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Conspectus 

Molecular chaperone proteins perform a diversity of roles inside and outside the cell. One of 

the most important is the stabilization of misfolding proteins to prevent their aggregation, a 

process that is potentially detrimental to cell viability. Diseases such as Alzheimer’s, 

Parkinson’s and cataract are characterized by the accumulation of protein aggregates. 

In vivo, many proteins are metastable and therefore under mild destabilizing conditions have 

an inherent tendency to misfold, aggregate and hence lose functionality. As a result, protein 

levels are tightly regulated inside and outside the cell. Protein homeostasis, or proteostasis, 

describes the network of biological pathways that ensures the proteome remains folded and 

functional. Proteostasis is a major factor in maintaining cell and organismal viability. 

We have extensively investigated the structure and function of intra- and extracellular 

molecular chaperones that operate in an ATP-independent manner to stabilize proteins and 

prevent their misfolding and subsequent aggregation into amorphous particles or highly 

ordered amyloid fibrils. These types of chaperones are therefore crucial in maintaining 

proteostasis under normal and stress (e.g. elevated temperature) conditions. Despite their lack 

of sequence similarity, they exhibit many common features, i.e. extensive structural disorder, 

dynamism, malleability, heterogeneity, oligomerization and similar mechanisms of chaperone 

action. 

Intracellularly, the principal ATP-independent chaperones are the small heat-shock proteins 

(sHsps). In vivo, sHsps are the first line of defense in preventing intracellular protein 

aggregation. The sHsps A- and B-crystallin are the major eye lens proteins. In the lens, 

they play a crucial role in maintaining solubility of the crystallins (including themselves) with 

age, and hence in lens proteostasis and, ultimately, lens transparency. As there is little 

metabolic activity and no protein turnover in the lens, crystallins are very long-lived proteins. 

Lens proteostasis is therefore very different to that in normal, metabolically active cells. 

Crystallins undergo extensive post-translational modification (PTM), including deamidation, 

racemization, phosphorylation and truncation, which can alter their stability. Despite this, the 

lens remains transparent for tens of years, implying that lens proteostasis is intimately 

integrated with crystallin PTMs. Many PTMs do not significantly alter crystallin stability, 

solubility and functionality, which thereby facilitates lens transparency. In the long term, 

however, extensive accumulation of crystallin PTMs leads to large-scale crystallin 

aggregation, lens opacification and cataract formation. 

Extracellularly, various ATP-independent molecular chaperones exist that exhibit sHsp-like 

structural and functional features. For example caseins, the major milk proteins, exhibit 

chaperone ability by inhibiting the amorphous and amyloid fibrillar aggregation of a diversity 

of destabilized proteins. Caseins maintain proteostasis within milk by preventing deleterious 

casein amyloid fibril formation via incorporation of thousands of individual caseins into an 

amorphous structure known as the casein micelle. In addition, hundreds of nanoclusters of 

calcium phosphate are sequestered within each casein micelle through interaction with short, 

highly phosphorylated casein sequences. A stable biofluid results containing a high 

concentration of potentially amyloidogenic caseins and concentrations of calcium and 

phosphate that can be far in excess of the solubility of calcium phosphate. Casein micelle 

formation therefore performs vital roles in neonatal nutrition and calcium homeostasis in the 

mammary gland.  
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Proteostasis and molecular chaperones 

Proteostasis, a combination of the words protein and homeostasis, has attracted much interest 

because of it succinctly describes the tight regulation of protein levels, conformations and 

localizations both inside and outside the cell.  Proteostasis also encompasses the synthesis, 

trafficking, folding and degradation of the proteome and is therefore intimately related to cell 

and organismal well-being and viability.1 If proteostasis is dysregulated, diseases that are 

associated with protein unfolding, misfolding and aggregation, for example Alzheimer’s, 

Parkinson’s and cataract, may develop due to the accumulation of partially folded and 

aggregated proteins.  

Molecular chaperones are important components in proteostasis because they interact with 

target proteins to prevent their inappropriate association.2 Many intra and extracellular 

chaperones have been described. There are two broad types: (i) ATP-dependent chaperones 

which have a variety of energy-requiring regulatory roles, for example to facilitate protein 

folding, and (ii) ATP-independent chaperones which prevent protein aggregation, for 

example under conditions of cellular stress such as elevated temperature.2 

Recent reviews2,3 have appeared on proteostasis, including discussion of the role of molecular 

chaperones which have mainly addressed how correct protein folding is regulated via the 

action of intracellular, ATP-dependent chaperones. We and others have recently reviewed the 

functional role of small heat-shock proteins (sHsps), the major intracellular ATP-independent 

chaperones, in proteostasis including in relation to disease.4,5 Little has been discussed in 

comparing the actions of sHsps and extracellular chaperones in proteostasis. In this article, 

we address this aspect. We will concentrate on the sHsps A- and B-crystallin, the 

predominant eye lens proteins. A comprehensive review is available on the structural and 

functional roles of extracellular chaperones, including in proteostasis and disease.6 With 

respect to extracellular chaperones, we will discuss milk casein proteins. Despite their lack of 

sequence similarity, sHsps and caseins share many structural and functional features, 

including the ability to prevent deleterious protein aggregation. 

Lens crystallin proteins and lens proteostasis  

The lens is a unique organ; it lacks a blood supply, there is no protein turnover in its center 

(the nucleus), it grows throughout life and it has little metabolic activity. Crystallins in the 

nucleus are as old as the individual. Figure 17 gives a schematic representation of the 

structural features of the lens and its constituent lens fiber cells, which are unique cell types. 

The lens is a mixture of and-crystallin proteins at very high concentration (up to 300-

400 mg/mL) which are tightly packed together in a supra-molecular array to enable 

unimpeded passage of light and hence proper refraction and focussing of light onto the retina.8  
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

Figure 1. Schematic cross-section of the eye and its lens7. Cells in the lens epithelium are 

metabolically active and synthesize crystallins. Subsequently, cell differentiation leads to loss 

of intracellular organelles and the production of lens fiber cells containing crystallins at high 

concentration, arranged in a well-ordered array. 

-Crystallin is comprised of two closely related proteins, A- and B-crystallin. In humans, 

they are the major lens crystallins. Both are sHsps that act as molecular chaperones to prevent 

lens crystallins from aggregating and precipitating. A- and B-crystallin co-associate to 

form a large heterogeneous and dynamic complex of ~650 kDa in mass which contains large 

regions of structural disorder localized to the N- and C-terminal regions which flank the well-

structured, -sheet-rich, central -crystallin domain (ACD).9 The - and -crystallins are 

structurally related to each other (but not to -crystallin) with each protein forming a well-

ordered, -sheet array arranged in four Greek keys and two domains (Figure 2). The -

crystallins are oligomers (dimers, tetramers and octamers) whereas the -crystallins are 

monomers.9  
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Figure 2. Representative structures of the three families of human crystallins. (a) Monomeric 

subunit (top) of 24-mer model of αB-crystallin (below) as determined by SAXS, solid-state 

NMR and electron microscopy (PDB: 3J07)10. The monomers are colored in rainbow: N-

terminal region (blue-green), ACD (green-orange) and C-terminal region (orange-red). (b) 

Crystal structure of βB2-crystallin dimer (PDB: 1YTQ)11. The individual subunits are colored 

green and salmon. (c) Crystal structure of monomeric γD-crystallin (PDB: 1HK0)12. N- and 

C-termini are denoted ‘N’ and ‘C’, respectively. 
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Standard mechanisms to maintain proteostasis, as occur for metabolically active cells, cannot 

operate in lens fiber cells because they contain neither cellular organelles nor the typical 

regulatory mechanisms for protein synthesis, maintenance, transport and degradation. Lens 

transparency is therefore very different to that in normal cells. So, how does the eye lens 

maintain functionality, i.e. transparency, over the lifespan of the individual by keeping its 

constituent crystallin proteins soluble?  

With age and due to the lack of protein turnover, many different PTMs occur to lens 

crystallins including deamidation of Gln and Asn, racemization, phosphorylation of Ser, 

crosslinking and truncation from both termini.13 With regard to Asn deamidation, which 

involves four possible products including the conversion from L-Asn to L-Asp, the sites of 

modification of the various lens crystallins have been defined.13 Potentially, these PTMs may 

lead to crystallin destabilization, misfolding and aggregation and hence lens opacification. 

However, despite this myriad of PTMs, the lens remains transparent for decades. In fact as 

described below, many crystallin PTMs are relatively benign with respect to crystallin 

stability and hence solubility. In other words, there is major structural redundancy built into 

the crystallins.  

Deamidation to form the Asp- or Glu-altered crystallins (i.e. the introduction of additional 

negative charge(s)) has minimal effect on the overall structure and function of the particular 

crystallin in vitro, for example deamidation in s-crystallin at N7614 and N14315 and in Q147 

A-crystallin.16 However, the additional negative charge in the deamidated crystallins leads 

to greater stability of the crystallins to temperature, but does promote association. 

Phosphorylation of the two -crystallin subunits is extensive in the lens, and occurs to a 

significant extent even in utero.17 In the main, mimicking of phosphorylation by incorporating 

Asp for phosphosereine is associated with enhanced chaperone action of B-crystallin, 

particularly against amorphously aggregating target proteins.18 It also leads to greater 

polydispersity and enhanced stability of the protein at neutral pH. Thus, phosphorylation 

and/or deamidation of crystallins increase the negative charge on the protein which facilitates 

interactions with the surrounding water to enhance stability to elevated temperature. In a 

similar manner, proteins from thermophilic organisms have much greater charge on their 

surface compared to their temperate counterparts which promotes stability because the 

charged sidechains can hydrogen bond with water, in addition to forming salt bridge 

electrostatic interactions with nearby oppositely charged sidechains. 

-, - and s-Crystallins all contain flexible and unstructured extensions at their N- and/or C-

termini that protrude from their domain cores (Figure 2).19,20 In A- and B-crystallin, these 

regions encompass the last 10 and 12 amino acids respectively and in B2-crystallin, they 

refer to the first 15 and last 10 residues. In s-crystallin, the first four residues are flexible. 

Loss of parts of the C-terminal extension of A-crystallin (as occurs with age) does not 

significantly affect its structure or chaperone ability,19-21 although truncation past the C-

terminal extension into the C-terminal region of A-crystallin does have a deleterious 

effect.21 A similar lack of effect on the -sheet structure of -crystallins is also observed for 

truncation within their flexible extensions.19,20  

In humans, no unmodified -crystallin is present in the lens nucleus after around 40 years of 

age.22 Despite the associated structural changes, aged -crystallin retains functionality. For 
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example, the highly aggregated form of -crystallin has reasonable chaperone ability,23 and 

the central ACD of B-crystallin itself is an effective chaperone,24 as are peptide fragments of 

the ACD.25   

What other factors may alter lens proteostatsis and lead to crystallin aggregation and hence 

lens opacification? 

Glutathione levels are high in the young human lens but decrease with age, particularly in the 

nucleus, i.e. from around 2.5 to below 1.0 mol/g of lens wet weight.26 A barrier to 

glutathione transport also develops with age in the periphery of the lens nucleus.27 Combined, 

these factors potentially contribute to oxidative modification of the crystallins. Indeed, 

cataract lens crystallins, particularly specific - and -crystallins, contain significantly more 

disulfide bonds than age-matched normal lens crystallins.28  

In aged human lenses, there is a significant reduction in free water, perhaps due to greater 

crystallin aggregation.29 Furthermore, cataract lenses have less free water than normal lenses, 

which increases crystallin concentration.29 Minton30 has hypothesized that dehydration due to 

macromolecular crowding and the associated increase in protein concentration exacerbate the 

onset of age-related, protein misfolding diseases. Similar behavior could occur in the aged 

lens (where protein concentration is very high). As a result, crystallin aggregation is promoted 

because of the increased crystallin concentration due to dehydration and the presence of more 

crystallins since the lens synthesizes crystallins throughout an individual’s lifespan.  

Frederikse31 observed an amyloid-like structural arrangement of the crystallin proteins in the 

lens. He concluded that lens crystallins are arranged in a -sheet supramolecular order and are 

therefore potentially ‘primed’ to form amyloid fibrils. Crystallin fibril formation32 may be 

advantageous as it leads to a well-defined crystallin -sheet array that ensures proper 

transparency. In the lens, fibrillar crystallins would be unlikely to cause toxic effects because 

of the inert nature (i.e. lack of metabolic activity) of lens fiber cells. Consistent with this, 

amyloid fibrillar forms of B-crystallin and -crystallin function well as molecular 

chaperones,23 as do the amyloidogenic -crystallin mini-chaperone peptides.25 

Thus, in the lens environment where significant temporal changes are occurring, i.e. in 

glutathione levels, water arrangement and possibly the formation of amyloid fibrils, crystallin 

PTMs may provide a means to adapt to this changing environment and therefore to retain 

solubility. So, why does cataract eventually occur, and often with rapid onset? We 

hypothesize that eventually, the many crystallin PTMs accumulate to such an extent that the 

lens proteostasis network cannot cope and large-scale crystallin destabilization occurs leading 

to their aggregation, insolubilization, lens opacification and ultimately cataract. 

The lens is potentially a very good model for age-related molecular changes in other tissues 

where long-lived proteins occur that are involved in the development of protein misfolding 

diseases.13 The absence of metabolic activity within lens fiber cells means that all crystallin 

changes, for example PTMs, are caused by ageing. Thus, changes in crystallins in the lens 

can be regarded as a baseline measure of age-related changes in other tissues. It is well 

recognized that many of the age-related protein misfolding diseases are promoted by specific 

mutations that upset the delicate balance in proteostasis inside and outside the cell, which are 

superimposed on age-related PTMs. 
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Extracellular molecular chaperones: caseins 

Although caseins are best known for very high levels of expression in mammary epithelial 

cells, their widespread expression has been reported in other normal tissues and biofluids 

with individual casein transcripts being present at a high level33,34. In the milk of various 

species, whole casein comprises three to five gene products at around 26 mg/mL in the cow 

but as high as 150 mg/mL in other species. 

We have worked mainly with bovine S1-, S2-, - and -caseins. In bovine milk, there is 

approximately four times as much - or S1-casein as - or S2-casein but the ratios vary 

among species, individuals, through stages of lactation and the effect of proteolysis. 

Nevertheless, in spite of considerable variation in casein composition, all milks contain 

polydisperse, more-or-less spherical, colloidal particles called casein micelles (Figure 3) 

which scatter light strongly to give milk its white appearance. Bovine milk is rich in calcium 

and inorganic phosphate compared to other biofluids with nearly two-thirds of the calcium 

and half the inorganic phosphate being present in the form of nanoclusters of an amorphous 

calcium phosphate (ACP) salt sequestered within the casein micelles35. 

Caseins were among the first proteins to be recognized as functional IDPs36. The functional 

role of the unfolded casein conformation was thought to be ease of digestion by proteases. An 

additional role was later proposed in which the unfolded conformation was required for 

effective binding to the nanoclusters of calcium phosphate37,38. Many of the other proteins 

associated with mineralization are now known or predicted to be IDPs39,40.  

We have identified four different linear functional motifs in casein sequences:41-43 (i) an N-

terminal hydrophobic signal sequence, (ii) between zero and six phosphate centers 

comprising a cluster of (predicted) phosphorylated residues, (iii) a number of hydrophilic 

sequences flanking the phosphate centers to form the calcium phosphate binding motif and 

(iv) one or two longer, polar tract44,45 sequences, rich in Pro and Gln (P,Q-rich), which are 

involved in casein-casein non-covalent binding. 

Based on their recently discovered biology and the explosive growth in understanding of 

other IDPs, we have proposed responses to some of the most perplexing basic questions 

about caseins which hitherto were unanswered38,41-43. For example, why is casein not rich in 

essential amino acids? Why in milk is the micelle always formed by a mixture of caseins? 

Why are casein micelles necessary? Why is milk remarkably stable compared to other 

biofluids? How did milk evolve from a dilute precursor biofluid into a concentrated 

nutritional resource? 

Intra- and inter-molecular interactions in caseins 

Caseins do not form condensed structures like globular proteins but they readily associate 

with themselves or other caseins to form amorphous aggregates or interact promiscuously 

with many other partly unfolded proteins. A detailed molecular explanation is not to hand but 

significant factors include: (i) relatively uncommon but invariably intermolecular disulfide 

bonds, (ii) polar tract interactions through the P,Q-rich sequences in which hydrogen bonding 

by the backbone is more important than the hydrophobic interactions required for a 

condensed fold, (iii) Prolines in the polar tracts inhibit condensation because they are difficult 
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to de-solvate and they restrict the backbone chain dihedral angles; Pro-rich sequences, in 

consequence, tend to form highly hydrated expanded structures such as gels, mucus and 

slime46,47. The strength and extent of intermolecular interactions can be fine-tuned by PTMs 

involving, for example, proteolytic processing, covalent modifications such as 

phosphorylation and glycosylation and modulation of electrostatic interactions through pH, 

ionic strength and the binding of metal ions such as Ca2+. 

Caseins stabilize milk against calcium phosphate precipitation 

In most species, milk contains high calcium and phosphate concentrations that would lead to 

precipitation of calcium phosphate if it were not for the action of caseins. Instead of forming 

a precipitate, nanocluster complexes of an amorphous form of calcium phosphate are formed 

with the caseins creating a thermodynamically stable biofluid48. The equilibrium size of the 

nanoclusters can be expressed in terms of the free energy of forming the core of calcium 

phosphate and the free energy of sequestration by the outer shell of caseins49. In a typical 

casein micelle of 100 nm radius, there are about 800 nanoclusters that give rise to the 

characteristic substructure of casein micelles on a scale of 18 nm50-52. 

Caseins act as molecular chaperones and can form amyloid fibrils 

Caseins are promiscuous chaperones that stabilize a wide range of target proteins53,54, 

including proteins destabilized by various types of stress (reviewed in41,55). Moreover, caseins 

prevent amyloid fibril formation by proteins, including S2- and -caseins56-58, ovalbumin59 

and the amyloid- peptide60,61. Like sHsps, they do not require ATP and cannot refold 

proteins into their native conformation. 

Caseins from all species examined contain sequences (steric zippers62) compatible with the 

cross- structures found in amyloid fibrils63. After taking PTMs into account, the zipper 

sequences are found in the P,Q-rich polar tract sequences38. Amyloid fibril formation has 

been studied only with bovine caseins but the presence of casein amyloid structures 

(mammary corpora amylacea) in the mammary glands of other species suggests that the 

phenomenon is general. Among the bovine caseins, only purified - and S2-caseins form 

amyloid fibrils under physiological conditions56-58 but amyloid formation by either is slowed 

or halted by the chaperone action of any of the other caseins57,58,64. 

Proteostasis of caseins in bovine milk 

Females of most species go through repeated cycles of pregnancy, lactation, involution and 

tissue remodeling during their reproductive life. Proteostasis is important because the proteins 

and milk salts are secreted into the cisterns and ducts of the mammary gland at high 

concentrations where they may be stored for hours, days, weeks, or even months before 

parturition, depending on the reproductive strategy of the species65. The avoidance of 

pathological processes is essential at all stages of the cycle because they would endanger not 

just the neonate(s) of a single cycle but the future reproductive success of the mother38. The 

challenges of pathological calcification and amyloidosis have been overcome in large part by 

the organization of caseins into the casein micelle38,41. The micelle is an amorphous aggregate 

that is formed by the promiscuous interactions of the polar tract sequences from three or more 

caseins. It provides an effective means of controlling casein fibril formation and, through its 
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calcium phosphate binding motifs, an effective means of controlling pathological 

calcification. 

Farrell et al. noted66 that for the casein micelle to achieve its functions, a number of necessary 

types of interaction must be facilitated along the physiological pathway, whereas interactions 

favoring dysfunctional pathways; for example, those leading to the formation of amyloid 

fibrils or different amorphous structures, or proteolysis, must be avoided. Figure 3 shows a 

central chemical equation in which the four caseins of bovine milk associate together and 

bind to and sequester nanoclusters of ACP to form a thermodynamically stable solution of 

casein micelles. The off-axis reactions are deleterious but all are normally inhibited. For 

example, precipitation of calcium phosphate is prevented by having an excess of competent, 

sequestering, S1-, S2- or -caseins. Amyloid formation by S2- and -caseins is prevented 

by the chaperone action of the other caseins. Formation of an amorphous precipitate of casein 

is prevented by the chaperone action of a mobile sub-fraction of caseins not bound to the 

calcium phosphate; in normal bovine milk the mobile fraction is largely -casein. The casein 

micelle, however, provides no defense against premature proteolytic degradation. Premature 

proteolysis is limited because the main indigenous milk proteinase, plasmin, is 

overwhelmingly present as plasminogen67. It becomes physiologically activated during 

involution or pathologically activated through mastitis. 

 

Figure 3. The central reaction is the functional formation of casein micelles whereas the off-

axis reactions lead to dysfunctional outcomes such as pathological calcification, premature 

proteolysis, uncontrolled amorphous aggregation or amyloid fibril formation. 

Comparison of caseins, -crystallins and other sHsps 

We have analyzed the amino acid composition of caseins, -crystallins and other sHsps using 

the IDP disorder propensity scale68,69 in a plot against the fractions of positively and 

negatively charged residues, called the protein diagram of states36,70 (Figure 4). All of the 

caseins lie close to the nominal boundary between folded and unfolded states in a narrow 

region around the plane of electrical neutrality. No allowance has been made for the effect of 
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phosphorylation which would tend to move the caseins into, or further into, the disordered 

domain and away from the plane of electrical neutrality. More sophisticated prediction 

methods based on sequences rather than just composition, confirm experimental findings that 

bovine caseins are IDPs39,71,72. The -crystallins from six species and the eight other human 

sHsps occupy a very similar region of the diagram of states to the caseins even though these 

groups of proteins show little or no sequence similarity, have apparently very different 

biological functions and no evident evolutionary relationship. 

 

Figure 4. Fractions of positive (f+) and negative (f-) residues versus order propensity in 

unphosphorylated caseins, -crystallins and other sHsps. Casein sequences are the mature 

forms, but without other PTMs, from 20 species43. The A- and B-crystallin sequences are 

from the ExPASy Bioinformatics Resource Portal with accession codes: human A P02489 

(HSPB4), human B P02511 (HSPB5), rat A P24623, rat B P23928, cow A P02470, 

cow B P02510, pig B Q7M2W6, chicken B Q05713 and orangutan B Q5R9K0. The 

eight remaining human sHsp sequences are HSPB1 P04792, HSPB2 Q16082, HSPB3 

Q12988, HSPB6 O14558, HSPB7 Q9UBY9, HSPB8 Q9UJY1, HSPB9 Q9BQS6 and 

HSPB10 Q14990. 

Conclusions: caseins and sHsps have compositional and functional similarities. 

1. Each group has extensive conformational disorder. For example, the disordered N- 

and C-terminal regions of sHsps are proposed to interact with partially unfolded target 

proteins during chaperone action, which provides a local crowded environment for the 

target proteins to facilitate their return to the native state.9 Casein polar tracts, 
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likewise, bring the individual caseins together and may create conditions of local 

crowding of calcium phosphate binding motifs allowing them to form complexes with 

the nanoclusters. 

2. Both groups exist as large, heterogeneous oligomers with inherent dynamism. Subunit 

exchange is a feature of sHsp chaperone mechanism and caseins in the micelle not 

bound to the nanoclusters are in dynamic exchange with the surrounding serum and 

interact with their target and/or partner casein proteins. 

3. Caseins and sHsps undergo extensive PTM, for example phosphorylation and 

truncation, to modify their function and enhance their contribution to proteostasis 

within their particular environment. 

4. Caseins and sHsps contain steric zipper sequences. In sHsps, they are largely confined 

to the ACD.9 In caseins, they are mostly in the polar tracts where PTMs occur. 

5. In crowded conditions, caseins and crystallins both form gels but of very different 

appearance. Caseins form gels that are invariably white in appearance, whereas those 

formed by crystallins are transparent although, with crystallin aggregation, they can 

become opaque. The structural inhomogeneity in casein gels that causes the white 

appearance may arise from the contrast between the highly hydrophilic regions 

responsible for calcium phosphate sequestration and the less hydrophilic (but not 

hydrophobic) polar tracts. 

In summary, caseins and sHsps exhibit markedly similar structural and functional 

characteristics despite their lack of evolutionary relationship. As a result, via a similar mode 

of action, they efficiently accomplish their proteostatic roles within their different cellular 

locales.  
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