are believed to be central

to the development of the next generation of prediction/optimization capabilities in a

variety of engineering applications. In particular, application of these becomes essential

in problems where the excessive cost of full-scale field experiments makes the collection

of data practically impossible. The residence time dynamics inside a confined system
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can be determined by evaluating of behavior of a passive tracer (introduced at inlet as

a pulse or step function) at exit plane of the system[31, 30]. It is worth to mention

here that experimental determination of residence time dynamics is very challenging for

complex configuration, calling for reliable numerical approaches[30] to study full scale

configurations, yet, computationally affordable.

Reynolds averaged Navier-Stokes equation (RANS) models are generally used to simulate

stationary high Reynolds number turbulent flows with industrial applications. Unsteady

extensions of RANS models (URANS) attempt to capture some level of unsteady dy-

namics. Since URANS methods are not designed to capture integral-scale dynamics,

large eddy simulation (LES) is sometimes needed to capture essential energetic unsteady

dynamics in complex flows [1, 19]. Since introduction of LES in the early 1970, it has

been significantly advanced, and its application is transitioning from pure academic en-

vironment to industry. LES can provide detail information on large scale motion in

turbulent high Reynolds number flows. However, LES is not still feasible for many

engineering applications due to the high computational cost associated with grid and

time step requirements to appropriately resolve the energy containing eddies. This is

particularly the case when near wall effects need to be predicted accurately [20, 1]. An-

other challenge is modeling of sub-grid structure (result of filtering operation) such that

to capture complex interaction between large and small scale turbulence. LES could

provide inaccurate results if effects of small scale turbulent structures are not appro-

priately modeled. Therefore, development of advanced models for the unresolved scales

that adapt to the local flow conditions and the hybridization of LES with the solution

of the Reynolds-averaged Navier–Stokes equations is still an active research area[27].

Hybrid URANS-LES modeling approaches could potentially provide reasonable inter-

mediate strategies by treating near-wall dynamics with URANS while transitioning to

scale-resolving (LES) mode away from surfaces with affordable computation costs. The

main goal of an URANS/LES hybrid approach is to achieve time dependent and three-

dimensional space resolved simulation of large-scale structures, which describe the tur-

bulence dynamics with affordable computational costs. Typically, URANS is applied to

capture near-wall dynamics ( regions with dimensionless wall distance, y+,< (60− 100)

concerning wall-bounded attached flows). Small scales turbulence often reside near solid

walls and play an integral role in determining the entire flow dynamics. Application
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of LES to directly resolve these structures is prohibitively expensive. This necessitates

the use of URANS to model these scales. LES is applied away from the solid surface

(wall) where viscous effects are negligible and turbulent structures (eddies) are close to

isotropic. This allows for the implementation of appropriate mesh without significant

increase in computational cost.

Over the last decades, several hybrid URANS-LES approaches have been proposed. Nev-

ertheless two emerging directions have been pursued in parallel, namely zonal and seam-

less approaches. It is rather straight-forward to identify segregated modeling as a form

of zonal coupling and some methods following the paradigm of unified (global) modeling

as non-zonal or seamless [35]. In zonal approach, URANS equations are solved in near

wall region, while LES equations are solved away from the wall. In both zones, the

equations are solved in numerically unsteady mode using a single mesh. Defining the

interface location along with matching condition at the interface are the main challenges

in the zonal methodology. In unified (seamless) approach a modified RANS model (op-

erating in unsteady mode) is used in entire flow domain and the model decides, on its

own, where to operate in URANS or switch to scale-resolving mode. Recent reviews on

hybrid methods are reported in [5].

The present investigation aims to study the capability/reliability of three different seam-

less hybrid modeling strategies (i.e. k − ω − SST − SAS, the SA-IDDES and the

k− ω−DES) to predict, first, complex flow field dynamics such as interaction between

attached boundary layer with swirled flow and second, residence time characteristics in-

side a complex swirl chamber. The configuration considered here is similar to the case

investigated in [17]. Results will be assessed with respect to high fidelity LES results

obtained in [17] using WALE LES model[29] and experimental data[30]. The combustor

is designed for the combustion of methane with and without adding coal particles in

both air and oxy-fuel environment. The test rig is designed to fill the gap between ex-

isting open laboratory-scale coal burners and industry-scale coal combustors with focus

on mimicking the near-nozzle region of flame stabilization and combustion of volatiles.

In the present study only non-reacting case is considered.

The paper is organized as follows: in the next section the hybrid (k − ω − SST − SAS,

k− ω −DES and SA− IDDES) formulations will be shortly presented and discussed.

In section three the flow geometry and computational set up of the flow configuration
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will be described and the flow field results obtained from different approaches will be

presented and discussed. Section four is dedicated to residence time description and

discuss related results. Section five will conclude the paper with summary, conclusion

and outlook.

2 Hybrid Turbulence Models

In this section we will shortly describe three different hybrid (U)RANS/LES approaches

that are mostly used in practice to simulate complex geometries relevant for industrial

applications. The main differences between the models are the triggering mechanism

to transition from URANS to LES mode and the way near-wall dynamics are treated.

It is generally expected that the hybrid models can reliably be applied to flow configu-

rations with sufficiently strong instability available in the base flow (flows with strong

swirl/separation)[18]. However, there is no guarantee that the models always deliver ac-

curate results since non of these models qualify for a systematic eddy resolving approach

and therefore, they should be applied only to flows for which they have been extensively

tested[26]. In the following, we will shortly describe each approach focusing mainly on

the triggering mechanisms used in each approach to make a transition from URANS to

scale-resolving mode.

2.1 The k − ω − SST − SAS Model

The Scale Adaptive Simulation (SAS) approach uses the Rotta’s equation for integral

length scale as a starting point in designing the transition from URANS dynamics to

”scale resolving mode,” in which the energy dominant integral scales are intended to

be resolved conceptually similar to LES. This is achieved by introducing an additional

term that includes the second derivative of velocity into the transport equation for ω

(k − ω − SST − SAS [1]). It has been shown that the SAS approach is usually success-

ful in dealing with strongly separated flows and deliver results at an acceptable level of

accuracy, and probably is one of the safest hybrid approaches for theses flows [18]

Based on the Rotta equation [11] for turbulence integral length scale, Menter and Egorov
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[1] proposed the SST − SAS model by introducing an additional term into the ω trans-

port equation in the k − ω − SST model [12] in the following form:

QSAS = max

[
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3
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Ū
′
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where κ = 0.41, Ū ′′ =
√

∂2Ūi

∂x2
j

∂2Ūi

∂x2
k

and Ū
′

= S =
√

2SijSij, is the magnitude of the

strain-rate tensor. k is turbulent kinetic energy and ω is an inverse turbulence time

scale. L is intended to represent a local turbulence length scale. In (U)RANS mode

L should represent an integral length scale; but L should reduce to a much smaller

value for the simulation to resolve the integral scales when scale-resolving mode is suc-

cessfully triggered. When the simulation triggers to scale resolving mode, L should, in

principle, become the grid scale. Furthermore, QSAS should trigger the simulation to

scale-resolving mode only in regions where grid support is provided appropriately to re-

solve the integral-scale motions. It has been shown that QSAS tends to transition from

URANS mode to LES when the base flow is sufficiently unstable to trigger a cascade

to smaller scale on a grid that should support LES at that location. As a result, the

transition from URANS to scale-resolving (LES) mode occurs only in strongly/massively

separated flows [2, 1]. Full set of equations is provided in Appendix B.

2.2 The Improved Delayed Detached-Eddy Simulations Model

(SA-IDDES)

The detached-eddy simulation methodology is a hybridization of RANS and LES meth-

ods with the ultimate goal of improved accuracy and robustness in industrial applica-

tions, proposed originally by Spalart et al.[8]. DES is based on a modification of the

one-equation RANS model ([8]) turbulent model to dynamically determine the local tur-
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bulent length scale and to switch between URANS modeling in attached boundary layers

and LES in regions of separated flow. However, in practical applications of the original

DES model, grid refinement can result in under-prediction of the wall-stresses or mod-

eled stress depletion (MSD) due to a premature switch from URANS to LES based on

the computed length scale. Grid-induced separation (GIS) can be a by-product of this

phenomena[9]. Delayed detached-eddy simulation (DDES) was formulated to avoid MSD

in ambiguously-refined grids through the introduction of a shielding function that incor-

porates the eddy viscosity in determining when to switch between the RANS and LES

regions [10]. A further extension of the DDES concept is the improved delayed detached

eddy simulation (IDDES) proposed by Shur et al.[6]. The objective of IDDES is to com-

bine the benefits of wall-modeled LES (WMLES) and DDES for industrial applications

with complex geometry and ambiguous grid refinements. Through shielding functions

and solution-based parameters, the model switches between WMLES and DDES. Unlike

in the original DES formulation, in IDDES the sub-grid length-scale ∆ is a piece-wise

function incorporating wall distance dependency and local cell size information:

∆ = min{max [Cwdw, Cwhmax, hwn] , hmax},

where Cw is a constant computed from simulations of the turbulent channel flow, dw

is the distance to the wall, hmax is the maximum edge-length of a cell, and hwn is the

wall-normal grid spacing. The modified subgrid length-scale accounts for the effects of

anisotropic grids that are commonly used in industrial simulations with complex geome-

try. The formulation results in a significant variation of the length-scale in the flow and

often leading to helpful flow destabilization. The model length-scale used in the produc-

tion term of the eddy viscosity transport equation (see [8] for more detail) is defined as:

lDDES = lRANS − fdmax{0, (lRANS − lLES)},

where lRANS is the original length-scale of the Spalart-Allmaras (SA) model and the

delaying function fd is solution-based through:

fd = 1− tanh[(8r3d)],
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where rd is calculated as in the original SA model [8]. The LES length-scale lLES is a

function of the subgrid length-scale through:

lLES = CDESΨ∆,

where Ψ is a low-Reynolds number correction function to counteract the activation of

the original SA RANS model in the LES regime [7]. The wall-modeled large-eddy simu-

lations (WMLES) branch of IDDES should be activated when unsteady turbulent inflow

is provided and if the grid can sufficiently resolve the dominant eddies in the boundary

layer. The WMLES length-scale is computed as:

lWMLES = fB(1 + fe)lRANS + (1− fB)lLES,

where two functions fB and fe control the interaction between LES and RANS models.

The blending function fB is designed to improve the switching behavior between LES

and RANS based on the distanced to the wall and the local maximum cell edge length:

fB = min{2exp(−9α2), 1.0},

where α = 0.25− dw/hmax. The fe function acts to prevent the log-layer mismatch that

can manifest in DES and DDES simulations:

fe = max{(fe1−1), 0}Ψfe2.

The fe1 term is a function of α and thus it is grid dependent only whereas fe2 is a function

of the solution by incorporating the term
∑

ij(∂ui/∂xj)
2. IDDES combines DDES and

WMLES length scale as below:

lIDDES = f̃d(1 + fe)lRANS + (1− f̃d)lLES,

where f̃d = max{(1 − fd), fB}.
lIDDES appears in the destruction term of the transport equation for modified eddy
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viscosity (ν̃) as follows:

∂ν̃

∂t
+ Ui

∂ν̃

∂xj
= cb1S̃ν̃ +

1

σ

[

▽. (ν̃ ▽ (ν̃)) + cb2(▽ν̃)2
]

− cw1fw(r̃

(

ν̃

lIDDES

)2

. (3)

A detailed description of the IDDES formulation can be found in Shur et al.[6].

Note that in SA-IDDES model (used in the present study), the length-scale in RANS

region is the distance from the wall (lRANS = dw).

2.3 The k − ω −DES Model

The main motivation of developing this model is improvement of separation prediction

capability (particularly in mildly separated flow) by improving the underlying RANS

model. The mathematical formulation of DES methodology is pretty simple and can be

built on any RANS turbulence model. The DES modification based on the k−ω−SST

model is applied to the dissipation term in the k-equation as follows:

∂ρk

∂t
+ Ui

∂ρk

∂xj

= Pk − ρ
k1.5

min(Lt, CDES∆)
+Dk (4)

where Lt =
√
k

β∗ω
, ∆ = max(∆x,∆y,∆z), β

∗ = 0.09 is the k−ω−SST model constant and

CDES = 0.61 is a calibration constant of the DES formulation. Detailed derivation can

be found in [21]. It is worth mentioning here that IDDES is a modified version of DES

triggering methodology that only differs in attached flows and performs quite similarly

in case of flows with strong instabilities[6]. Moreover, DES methodology and its variants

(DDES and IDDES) can be built on any RANS turbulence model (including k − ω and

k − ǫ frameworks) to develop a hybrid model.

3 Residence Time

3.1 Residence Time Distribution (RTD)

Dealing with complex flows inside reactors/combustors, the characteristic time a fluid

particle stays inside the specific system( specific zone inside the system) is of great in-
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terest as it provides useful information on mixing pattern denoted as τ0. For ideal flow

conditions without recirculation or axial diffusive transport, e.g., plug-flows in pipes, τ0

can be determined from the ration of the system volume (Vsys)to the total volumetric

flow rate (V̇0),i.e. τ0 = Vsys

V̇0
[28]). Since each individual fluid element in a non-ideal sys-

tem has different streak line and velocity, there is need for statistically defined residence

time distribution E(t). Experimentally, the residence time distribution (RTD) can be

determined by stepwise increasing the concentration of a non reactive tracer introduced

at the inlet of the system from 0 to Cf . The non-dimensional cumulative distribution

function F (t) is then determined from the temporal evolution of the tracer concentration

C(t) at the system outlet, normalized by its steady-state (Theoretical mixed) concentra-

tion C0:

F (t) =
C(t)

C0
. (5)

Note that the value of C0 at the outlet is determined by dividing the volumetric flow

rate of the tracer by the total volumetric flow rate.

The cumulative distribution function (CDF) describes the probability for a fluid element

that was injected into the system at t = 0 to exit the system between 0 to t . The RTD

and the CDF are related to each other by:

E(t) =
dF (t)

dt
. (6)

The mean residence time of a real system (denoted by τ) can be calculated by the

first-order moment of the RTD as follows:

τ =

∫ ∞

0

E(t)× tdt. (7)

It is a common practice to assess the second moment (variance) of RTD that provides

some idea on spread of distribution. IT is defined as below:

σ2 =

∫ ∞

0

(t− τ).E(t)dt (8)
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4 Flow configuration and computational setup

In the present study a complex swirled flow (can also be regarded as a generic test case

for oxy-flame combustor [17]) is considered to assess capability of different hybrid meth-

ods in predicting flow field and residence time characteristics. Figures 1 and 2 show two

different views of the investigated configuration, demonstrating all inlets and the outlet

along with a 2D plane of the combustor. The geometrical design of the burner nozzle, the

quarl, and the expansion to the chamber is similar to the self-sustained oxy-coal flame

presented in Toporov et al.[14]. The down fired chamber is also derived from Toporov

et al.[14], however, it is shorter and only 600mm long. The cross section is square for

better optical access with rounded edges for easier meshing. The nozzle consists of a

primary inlet at the center with a bluff body where fuel and oxidizer are injected. There

are secondary inlets for air/oxidizer designed using channels in annular tubes leading

to axial and radial (inclined) (45◦ relative to the axial) inlets into a plenum in order to

generate a relatively strong swirl (0.79 at the diffuser inlet only for secondary flow and

0.47 combined for primary and secondary flow). All (secondary) inlets have a rectangu-

lar cross section (axial: 7.5× 11.5mm2, inclined: 5× 8.5mm2). The nozzle is connected

to the main chamber with a diffuser to allow the swirl to form a stable recirculation

zone. The chamber cross section is 420 × 420mm2 and its length is reduced to 600mm

to decrease residence times and thus, the computational costs. The main sections of the

walls are made of plane quartz windows to provide full optical access throughout the

chamber. Therefore, the cross section is rectangular, however, with rounded corners to

simplify the application of structured meshes. Similar to [14], close to the wall a tertiary

annular inlet for the oxidizer is placed at larger radii and is directly connected to the

main chamber. The outlet is an annular orifice positioned close to the wall that prevents

any back-flow and secondary air entrainment into the main chamber due to extended

re-circulation zones.

As mentioned previously, we apply three different hybrid approaches to the present

swirled configuration. Results will be compared with experimental data and LES results

reported in Doost et al.[17]. They performed a comprehensive mesh dependency study

and have shown that a grid with slightly more than 1 million carefully designed hexahe-

dral cells is fine enough to capture the essential dynamics of flow at acceptable level of
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Inlet Velocity(m/s)
Primary 13.1825

Secondary (Axial) 5.23
Secondary (Radial) 15.008

Tertiary 1.7174

Table 1: imposed velocity at each inlet

accuracy.

In the present study only the flow field behavior is studied. Combustion is not consid-

ered, i.e. air will be injected with different velocities given in table 1 through each inlet

similar to the experiment[30]. Turbulence intensity at the inlets is assumed to be low

and around 1% according to the experimental conditions. Non-slip and outlet boundary

conditions are applied at the walls and outlet, respectively. It should be noted that the

outlet boundary condition applied at the exit ring imposes zero gradient condition and

best resembles the experimental situation.

The structured computational grid used here consists of slightly more than 1 million

carefully designed hexahedral cells (Same grid used in Doost et al.[17] calculations) and

is fine enough to capture essential dynamics of the flow (Fig. 1) as confirmed in Doost

et al.[17] in their LES calculations. Doost et al.[17] used WALE model[29] model and

performed a comprehensive mesh dependency study with the conclusion that the present

mesh is fine enough to capture essential dynamics of the flow/residence time characteris-

tics. This makes the current geometry a suitable test case to assess capability of different

hybrid models to deal with complex flows at affordable computation cost. The details of

the Wale LES model have been briefly discussed in Appendix A. In order to determine

the residence time characteristics to validate/assess the numerical results, similar to [17],

the following transport equation for dimensionless passive scalar φ is solved to assess the

tracer behavior.

∂φ

∂t
+ Ui

∂φ

∂xj
=

∂

∂xj

(

( ν

Sc
+

νt
Sct

) ∂φ

∂xj

)

, (9)

where ν, νt, Sc = 0.7139 and Sct = 0.7139 are molecular viscosity, turbulent eddy

viscosity, laminar and turbulent Schmidt numbers respectively.
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Figure 1: 3D and 2D views of the oxy-fuel configuration displaying inlets and grid in a
qualitative fashion

Figure 2: Schematic of inlets and outlet of the oxy-fuel combuster
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4.1 Numerical Method

The 3D simulations were performed using the open source CFD code, OpenFOAM[13],

with second-order central differencing discretisation for velocity and turbulent kinetic

energy, k. However, first order upwind scheme was necessary to use to discretize ω to

suppress numerical instability. Second order time discretisation method was used for

all simulations. Maximum allowed CFL number for entire domain was set to 6 that

results mean CFL number well below one in the domain. It is worth mentioning that in

LES calculations[17], maximum CFL number needs to remain around one to maintain

numerical stability. The unsteady SIMPLE algorithm was applied to advance momentum

along with PISO algorithm to solve the pressure Poisson equation.

5 Results and Discussion

5.1 Flow Field

Figures 3 and 4 indicate the plane locations where we compare our numerical results

with experimental and LES data and the shear layer (in a qualitative fashion) that

forms after the flow separates from the wall and enters the main chamber respectively.

It is expected that the models switch into LES mode in separated regions (immediately

after the diffuser exit) and start to resolve the turbulent structures. To study the state

the models operate in, we compare the eddy viscosities obtained from all three models

with the ones of the LES at these three planes (Figure 5). It can be seen that at the first

plane (x = 7mm) the eddy viscosity obtained from the SST−SAS and the k−ω−DES

models are at least one order of magnitude larger ( same order of corresponding URANS

eddy viscosity (not shown here)) than the LES eddy viscosity, while the eddy viscosity

obtained from the SA-IDDES model undergoes a huge drop and has similar order as LES,

meaning that the first two models are operating in URANS mode. This confirms that

first two models are not sensitive enough to respond promptly to the internal instability

mainly caused by the change in the geometry which might be due to the diffusive nature

of the underlying RANS model. Further downstream (at x = 67mm and x = 167mm),
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both, the SST −SAS and the k−ω−DES models start transitioning from URANS to

scale-resolving mode and a noticeable reduction in the eddy viscosity can be observed.

However, the reduction observed in the eddy viscosity obtained from the SST − SAS

model does not seem to be enough to drive the model into full scale-resolving mode

but to a partially resolving mode around the second plane. Figure 6 demonstrates the

spanwise component of instantaneous vorticity obtained from the SAS − SAS, LES,

SA-IDDES and the k − ω − DES simulations respectively. It clearly can be seen that

consistent with the eddy viscosity behavior, the SST −SAS and k− ω−DES indicate

a very similar response up to about x = 60mm and transition to scale-resolving mode is

delayed while the SA-IDDES (similar to LES) tries to resolve turbulent structures already

from inside the diffuser. Based on the observation mentioned above, it is expected that

SA-IDDES delivers results similar to LES on all three planes. Figure 7 demonstrates

iso-surface of instantaneous pressure colored by velocity magnitude. It confirms behavior

of diffrent models in transition to LES-like mode observed in instantaneous vorticity and

the eddy viscosity as discussed above. Furthermore, it may be concluded that having

more advanced RANS model for near-wall area ( the SST −SAS and the k−ω−DES

models) would cause a delay in the model to response promptly to a change in flow

state probably due to the diffusive nature and insensitivity to internal instability of the

k − ω − SST model, while using a very simple near wall model (distance from the wall

in the SA-IDDES model) appears to be more sensitive. However, it should be noted

that being able to transition to scale-resolving mode is only one part of the triggering

mechanism and the second part is that if the model can operate as an appropriate sub-

grid scale model after transion to scale resolving mode. We will discuss it by analyzing

the statistical quantities in the following.

Figures 8 − 10 show the streamwise and the radial mean velocities at three different

planes. It can be seen that all three models fail to predict the peak in the streamwise

mean velocity at the first plane. In fact, the situation for SA-IDDES is worst and a

severe deviation can also be observed around the shear layer. The radial velocity is better

predicted and all models deliver results close to the experiment and LES. This outcome is

,however, not expected given that the SA-IDDES model operates in scale-resolving mode

at the first plane. It would mean that the second part of the triggering is not happening

appropriately. It may lead to the conclusion that the characteristic length and time
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scales do not correspond to appropriate sub-grid scales when the model is operating as

sub-grid scale model, mainly due to the lack of direct tie to the grid. This is consistent

with the discussion provided in [22, 26] regarding uncertainties concerning the seamless

hybrid methods when operating in scale-resolving mode. They cannot be considered

systematic eddy-resolving methods and therefore, may produce unrealistic spectrum in

some situations. Moreover, using a very simple RANS model (distance from the wall)

to cover the near-wall dynamics could impact the results severely. Further downstream

at the second plane, where almost all three models are operating in full(or partially)

scale-resolving mode, results are closer to LES and experiment. At the third plane

the situation becomes worse for all three models. As can be observed all three models

fail to predict the mean velocities and there is a severe deviation from the reference

data. Figure 11 depicts the turbulent kinetic energy. A consistent behavior can also be

observed. At the first plane the SST − SAS and the k − ω − DES models basically

deliver typical (U)RANS results, which means that most part of the turbulent kinetic

energy is modeled with a severe over-predication of the peak. For the SA-IDDES model,

in contrast, almost the turbulent kinetic energy is entirely resolved with notifiable over-

prediction exactly in regions where severe deviations (from the reference data) in the

mean velocity profiles were observed. Further downstream situation gets better and all

models return reasonable results.

5.2 Residence Time Distribution

Results obtained for residence time distribution (RDT) function and its characterization

using different hybrid approaches will be discussed and compared with the available LES

and experimental data. The main goal here is to determine the interplay between flow

field prediction and the RDT prediction accuracy.

Figure 12 compares the cumulative residence time distribution (F (t)) obtained from

different models at three different locations (x = [118, 318, 508]mm). These profiles

describe actually the mean concentration growth at the 2D planes perpendicular to the

chamber center axis at given locations. It can be observed that non of the hybrid methods

is able to deliver results as accurate as LES does regarding overall trend of the function.

Furthermore, all three hybrid approaches significantly overestimate the death time, the
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time required for tracer after introduction at inlet, to start interacting with the flow field

at given location. The situation is worse especially at second and third planes. This may

lead to the conclusion that the hybrid methods are not responding to the tracer promptly

as LES does which likely lies on inappropriate/incomplete transition to scale-resolving

mode associated with all three approaches which prevents effective interaction between

the flow field and the tracer.

5.2.1 RTD Characteristics

Regarding RDT characteristics, we evaluate our results obtained from different hybrid

approaches with respect to the LES results. Since there is no experimental date available,

LES results presented in [17] are considered as the reference data to evaluate/assess the

results obtained from hybrid approaches. Note that in figures SA-IDDES will be shown

with the IDDES.

Figures 13 − 14 demonstrate the cumulative and the external residence time of the en-

tire system by obtained by normalizing the tracer concentration at outlet using C0 as

discussed earlier (Eq. (5) and (6)). The top part of each figure shows the cumulative

distribution function along with the system death time ( time necessary to observe first

tracer response). It is clear that the system death line is severely over-predicted by

all three hybrid approach relative to the LES prediction. The main reason is thought

to be lack of appropriate transition to scale-resolving mode which hampers effective

interaction between flow structures and the passive scalar and therefore, prevents the

tracer to respond promptly. The middle parts of the figures depict the external resi-

dence time distributions (E(t)) that are indicator of the mean flow structures inside the

reactor/chamber[34]. It can be seen that E(t) obtained from SA-IDDES shows pretty

much similar overall behavior as LES, particularly in capturing a peak around t = 1s.

This is caused by the primary stream the tracer mixing with secondary stream and cir-

cumventing the re-circulation areas where the tracer mixes partly inside the re-circulation

zone and partly outside of these zones. However, SA-IDDES models predicts two ad-

ditional peaks around t = 4.5, 5.5s that is related to the inaccurate predictions in the

velocity fields presented in the previous section. In contrast, the SST − SAS and the

k − ω − DES models indicate completely inconsistent behaviors by indicating several
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peaks suggesting inaccurate prediction of the flow field.

This is again mostly due to the inconsistent/incomplete transition to the LES mode

that directly affects the flow field prediction accuracy. The bottom parts of the figures

13, 14 demonstrate the mean residence time (τ). Again, hybrid models fail to predict it

accurate enough compared to the LES result.

Figures 15, 16 show the residence time variance obtained from different models. Similar

to other quantities, they confirm inaccurate predictions of hybrid methods for the sys-

tem death time and the system mean residence time and more importantly, physically

inconsistent result obtained from the k − ω −DES model.

5.2.2 Tracer Concentration at Outlet

Finally, the tracer concentration at the outlet as function of time and also, the tracer

concentration distribution (relative histogram) for times t = τ (system mean residence

time) and t = 5s are shown in figures 17, 18, 19, 20 using C0 = 0.13 as steady-state value

for tracer concentration at outlet. As expected, the distribution patterns of hybrid is

different compared to the LES distribution. More importantly, unlike LES, the value of

C/C0 around which the tracer concentration is wildly distributed does not correspond

to the absolute concentration at outlet at time close to the system mean residence time

(τ).

Based on the results, it is hard to avoid the conclusion that there is a strong interplay

between the flow field prediction accuracy and the prediction of the RDT characteristics

at acceptable level of accuracy.

6 Summary and Conclusion

Three different hybrid models have been applied to the present complex swirled config-

uration including various flow dynamics. It was shown that all three approaches have

some difficulty dealing with the present configuration. In particular, they fail to respond

appropriately to a change of flow state caused by sudden change in the geometry. The
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main shortcoming most likely lies in the triggering mechanisms. Models either do not

trigger promptly as they should or if triggered do not act as an appropriate sub-grid

model, since there is not direct relation to the grid. As shown, it might be the main rea-

son for the observed disagreement with the reference data (LES/Experiment). Moreover,

it has been determined that there is a direct link between flow field prediction accuracy

and residence time (characteristics) prediction quality. There is a need to modify the

triggering mechanism in order to make the all three methods capable/reliable to deal

with different flow situations. Maybe using more advanced underlying RANS models

(non-linear eddy viscosity models) that are more sensitive to change in flow state along

with introduction the grid scale into model when operating in scale-resolving mode are

necessary to make appropriate transition from URANS to LES possible and to allow the

model to responds promptly and appropriately to a change in flow condition. This is a

work-in-progress issue and will be addressed in the future.

Figure 3: Different measurement planes with instantaneous velocity field obtained from
the LES at Time=3s

Figure 4: Qualitative schematic of the shear layer inside the combustion chamber shown
on velocity field obtained from the LES at Time=3s.
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Figure 6: Instantaneous spanwise component of vorticity in a 2D plane obtained at
Time=4s.
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Figure 7: Iso-surface of instantaneous pressure colored by velocity magnitude obtained
at Time=4s.
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Figure 15: Distribuation of the residence time variance (t − τ)2E(t)(s) at outlet, (a):
WALE, (b): SST-SAS.
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Figure 16: Distribuation of the residence time variance (t − τ)2E(t)(s) at outlet, (a):
SA-IDDES, (b): k-omega-DES.
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Figure 17: Exit tracer concentration at outlet C(t) marked at t=[τ , 5]s, (a): WALE ,
(b): SST-SAS.
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Figure 18: Exit tracer concentration at outlet C(t) marked at t=[τ , 5]s, (a): SA-IDDES
, (b): k-omega-DES.
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Appendix A

WALE Model

In classical LES techniques only large scale structures are resolved containing most of

the turbulent kinetic energy while small scale motions need to be modeled.The resulting

filtered conservation equations for mass and momentum are written in conservative form

as below:
∂ũi

∂xi
= 0,

∂ũi

∂t
+ ũj

ũi

∂xj

= −∂P̃

∂xi

+
∂

∂xj

(

ν

(

∂ũi

∂xj

+
∂ũj

∂xi

))

−
∂τ sgsij

∂xj

,

where ũi, P̃ ,ν and τ sgsij are filtered velocity, filtered pressure, kinematic viscosity and

unknown sub-grid scale (SGS) stress tensor respectively. Following Boussinesq approxi-

mation, the sub-grid stress tensor is modeled as follows:

τ sgsij =
2

3
kδij − νt

(

∂ũi

∂xj

+
∂ũj

∂xi

)

,

where k is sub-grid scale turbulent kinetic energy and nut is the SGS eddy viscosity.

Following WALE model[29], the turbulent SGS eddy viscosity νt is expressed as below:

νt = (Cw∆)2
(

Sd
ijS

d
ij

)3/2

(

S̄ijS̄ij

)5/2
+
(

Sd
ijS

d
ij

)5/4
,

where Cw is a true dimensionless constant (in the present study Cw = 0.325), ∆ =

(∆x∆y∆z)
1/3 the characteristic cutoff length scale of the grid filter, S̄ij the filtered strain

rate tensor defined as S̄ij = 1
2

(

∂ūi

∂xj
+

∂ūj

∂xi

)

and Sd
ij the traceless symmetric part of the

square of the velocity gradient tensor defined as

Sd
ij =

1

2

(

g2ij + g2ji
)

− 1

3
δijg

2
kk,

where g2ij = gikgkj is the square of the filtered velocity gradient tensor gij = ∂ūi/∂xj .

One of the advantages of this model is the production of zero turbulent eddy-viscosity

in the vicinity of a wall.
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In the present study the wall-shear stress model based on the universal law of the wall

suggested by [36] is applied for near-wall treatment. Thereby, the velocity profiles are

well fitted for the laminar, buffer and logarithmic regions of an equilibrium boundary

layer by the formula

y+ = u+ +
1

E

(

eκu
+ − 1− κu+ − 1

2
(κu+)2 − 1

6
(κu+)3

)

,

where y+ denotes the wall coordinate, which is the distance to the wall yp made di-

mensionless with the shear velocity uτ and the kinematic viscosity ν (y+ = ypuτ

ν
), u+

represents the dimensionless velocity, which is the velocity up parallel to the wall divided

by the shear velocity uτ (u+ = up

uτ
), κ is the Kármán constant (κ = 0.41) and E an

empiric constant (E = 9.1).

To provide the wall shear velocity uτ Eq. (10) can be transformed into a non-linear

equation for uτ by substituting the known values yp and up.

These kinds of stress equilibrium wall functions have the inherent limitation being valid

only in zero pressure gradient equilibrium flows. This limitation is met in the investigated

setup configuration as there is no demand to account for any effects of pressure gradient

on the near-wall velocity profile.

Appendix B

The k − ω − SST − SAS Model

The governing equations for k − ω − SST − SAS model reads as follows[1]:

∂k

partialt
+

∂Uik

∂xi
= Pk − β∗ωk +

∂

partialxi

(

(ν + σkνt)
∂k

∂xi

)

,

∂ω

∂t
+

∂Uiω

∂xi
= αS2 − βω2 +

∂

∂xi

(

(ν + σωνt)
∂ω

∂xi

)

+ 2(1− F1)σω2
1

ω

∂k

∂xi

∂ω

∂xi
+QSAS.

νt =
a1k

max(a1ω, SF2)
,
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where Pk = min(νtS
2, 10β∗kω) and S production of turbulent kinetic energy and in-

variant of the strain rate tensor respectively. QSAS is the triggering mechanism and is

defined and discussed in detail in section 2.1.

The blending functions F1 and F2 are defined as follows:

F1 = tanh







{

min

[

max(

√
k

β∗ωy
,
500ν

y2ω
),
4ρσω2k

CDy2

]}4






,

F2 = tanh





[

max

(

2
√
k

β∗ωy
,
500ν

ωy2

)]2


 ,

where y is the distance from the nearest solid wall.

CD is defined as below:

CD = max

(

2ρσω2
1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

)

.

All model constants are computed by a blend as follows:

φ = F1φ1 + (1− F1)φ2 with the model constants in the following:

σk1 = 0.85, σk2 = 1, σω1 = 0.5, σω2 = 0.856, β1 = 0.075, β2 = 0.0828, β∗ = 0.09,

α1 = 0.555, α2 = 0.44, a1 = 0.31.
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