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Abstract (188 Words) 

 

In the mammalian cortex, GABAergic and glutamatergic neurons represent two major 

neuronal classes, which establish inhibitory and excitatory synapses, respectively. 

Despite differences in their anatomy, physiology and developmental origin, both cell 

types require support from glial cells, particularly astrocytes, for their growth and 

survival. Recent experiments indicate that glutamatergic neurons also depend on 

astrocytes for synapse formation. However, it is not clear if the same holds true for 

GABAergic neurons. By studying highly pure GABAergic cell cultures, established 

through fluorescent activated cell (FAC) sorting, we find that, although purified 

GABAergic neurons are smaller and have reduced survival when compared to those in 

conventional primary cultures, they establish robust synaptic transmission in the 

absence of glia. While support from glial cells reverses morphological and survival 

deficits, it does little to alter synaptic transmission. In contrast, in cultures of purified 

glutamatergic neurons, morphological development, survival and synaptic transmission 

are collectively dependent on glial support. Our results demonstrate a fundamental 

difference in the way GABAergic and glutamatergic neurons depend on glia for the 

establishment of synaptic transmission, a finding that has important implications for our 

understanding of how neuronal networks develop. 
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Introduction (395 Words) 

 

Neurons depend on glia, in particular astrocytes, for a number of vital functions related 

to their development and maintenance. Not only do they provide mechanical support 

and play a critical role in maintaining homeostasis, by regulating ion and transmitter 

levels in the interstitial space (Simard and Nedergaard 2004; Witcher et al. 2007), they 

also promote the growth and survival of neurons by supplying trophic factors, nutrients 

and valuable energy substrates (Lindsay 1979; Banker 1980; Le Roux and Reh 1994; 

Magistretti 2006; Bélanger et al. 2011). Thus, support provided by glial cells is widely 

considered to be essential for neuron development and survival.  

Nevertheless, it is possible to maintain dissociated cultures of neurons under 

glial-free conditions (Pfrieger and Barres 1997; Ullian et al. 2001, 2004). Indeed, these 

isolated neuronal cultures have yielded important insights into the intrinsic and extrinsic 

developmental programs of excitatory networks. Importantly, results from recent studies 

suggest that the formation and function of glutamatergic synapses critically depend on 

astrocyte support (Christopherson et al. 2005; Eroglu et al. 2009; Kucukdereli et al. 

2011; Allen et al. 2012). While the availability of methods to purify glutamatergic neurons 

have existed for some time, they have been only partially successful when used to purify 

GABAergic neurons (Baptista et al. 1994; Berghuis et al. 2004; Buard et al. 2010). Thus, 

a lack of effective protocols for producing suitably pure GABAergic cell cultures has led 

to a disparity in our understanding of how these two major neuronal subtypes develop. 

To address this problem, we have developed methods for obtaining and culturing 

highly pure GABAergic neurons in vitro, allowing their intrinsic developmental program to 
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be studied in detail. To generate cultures of purified GABAergic neurons we employed 

fluorescence activated cell (FAC) sorting to isolate fluorescently-labelled cells from 

neocortical and hippocampal brain regions of transgenic rats, which were engineered to 

express the yellow fluorescent protein “Venus” specifically in GABAergic neurons 

(Uematsu et al. 2008). We then performed a detailed analysis of the survival, 

morphological and electrophysiological development, and synaptic properties of these 

purified GABAergic cell cultures. 

Our results reveal a fundamental difference in the way GABAergic and 

glutamatergic neurons establish synaptic transmission. While both cell types depend on 

glial secreted signals for their growth and survival, only glutamatergic neurons depend 

on these signals to establish synaptic transmission. In contrast, purified GABAergic 

neurons establish functional synaptic transmission in the absence of glia.  
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Materials and methods (2531 words) 

 

Transgenic animals 

VGAT-Venus-A Wistar rats selectively express a yellow fluorescent protein variant 

(Venus) in >95% of cortical GABAergic neurons (Uematsu 2008). NexCre mice 

selectively express Cre recombinase in cortical glutamatergic neurons (Goebbels 2006). 

Ai9 mice have a loxP-flanked STOP cassette preventing the transcription of the 

downstream red fluorescent protein variant (tdTomato, Madisen 2010). To fluorescently 

label glutamatergic neurons, homozygous NexCre females (C57BL/6) were crossed with 

hemizygous Ai9 male mice (C57BL/6J) to produce NexCre;Ai9 offspring in which 

postmitotic cortical glutamatergic neurons express tdTomato. All experiments were 

performed in accordance with institutional (Charité - Universitätsmedizin Berlin; 

University of Freiburg, Freiburg, Germany), local (LaGeSo, Berlin, T 0215/11) and 

national guidelines (German Animal Welfare Act; ASPA, United Kingdom Home Office). 

Animals were housed and cared for at the central animal facility, Charité - 

Universitätsmedizin Berlin. 

 

Cell culture and fluorescent activated cell (FAC) sorting 

Dissociated cells were prepared from neocortical-hippocampal brain regions of individual 

VGAT-Venus-A Wistar rats or NexCre;Ai9 mice (0 - 3 days postnatal). Under sterile 

conditions, cortical and hippocampal regions were removed and transferred to chilled 

(4°C) cell culture buffer. The tissue was then chopped several times before being 

incubated at 37°C for 25 minutes in 5 ml cell culture buffer (cell culture buffer: 116 mM 

NaCl, 5.4 mM KCl, 26 mM NaHCO3, 1.3 mM NaH2PO4, 1 mM MgSO4.7H2O, 1 mM 
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CaCl2.2H2O, 0.5 mM EDTA.2Na.2H2O and 25 mM D-glucose, pH = 7.4) containing 

1.5 mg/ml Papain (Sigma, St. Louis, USA). The Papain-digested tissue was then 

triturated with a fine-tip Pasteur pipette (Neolab, Heidelberg, Germany) in three separate 

15 ml falcon tubes, each containing 4 ml of 10 mg/ml bovine serum albumin (BSA) 

(Sigma), dissolved in cell culture buffer. Dissociated cells were then pooled into a single 

12 ml solution, before being centrifuged at 3000 RPM for 3 minutes. The resultant cell 

pellet was re-suspended in 3 ml complete HA-LF medium for Venus-sorting and 2 ml 

complete HA-LF for tdTomato-sorting (complete HA-LF medium: Hibernate-A low 

fluorescence medium; BrainBits, Springfield, USA), supplemented with with B27 (at 1X 

concentration), GlutaMAX (at 1X concentration) and Penicillin-Streptomycin (100 U/ml) 

(all from Gibco, Waltham, USA). To remove large cell clumps cells were passed through 

a 30 µm Partec CellTrics filter (Sysmex, Kobe, Japan) into polypropylene round bottom 

sample tubes (BD, Franklin Lakes, USA). 

 

Fluorescent neurons were FAC sorted using a BD Influx cell sorter (BD biosciences, San 

Jose, USA). The fluorescent reporter proteins Venus and tdTomato were excited using a 

blue (488 nm wavelength) or green (531 nm wavelength) laser, respectively. Emitted 

light was detected through 530/40 and 575/30 emission filter sets. Cells were sorted 

through a 100 µm nozzle at 15 psi sheath pressure at a rate of 5000 – 6000 events per 

second. Venus-positive cells were collected at a rate of ≈320 events per second, up to 

1.7x106 cells per animal. TdTomato cells were collected at a rate of ≈420 cells per 

second, up to 8x105 cells per animal. Sorted cells were collected in BSA coated 

polystyrene round bottom tubes. Collections tubes were coated in 200 mg/ml BSA 

dissolved in complete HA-LF medium; excess BSA solution was removed and replaced 
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with 500 µl complete HA-LF medium before sorting. During FAC sorting cells were 

maintained at 4°C. 

For the culture of FAC sorted cells, unsorted or positive sorted cell samples were 

collected and centrifuged at 3000 RPM for 3 minutes. Resultant cell pellets were then re-

suspended in complete NBA medium (37°C) (complete NBA medium: Neural basal-A 

medium; Gibco) supplemented with B27 (at 1X concentration), GlutaMAX (at 1X 

concentration) and Penicillin-Streptomycin (100 U/ml) (Gibco) and cell densities were 

adjusted to 1000 fluorescent cells/µl. Cells were plated at 1000 cells/µl in a 10 µl droplet. 

This cell density was chosen because higher cell densities resulted in more cell 

“clumping” and reduced the overall general quality of the cultures at or around DIV 14, 

without improving the long-term survival of the cultures (data not shown). The relative 

proportion of Venus-positive cells within the overall unsorted cell population was 

estimated by FAC sorting to be between 15-20%. In experiments where Venus and 

tdTomato cells were mixed, Venus positive cells were adjusted to 1000 cells/µl and 

tdTomato cells were adjusted to 4000 cells/µl, in the same solution. Cells were applied 

as a 10 µl droplet to 12 mm, PLL-coated coverslips (Menzel-Gläzer; PLL solution: 20 

µg/ml Poly-L-Lysine hydrobromide (Sigma, St. Louis, USA) dissolved in sterile water 

(Ampuwa, Bad Homburg, Germany). To facilitate cell adherence, coverslips were 

incubated at 37°C / 5% CO2, in a 24 well plate for 1 hour, before addition of 500 µl 

complete NBA medium. Cells were fed weekly by removing 100 µl of conditioned media 

and replacing it with 200 µl of fresh complete NBA medium. In these “mixed” co-cultures, 

both glutamatergic and GABAergic synapses were formed between GABAergic and 
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glutamatergic neurons in the presence of glia, indicating that species differences are not 

a barrier to synapse formation (Fig. 5). 

Glial cultures were prepared from brains of VGAT-Venus-A Wistar rat pups (2-5 days 

postnatal). Two animals provided sufficient cells for culture in a single PLL-coated six 

well plate. Under sterile conditions, neocortical and hippocampal regions were removed 

from excised whole brains and transferred to a 15 ml falcon tube containing 5 ml chilled 

(4°C) Hank's Balanced Salt Solution (HBSS) (Biochrom, Berlin, Germany). Tissue was 

then triturated several times using a 1 ml Pasteur pipette (Alpha laboratories, Eastleigh, 

UK), before vigorous trituration using a fine-tip Pasteur pipette. Dissociated cells were 

then centrifuged at 800 RPM for 5 minutes, before the resultant cell pellet was re-

suspended in 5 ml pre-warmed (37°C) complete ACM (complete ACM: Opti-MEM 

reduced serum medium with GlutaMAX supplement, 10% fetal bovine serum (Biochrom, 

Berlin, Germany) and Penicillin-Streptomycin (100 U/ml). Cells were again vigorously 

triturated using a fine-tip Pasteur pipette, before further centrifugation at 800 RPM for 5 

minutes. The resultant cell pellet was re-suspended in 12 ml pre-warmed (37°C) 

complete ACM. Dissociated cells were transferred to a PLL-coated six well plate, at 2 ml 

cell solution/well. Cell cultures were fed weekly by total replacement of the cell culture 

medium with fresh complete ACM. Unless otherwise stated, imaging and 

electrophysiology experiments were performed between 12 and 16 DIV. 

 

For cell detachment and passage, confluent glial cell cultures were washed twice with 

DPBS (no calcium, no magnesium) (Gibco) before application of 1 ml/well Trypsin/EDTA 

(0.25%/0.02% wt/vol) (Biochrom) solution and incubated at 37°C / 5% CO2 for 3 – 
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5 minutes. Detached cells from two wells were pooled together and gently dissociated 

using a fine-tip Pasteur pipette, before centrifugation at 3000 RPM for 3 minutes. The 

resultant cell pellet was re-suspended in 12 ml complete ACM. Passaged cells were 

transferred to a PLL-coated six well plate, at 2 ml cells/well. Cells reached confluence 

after approximately seven days. To culture glial cells on cell culture inserts, confluent 

glial cells were detached by trypsin digestion (as above) before centrifugation at 3000 

RPM for 3 minutes; the detached cells were then re-suspended in prewarmed (37°C) 

complete NBA medium. Cell densities were estimated using a haemocytometer. Glial 

cells were seeded onto 0.4 μm transparent PET membrane culture inserts (24 well plate 

inserts, Falcon, Corning, USA) at 40,000 cells/insert, by applying a 500 µl droplet of 

cells. Membranes were then transferred to 500 µl complete NBA medium in a 24 well 

plate and incubated at 37°C / 5% CO2 for up to 24 hours before use. Inserts were then 

transferred to a 24 well plate containing adhered positive sorted neurons. Excess media 

was removed from the cell culture inserts, leaving the surface of the insert only slightly 

submerged. Glial-neuron co-cultures were fed weekly by removal of 100 µl conditioned 

media and replacement with 200 µl of fresh complete NBA medium. As demonstrated 

previously, rat glial cells are suitable support cells for neurons derived from either mice 

or rats (Kaech and Banker, 2006). 

 

Electrophysiology 

For electrophysiological recordings cell cultures were placed in a submerged chamber 

and superfused with artificial cerebrospinal fluid (ACSF: 125 mM NaCl, 25 mM NaHCO3, 

2.5 mM KCl, 1.25 mM NaH2PO4, 2 mM CaCl2, 1 mM MgCl2 and 25 mM D-glucose; 

equilibrated with 95% O2 and 5% CO2 gas mixture at 30-32°C). Recording pipettes were 
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pulled from thick-walled borosilicate glass tubing (outer diameter = 2 mm, inner diameter 

= 1 mm) with a horizontal pipette puller (P-97, Sutter Instruments, Novato, USA). 

Pipettes were filled with an internal solution containing: 130 mM potassium gluconate, 

10 mM EGTA, 10 mM KCl, 10 mM HEPES, 2 mM MgCl2, 2 mM NA2ATP, 0.3 mM 

Na2GTP, 1 mM Na2Creatine and 0.1% Biocytin (wt/vol) (Molecular Probes, Eugene, 

USA); pH was adjusted to 7.3 with KOH and osmolarity adjusted to 300 ± 2 mOsm. 

Filled pipettes had resistances between 2-10 MΩ. Voltage-clamp and current-clamp 

experiments were performed using a Multiclamp 700B amplifier under the control of the 

Axon MultiClamp Commander software V2.1.0.16 (Molecular Devices, Sunnyvale, USA). 

Signals were low pass-filtered at 6 kHz and digitized at a sampling rate of 20 kHz using 

a USB-6259 AD-converter interface (National Instruments, Austin, USA). Data 

acquisition and stimulus protocols were made using WinWCP V4.5.2. (courtesy of John 

Dempster, University of Strathclyde). Pipette capacitance and series resistance 

compensation (bridge balance) were applied during current-clamp recordings. Only cells 

with series resistances <30 MΩ were analyzed; recordings during which series 

resistances changed >20% were excluded from analysis. 

In current-clamp mode, hyperpolarizing voltage responses, action potential (AP) 

discharge and discharge frequencies were tested by a series of current pulses (500 ms 

duration, -200 pA starting amplitude and 20 pA increments). Neurons not firing multiple 

action potentials were excluded from current-frequency analysis. To determine 

spontaneous AP firing frequency, cells were recorded at their resting membrane 

potential for 60 seconds. Despite being able to fire action potentials in response to 

current injections, the spontaneous AP firing frequency in all groups was low (Mean 

spontaneous AP firing frequencies were: Unsorted: 0.05 +/- 0.018 Hz [36 cells, 7 
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cultures analyzed]; Positive sort: 0.02 +/- 0.018 Hz [46 cells, 11 cultures analyzed]; Glial 

support: 0.06 +/- 0.050 Hz [35 cells, 6 cultures analyzed]). The frequency of events was 

significantly higher in unsorted neurons vs. positive sorted neurons (P < 0.01), all other 

comparisons were not significant. AP and after hyperpolarization (AHP) amplitudes were 

measured from the AP threshold and their duration was measured at half-height (half-

width). AP threshold was taken as deflection point at the foot of the AP, where the first 

derivative of the voltage signal exceeded 20 mV/ms (Supplementary fig. 2e). 

In voltage-clamp mode, series resistance, capacitance and input resistance were 

estimated from the current response to a -5 mV voltage pulse of 20 ms duration (100 

repetitions). Capacitance was estimated by determining the integral of the capacitive 

transient (as described by Golowasch et al, 2009). To determine the frequency and 

amplitude of spontaneously-occurring PSCs, recordings were made at 0 mV, -50 mV or -

70 mV for 60 seconds. Spontaneous synaptic events were extracted by template 

matching (Clements and Bekkers, 1997); events smaller than three standard deviations 

of the baseline noise were ignored. Series resistance in these voltage-clamp recordings 

was uncorrected. IPSC amplitude and kinetic parameters derived from our voltage-

clamp recordings are likely to be influenced by limited space clamp and differences in 

the electrotonic structure of the cells in the different culture types (Williams and Mitchell, 

2008).  

 

To determine the connectivity between GABAergic neurons, cell bodies of presynaptic 

GABAergic neurons, which were located <400 µm from the recorded cell, were 

stimulated by an extracellular monopolar electrode (stimulus amplitude range: 20 – 

320 A; pulse width: 0.1 ms; frequency: 0.1 Hz). To determine the mean amplitude of 
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evoked responses, ≥12 stimulation repetitions were collected and analyzed. To measure 

evoked IPSCs, the postsynaptic GABAergic neuron was maintained at a 0 mV holding 

potential. All data was analyzed using Stimfit V0.14.7 (Guzman et al, 2014; 

https://github.com/neurodroid/stimfit/wiki/Stimfit) on Windows 7. 

 

Immunocytochemistry 

Cell cultures were fixed for 15 minutes in 4% paraformaldehyde (PFA) in 0.1 M 

phosphate buffer solution (pH 7.4). Cells were then washed at room temperature for 

10 minutes in 0.1 M PB before two subsequent 10 minute washes in phosphate buffered 

saline (PBS: 154 mM NaCl in 0.025 M PB). Primary antibodies were applied overnight at 

4°C in PBS containing 0.1% Triton-X-100 (Serva, Heidelberg, Germany). Three 

10 minute PBS washes removed primary antibodies before secondary antibody 

application. Secondary antibodies were applied overnight at 4°C in PBS containing 0.1% 

Triton-X-100. Three 10 minute PBS washes removed secondary antibodies before 

coverslips were mounted onto glass slides in Fluoromount-G mounting medium 

(Southern Biotech, Birmingham, USA) and sealed with varnish. Antibody incubation and 

washing steps were performed on a 3D orbital shaker. 

 

The following primary antibodies were used: Mouse anti-GFP (1:1000, NeuroMab, 

Davis, USA), Rabbit anti-GFP (1:1000, Molecular Probes), Mouse anti-NeuN (1:1000, 

Chemicon, Billerica, USA), Mouse anti GFAP (1:1000, Sigma, St. Louis, USA), Mouse 

anti-Gephyrin (1:1000, SySy, Goettingen, Germany) and Rabbit anti-VGAT (1:500, 

SySy). The following secondary antibodies, all raised in goat, were used: Alexa Fluor 

488 anti-Mouse (1:1000, Molecular Probes), Alexa Fluor 488 anti-Rabbit (1:1000, 

https://github.com/neurodroid/stimfit/wiki/Stimfit
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Jackson, West Grove, USA), Alexa Fluor 546 anti-Mouse (1:1000, Molecular Probes) 

and Alexa Fluor 647 anti-Rabbit (1:1000, Jackson). In addition, Streptavidin-Alexa Fluor 

647 conjugate (1:1000, Molecular Probes) was used to visualize biocytin-filled cells. To 

test for the survival versus loss of cells in some experiments, DRAQ7 (1:100, BioStatus, 

Shepshed, UK) was added to the final PBS washing step.  

 

 

Imaging 

Confocal images were collected on an upright microscope (BX61, Olympus, Tokyo, 

Japan). Endogenous Venus-expressing neurons or Alexa Fluor-488 secondary 

antibodies were excited at 488 nm by a multi-line Argon laser; a short-pass dichroic 

mirror (SDM, 560) directed emitted light through a barrier filter (BA, 505-525). TdTomato 

expressing neurons or Alexa Fluor-546 secondary antibodies were excited at 543 nm by 

a Helium-Neon (G) laser (emission path: SDM 560, BA 560-620). Alexa Fluor-647 

secondary antibodies were excited at 635 nm by a diode laser (emission path: BA 655-

755). Confocal images were captured using: x4 (0.16 N.A., 13 mm W.D.), x20 (0.75 

N.A., 0.6 mm W.D.), x30 (silicon oil-immersion, 1.05 N.A., 0.8 mm W.D.) or x60 

objectives (silicon oil-immersion, 1.35 N.A., 0.15 mm W.D., all from Olympus). Images 

were acquired using FluoView FV1000 V4.2 software (Olympus). 

 

To assess the proportion of Venus-positive neurons in unsorted or positive sorted 

cultures, fixed cell cultures were immunolabeled for GFP and NeuN and imaged with a 

x4 objective (0.78 µm X/Y-resolution). A single region from the center of each coverslip 

was captured for analysis. For axonal and dendritic reconstructions, fixed biocytin-filled 
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cells were visualized with Streptavidin-647. For axonal reconstructions, cells were 

imaged with a x30 or x60 objective (at 0.2 - 0.4 µm X/Y-resolution, 0.5 - 0.8 µm Z-

resolution). For dendritic reconstructions, cells were imaged with x20, x30 or x60 

objectives (0.2-0.4 µm X/Y-resolution, 0.8 µm Z-steps). 

 

During whole-cell patch clamp experiments, cell cultures were imaged with infrared (IR) 

oblique illumination (780 nm excitation LED, Scientifica, Uckfield, UK) through a x20 

water-immersion objective (1.0 N.A., 2 mm W.D., Olympus) in combination with a c-

mount video magnification changer and Dodt gradient contrast (DGC, Luigs and 

Neumann, Ratingen, Germany). Images were captured with a Retiga 2000R CCD 

camera (QImaging, Surrey, Canada) using Micro-Manager software V1.47F7 (Edelstein 

2010). Venus- or tdTomato-expressing neurons were excited at 500 nm or 550 nm 

wavelengths respectively, using LED illumination (CoolLED, Andover, UK). YFP (F36-

528, AHF) and Cy3/Trit-C (F46-016) filter sets were used to distinguish between Venus 

and tdTomato signals. Some tdTomato “bleed through” signal was observed in the YFP 

filter set. In figure 5b, to aid with visualization of Venus positive cells in mixed cultures, 

this tdTomato signal was subtracted from the YFP channel using the Cy3/Trit-C channel 

as a reference. Offline image subtraction was performed using the process>image 

calculator tool in the FIJI distribution of ImageJ software (Schneider 2012; http://fiji.sc). 

 

Image analysis 

Neuronal reconstructions were made in FIJI. Individual confocal image stacks of 

fluorescently-labeled biocytin-filled neurons were stitched together using the plugin 3D 

stitching (Preibisch 2009). Filled neurons were then reconstructed using the plugin 
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Simple Neurite Tracer (Longair 2011). A morphological analysis of the reconstructed 

cells was performed using L-Measure (Scorscioni 2008). Quantification of the proportion 

of Venus-positive neurons was performed in FIJI. Manual cell counts of Venus-positive 

and NeuN-positive cells were made using the "multipoint tool" and saved using the 

plugin ROI manager. 

 

Statistics 

In all figures, error bars represent the S.E.M. Measurements made from individual cells 

are shown superimposed on bar charts as open circles. The number of cells recorded is 

shown in brackets below the bar charts. Significance indicated: (*) = P<0.05, (**) = 

P<0.01 and (***) = P<0.001. A Wilcoxon matched-pairs nonparametric test was used to 

assess significant differences for pairwise comparisons; a Mann-Whitney nonparametric 

test was performed to assess for a difference between two independent samples; a 

Kruskal-Wallis nonparametric test, with Dunn’s posttest, was used to assess for 

significant changes between multiple groups. A Fisher’s exact test was performed to test 

for differences in connectivity between culture types. All graphs and statistics were 

performed and prepared in Graph Pad Prism V5.0.1. 
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Results (2905 words) 

 

Establishing purified GABAergic cell cultures 

To establish cell cultures of purified GABAergic neurons, we used fluorescent activated 

cell (FAC) sorting to collect fluorescent Venus-positive cells from the neocortex and 

hippocampus of VGAT-Venus-A rats (see Methods; Fig. 1a, b and c). To assess the 

ability of FAC sorting to generate purified GABAergic cell cultures, we estimated the 

proportion of GABAergic neurons in positive sorted cell cultures, immunolabeled for the 

Neuronal Nuclei marker (NeuN, Fig. 1d), a Fox-1 protein found in cortical neurons (Kim 

et al 2009, Mullen et al. 1992), after 2 weeks (12 - 16 DIV) and compared this to 

standard unsorted primary neocortical neuronal cultures. This analysis revealed that in 

unsorted cultures Venus-positive cells represented 27 ± 0.4% the total neuron cell 

population [6 coverslips, 3 culture batches analyzed], while in positive sorted cultures 

Venus-positive cells comprised 99 ± 0.4% of all neurons (10 coverslips, 6 cultures 

analyzed, P < 0.0001, Fig. 1e), demonstrating the high efficiency and purity achieved by 

FAC sorting. At this time point, the expression levels of neurochemical markers such as 

parvalbumin (PV), somatostatin (SOM) and cholecystokinin (CCK) were low or absent in 

both unsorted and positive sorted cultures (data not shown), precluding a 

characterization of interneuron subtypes in these cultures.  

To check for possible astrocyte contamination we also immunolabeled unsorted 

and positive sorted cell cultures for the astrocyte specific protein Glial Fibrillary Acid 

Protein (GFAP; Fig. 1f). This analysis confirmed the absence of astrocytes in positive 

sorted cultures [12 coverslips, 3 cultures analyzed]. Taken together this data 
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demonstrates that purified GABAergic neurons are viable to at least 16 DIV, despite the 

absence of other neuron and glial cell types.  

 

Limited survival of purified GABAergic neurons is improved by glial support 

Having first established purified GABAergic cell cultures, we next examined the ability of 

these cultures to grow over extended periods (Fig. 2a and b). First, we compared the 

survival of GABAergic neurons in positive sorted and unsorted cell cultures by plating 

cells at equal densities (1x104 Venus-positive cells / coverslip) and then assessing their 

survival up to DIV 42 (Fig. 2b). This analysis revealed that unlike unsorted neurons, 

positive sorted neurons had only limited survival beyond 16 DIV, and were incapable of 

growing to DIV 42. To test whether positive sorted neurons lack certain essential factors 

that originate from glial cells, we grew purified GABAergic neurons and glial cells in a 

non-contact co-culture arrangement and assessed their survival. Indeed, this co-culture 

arrangement led to a marked improvement in the survival of neurons, with supported 

cells being able to grow beyond 42 DIV (Fig. 2b). These results therefore underpin the 

notion that glial secreted factors directly improve the long-term survival of GABAergic 

neurons.  

 

Reduced growth and morphological development of purified GABAergic neurons 

is recovered by glial support 

To examine the ability of purified GABAergic neurons to grow and develop in cell culture, 

we intracellularly-filled and reconstructed Venus-immunolabeled neurons from positive 

sorted and unsorted cell cultures and compared their neuroanatomical characteristics 

(Fig. 2c). A morphometric analysis of unsorted and positive sorted neuronal 
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reconstructions revealed that positive sorted neurons have lower total lengths of both 

axons (unsorted 22831 ± 4258 µm [8 cells, 3 cultures analyzed] vs. positive sort 5469 

± 840 µm [9 cells, 3 cultures analyzed], P <0.05) and dendrites (unsorted 3627 ± 568.3 

µm [18 cells, 3 cultures analyzed] vs. positive sort 870 ± 120 µm [16 cells, 3 cultures 

analyzed], P < 0.001, Fig. 2d, e). A dendritic Sholl analysis further demonstrated that 

purified GABAergic neurons were not only smaller than unsorted neurons, but also 

notably less complex in their morphology, having significantly fewer and shorter 

branched dendrites (unsorted vs. positive sort; two-way ANOVA, P < 0.0001, Fig. 2f). 

Additional analysis of dendritic segments by branch order can be found in 

Supplementary Fig. 1. Taken together, these data, indicate that purified GABAergic 

neurons are considerably smaller and less developed than unsorted neurons.  

To test whether glial cells support the morphological maturation of purified 

GABAergic neurons, we repeated the above morphometric analysis in glial supported 

cultures. This analysis revealed that glial supported neurons had greater axon lengths 

(37215 ± 9229 µm [6 cells, 4 cultures analyzed], P < 0.01) and dendrite lengths (2277 

± 321.0 µm [16 cells, 5 cultures analyzed], P < 0.01) when compared to positive sorted 

neurons, and possessed a complex and more elaborate dendritic tree (positive sort vs. 

glial support; two-way ANOVA, P < 0.0001, Fig. 2d-f). However, although similar, glial 

supported neurons were still less complex than unsorted neurons (unsorted vs. glial 

support; two-way ANOVA, P < 0.0001), a possible indication that factors other than glia-

secreted signals may be required for the normal morphological development of 

GABAergic neurons.  

Overall, these data indicate that while purified GABAergic neurons can develop a 

neuron-like morphology in isolation, glial-secreted signals play an important role in their 
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neurite outgrowth, development and maintenance.  

 

Development of intrinsic electrophysiological properties of purified GABAergic 

neurons 

To examine the consequences of purification on the passive and active membrane 

properties of GABAergic neurons, we performed whole-cell patch-clamp recordings from 

identified Venus-positive cells in each culture configuration (Fig. 3a). We found that 

positive sorted neurons maintained a resting membrane potential (-55.6 ± 1.4 mV [85 

cells, 13 cultures analyzed]) that was slightly more depolarized, but not significantly 

different from unsorted neurons (-60 ± 0.89 mV [74 cells, 10 cultures analyzed], P > 

0.05, Fig. 3b). Furthermore, in response to long depolarizing current pulses, purified 

neurons were capable of firing repetitive trains of action potentials. Consistent with their 

smaller size (Fig. 2c-f), purified GABAergic neurons possessed a markedly reduced 

membrane capacitance (50.8 ± 2.5 pF [80 cells, 13 cultures analyzed]) when compared 

to unsorted neurons (110.5 ± 6.3 pF [73 cells, 10 cultures analyzed], P < 0.0001, Fig. 

3c). Surprisingly however, despite their small size, we observed no significant difference 

in the input resistance of positive sorted and unsorted neurons (unsorted 170.6 ± 8.9 

MΩ [73 cells, 10 cultures analyzed] vs. positive sort 197.2 ± 10.7 MΩ [80 cells, 13 

cultures analyzed], P > 0.05, Fig. 3d). These results therefore suggest that the 

membranes of purified GABAergic neurons may have a lower specific resistance (i.e. 

higher conductance) than in unsorted neurons, plausibly reflecting the presence of more 

open “leak” ion channels. 

To examine the influence of glial secreted factors on the electrophysiological 

properties of purified GABAergic neurons, we performed the above whole-cell patch-
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clamp experiments on glial supported cultures. We observed no difference in the resting 

membrane potential of glial supported neurons (-62 ± 1.6 mV, [38 cells, 6 cultures 

analyzed]) relative to unsorted neurons (P > 0.05), but did observe a slight 

hyperpolarization of their resting membrane potential relative to positive sorted neurons 

(P < 0.05). We found that glial-supported neurons had a markedly increased membrane 

capacitance (100.9 ± 5.7 pF [37 cells, 6 cultures analyzed]) when compared to positive 

sorted neurons (P < 0.0001, Fig. 3c), but were similar to unsorted neurons (P > 0.05), 

which is in good agreement with our morphometric analysis (Fig. 2c). Interestingly 

however, glial supported neurons had significantly lower input resistances (91 ± 6.9 MΩ 

[37 cells, 6 cultures analyzed]) when compared to both unsorted (P < 0.0001) and 

positive sorted (P < 0.0001) neurons (Fig. 3d). These data indicate that the membranes 

of glial supported purified GABAergic neurons, similar to purified GABAergic neurons, 

have a higher conductance than unsorted neurons. 

To understand how these altered membrane properties influence AP firing, we 

injected incremental current pulses and recorded AP firing frequency from cells in each 

culture condition (Fig. 3e). We found that at lower current-pulse amplitudes (0 - 340 pA) 

positive sorted neurons and unsorted neurons had surprisingly similar AP firing rates 

(two-way ANOVA, P > 0.05). These firing rates were markedly higher than in glial 

supported neurons (Fig. 3e). Analysis of the current-pulse amplitude required to evoke 

APs (rheobase), revealed that positive sorted neurons and unsorted neurons were 

similarly excitable (132 ± 11 pA [75 cells, 10 cultures analyzed] and 137 ± 13 pA [78 

cells, 13 cultures analyzed], respectively, P > 0.05), but that glial supported neurons 

required approximately 2.5x higher stimulus intensity to begin to generate APs (340 ± 36 

pA [40 cells, 6 cultures analyzed], P < 0.0001, Supplementary Fig. 2f). 
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To investigate this further, we analyzed the kinetics of single APs evoked at or 

near threshold. We found that the maximal AP rise rate (mV/ms) in unsorted neurons 

was significantly higher than in either positive sorted or glial supported neurons 

(unsorted 283.7 ± 13.0 mV/ms [77 cells, 10 cultures analyzed] vs. positive sort 191.3 ± 

11.6 mV/ms [81 cells, 13 cultures analyzed] vs. glial support 200.2 ± 15.19 mV/ms [45 

cells, 6 cultures analyzed], P < 0.0001, Supplementary Fig. 2b), as was the peak AP 

amplitude from threshold (unsorted 63.6 ± 1.27 mV [78 cells, 10 cultures analyzed] vs. 

positive sort 53.7 ± 1.4 mV [81 cells, 13 cultures analyzed] vs. glial support 53.2 ± 2.07 

mV [45 cells, 6 cultures analyzed], P < 0.0001, Supplementary Fig. 2a). However, the 

maximal decay rate (unsorted 91.0 ± 4.0 mV/ms [76 cells, 10 cultures analyzed] vs. 

positive sort 80.4 ± 3.6 mV/ms [80 cells, 10 cultures analyzed] vs. glial support 100.2 ± 

9.6 mV/ms [44 cells, 6 cultures analyzed], P > 0.05, Supplementary Fig. 2c) and AP 

half-width (unsorted 0.76 ± 0.02 ms [78 cells, 10 cultures analyzed] vs. positive sort 0.84 

± 0.04 ms [81 cells, 13 cultures analyzed] vs. glial support 0.80 ± 0.06 ms [45 cells, 6 

cultures analyzed], P > 0.05, Supplementary Fig. 2d) remained unchanged. Similarly, 

afterhyperpolarization (AHP) amplitude and kinetics following single APs were not 

significantly different in the three culture types either (Supplementary Fig. 2g or h). 

Taken together, these results suggest that sodium currents, but not potassium currents, 

are significantly reduced and/or shunted in positive sorted and glial supported neurons.  

 

GABAergic synaptic transmission is established in purified cell cultures without 

glia 

To determine the ability of purified GABAergic neurons to form functional synaptic 

connections and to assess the influence of glia on the establishment of spontaneous 
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synaptic activity we performed voltage-clamp recordings from GABAergic neurons in 

unsorted, positive sorted and glial supported cell cultures. These recordings revealed 

the presence of large numbers of spontaneous IPSCs in positive sorted cultures, albeit 

with lower amplitudes, when compared to unsorted and glial supported cultures (Fig. 4a, 

b and Supplementary Fig. 3g). Immunocytochemistry for the presynaptic and 

postsynaptic markers, VGAT and gephyrin, respectively, confirmed the presence of 

GABAergic synaptic contacts among purified GABAergic neurons (see Supplementary 

Fig. 3a). Importantly, IPSCs were abolished in the presence of the selective GABAA 

receptor antagonist gabazine (SR-95531, 10 µM; Supplementary Fig. 3b,c and d), 

leaving no residual glutamatergic activity (Supplementary Fig. 3e and f). Further 

analysis confirmed that the amplitudes of IPSCs in unsorted cultures and glial supported 

cultures were significantly larger than in positive sorted cultures (unsorted 125.1 

± 19.7 pA [25 cells, 5 cultures analyzed] vs. positive sort 57.6 ± 3.7 pA [36 cells, 5 

cultures analyzed] vs. glial support 154.8 ± 34.4 pA [18 cells, 3 cultures analyzed], P < 

0.05, Fig. 4b). The mean frequency of synaptic events recorded from GABAergic 

neurons in all groups was: unsorted 2.7 ± 0.64 Hz [25 cells, 5 cultures analyzed], 

positive sort 3.7 ± 0.56 Hz [36 cells, 5 cultures analyzed] and glial support 1.9 ± 0.38 Hz 

[18 cells, 3 cultures analyzed], Statistics: Kruskal-Wallis test, P = 0.0387; Dunns multiple 

comparison test, P > 0.05 for all comparisons). Interestingly, the high frequency of 

synaptic events observed in cultures of purified GABAergic neurons indicates that there 

is no essential requirement for glia or glial derived factors for the establishment of 

functional synaptic transmission.  

Given the high frequency and low amplitude of synaptic events observed in 

positive sorted cultures (Fig. 4a and b) we speculated that this might be the result of 
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neurons receiving large amounts miniature synaptic events (that is, AP-independent 

synaptic events, mediated by single vesicle release). To test this hypothesis we bath 

applied the voltage gated sodium channel blocker tetrodotoxin (TTX, 100 nM), in order 

to abolish APs in positive sorted and unsorted cultures (Supplementary Fig. 3g). As 

predicted, TTX application reduced the amplitude of IPSCs in unsorted cultures, (control 

135.5 ± 23.10 pA vs. TTX 46.5 ± 2.81 pA [13 cells, 3 cultures analyzed], P < 0.001), but 

not in positive sorted cultures (control 49.6 ± 5.12 pA vs. TTX 48.4 ± 6.66 pA [12 cells, 3 

cultures analyzed], P = 0.79, Supplementary Fig. 3h). In addition, TTX application also 

reduced the frequency of IPSCs in unsorted cultures (control 2.8 ± 0.92 Hz vs. TTX 1.6 

± 0.67 Hz [15 cells, 3 cultures analyzed], P < 0.0001), but not in positive sorted cultures 

(control 5.2 ± 1.27Hz vs. TTX 4.8 ± 1.28 Hz [12 cells, 3 cultures analyzed], P = 0.42, 

Supplementary Fig. 3i). Interestingly, while the resultant amplitude of mIPSCs in both 

groups was comparable (P = 0.61, Supplementary Fig. 3h), positive sorted neurons 

received approximately 3-fold more mIPSCs than unsorted neurons (P = 0.0008, 

Supplementary Fig. 3i). An analysis of the kinetics of synaptic events before and after 

TTX application is included in Supplementary Fig. 3j, k and l. Taken together, these 

results suggest that mIPSCs are the dominant form of synaptic transmission between 

purified GABAergic neurons. 

 The high frequency of AP-independent (miniature) IPSCs recorded in positive 

sorted GABAergic cultures raised the question of whether these cells were also capable 

of producing evoked, action AP-dependent neurotransmitter release. To test this, we 

performed whole-cell recordings on Venus-positive neurons, in each culture type, and 

recorded evoked IPSCs (eIPSCs), by minimally stimulating neighboring GABAergic 

neurons (stimulated cells were <400 µm away from the recorded neuron, Fig. 4d). Using 
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this stimulation protocol we were able to evoke synaptic responses in 92% of all 

unsorted GABAergic neurons tested, significantly higher than in positive sorted cultures 

(49%, P > 0.001). Notably, glial support improved the connectivity between purified 

GABAergic neurons to 95% (P > 0.001), to a level similar to that in unsorted cultures (P 

> 0.05, Fig. 4f). Interestingly, despite apparent differences in connectivity, these 

experiments revealed that IPSCs could be evoked at comparable amplitudes in all 

culture types (unsorted 513 ± 72 pA [25 cells, 3 cultures analyzed] vs. positive sort 524 ± 

94 pA [18 cells, 3 cultures analyzed] vs. glial support 529 ± 82 pA [28 cells, 3 cultures 

analyzed], P > 0.05, Fig. 4e). In addition, they also revealed that short term plasticity, in 

the form of paired pulse depression, was similar between all groups (P > 0.05, 

Supplementary Fig. 3m,n and o). These results, thus, demonstrate that although 

spontaneous AP-mediated synaptic transmission is rare between purified GABAergic 

neurons, these cells are nevertheless capable of producing evoked neurotransmitter 

release.  

 

Mixed GABAergic and glutamatergic neuronal networks show only GABAergic 

transmission in the absence of glia 

Having ascertained that purified GABAergic neurons were able to establish mutual 

synaptic contacts in the absence of glia, we next tested whether they were also capable 

of establishing synapses onto glutamatergic neurons. Therefore, we first obtained 

purified glutamatergic neurons by FAC sorting neocortical-hippocampal neurons from 

NexCre;Ai9 mice (Supplementary Fig. 4a-c). Despite being smaller and more excitable 

than unsorted neurons, purified glutamatergic neurons were able to grow for up to 

16 DIV and matured sufficiently to maintain repetitive trains of actions potentials in 
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response to depolarizing current pulses (Supplementary Fig.4d-l for morphological and 

electrophysiological properties). We then combined these neurons with purified 

GABAergic neurons and cultured them at a ratio of 4:1 (glutamatergic: GABAergic; Fig. 

5a and b), to create a mixed-neuron culture system lacking glia. In this culture system, 

we examined the establishment of synaptic transmission by performing voltage-clamp 

recordings from both GABAergic (Venus-positive) and glutamatergic (tdTomato-positive) 

neurons (for IPSCs Vh = 0 mV; for EPSCs Vh = -50 mV; Fig. 5c and f). These 

experiments revealed that, in the absence of glia, it was possible to observe high 

frequencies of IPSCs in both Venus positive (2.7 ± 0.57 Hz [14 cells, 4 cultures 

analyzed]) and tdTomato positive neurons (3.2 ± 0.60 Hz [12 cells, 4 cultures analyzed]). 

However, despite glutamatergic neurons outnumbering GABAergic neurons 4 to 1, 

EPSCs were low or absent, regardless of type of the recorded neuron (Venus positive: 

0.40 ±0.27 Hz [11 cells, 4 cultures analyzed]; TdTomato positive: 0.29 ± 0.22 Hz [12 

cells, 4 cultures analyzed]). 

 To examine how glial secreted factors influence the synaptic transmission in 

these combined cultures, we performed the same voltage-clamp experiments, but in 

cells co-cultured with glia (Fig. 5d and g). We found that glial support did not strongly 

affect the frequency of IPSCs (Venus positive, 1.5 ± 0.32 Hz [19 cells, 4 cultures 

analyzed], P > 0.05; TdTomato positive neurons, 3.0 ± 0.58 Hz [15 cells, 4 cultures 

analyzed], P > 0.05) (Fig. 5e), but instead significantly increased the frequency of 

EPSCs in both cell types (Venus positive: 6.5 ± 1.16 Hz [15 cells, 4 cultures analyzed], P 

< 0.001; TdTomato: 1.8 ± 0.40 Hz [14 cells, 4 cultures analyzed], P < 0.05, Fig. 5g,h). 

Surprisingly, in these co-cultures, glutamatergic neurons received a greater number 

IPSCs than GABAergic neurons (IPSC frequency, Glutamatergic>GABAergic, P < 0.05), 
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but less EPSCs (EPSC frequency, GABAergic>glutamatergic, P < 0.01).  

Overall, our results support the idea that in mixed neuronal networks, glial 

secreted substances play an important role in the establishment of glutamatergic 

synaptic transmission. In stark contrast, GABAergic transmission onto both 

glutamatergic principal cells and GABAergic neurons is established even in the absence 

of glia cells. 
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Discussion (1592 words) 

 
While methods for purifying glutamatergic neurons have existed for some time (Pfrieger 

and Barres 1997; Ullian et al. 2001, 2004), methods for establishing purified primary 

GABAergic cell cultures have only been partially successful (Baptista et al. 1994; 

Berghuis et al. 2004; Buard et al. 2010). This has led to a disparity in our knowledge of 

how these two major cell classes develop and establish neuronal networks. To reconcile 

this issue, we established methods for purifying and culturing GABAergic neurons in 

vitro. An analysis of the development of these cultures has revealed that similar to 

glutamatergic neurons, GABAergic neurons directly depend on glial secreted 

substances for their growth and long-term survival. However, in stark contrast to 

glutamatergic neurons, GABAergic neurons establish robust synaptic transmission even 

in the absence of glia (Fig. 6). This fundamental difference between the two dominant 

cortical neuron classes has important implications for our understanding of how neuronal 

networks develop. In particular, it may help to explain why GABAergic synaptic 

transmission is able to establish before glutamatergic synaptic transmission during early 

development (Gozlan and Ben-Ari 2003). 

 

Glial secreted factors promote the survival and neurite development of purified 

GABAergic neurons, but not their aberrant electrical properties 

As demonstrated here, we were able to establish pure and viable cell cultures composed 

of GABAergic neurons only, by FAC sorting fluorescent neurons from a transgenic 

rodent line expressing Venus under the control of the VGAT promoter (Uematsu et al. 

2008). We find that these cultures are viable to at least 16 DIV, but that their long-term 

culture (to 42 DIV) is dependent on support from glial cells (Fig. 2b). We also find that 
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both axon and dendrite growth is strongly potentiated by glial support (Fig. 2c-f). 

Presumably, purified neurons lack trophic signals and/or metabolic support, which are 

required to sustain their growth and survival (Banker 1980; Engele et al, 1991; 

Magistretti 2006). Our results suggest that glial cells, through the release of secreted 

factors, are largely responsible for promoting the growth and survival of GABAergic 

neurons. Importantly, these results further emphasize the essential role played by glia in 

the development and maintenance of neuronal networks (Lindsay 1979; Banker 1980; 

Le Roux and Reh 1994, Hughes et al, 2010), but also specifically demonstrate the roles 

that glial cells play in the growth and survival of GABAergic neurons. 

Interestingly, our results also reveal that, despite their vital importance, glial cells 

are not able to recover all aberrant changes that occur as a result of neuronal 

purification. One obvious example of this is the altered action potential kinetics (Fig. 2c-

e; Supplementary Fig. 2) and lower than expected (given their small size) input 

resistance values measured from purified GABAergic neurons (Fig. 1c and Fig. 2c). 

Notably, these altered membrane properties, which are likely caused by an increase in 

open, “leak” ion channels in the membranes of purified GABAergic neurons, were not 

recovered by glial support. In fact, following glial support, which improves the growth of 

purified cells, glial supported GABAergic neurons were significantly less excitable than 

unsorted neurons (Fig. 3e). Their large size, coupled to an increase in their membrane 

conductance, may explain their markedly decreased excitability. 

Presently, the exact mechanisms that regulates these altered membrane 

properties are not clear. However, given that glutamatergic neurons are absent from 

both purified and glial supported GABAergic cultures, it is possible that signaling from 

glutamatergic neurons may regulate these membranes properties. Indeed, glutamatergic 
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neurons have already been shown to shape the activity of neighbouring cells and to 

provide trophic support (Berghuis et al. 2004; Elmariah et al. 2005; Andreska et al. 2014; 

Chang et al. 2014). Future studies will be needed to determine the exact signalling 

mechanisms that lead to these changes. Nevertheless, what these results demonstrate 

is that, in addition to glial derived signals, other cell-to-cell interactions are required to 

correctly shape neuron development. 

 

The establishment of Glutamatergic and GABAergic synaptic transmission 

differentially depend on glial secreted factors 

Several reports have previously described how glial conditioned media and glial 

secreted factors (namely proteins) are able to directly promote synapse formation and 

synaptic transmission between glutamatergic neurons (Pfrieger and Barres 1997; Ullian 

et al. 2001; Christopherson et al. 2005; Pfrieger 2009; McKellar et al. 2009; Allen et al. 

2012; but see Steinmetz et al, 2006). However, it has not been clear if the same holds 

true for GABAergic neurons. In recent years, several astrocyte secreted proteins have 

been identified which play a central role in directing glutamatergic synapse formation (for 

a review, see Chung et al, 2015). However, no astrocyte secreted proteins regulating the 

the development of GABAergic synapse formation have so far been identified. 

Interestingly, the thrombospondin (TSP) family of extracellular matrix (ECM) proteins, 

which play a critical role in the establishment of glutamatergic synapses, have little or no 

effect on the establishment of GABAergic synapses in vitro (Christopherson et al, 2005; 

Hughes et al, 2010), further indicating that GABAergic and glutamatergic neurons may 

differentially depend on glial signalling for synapse formation. Our results strongly 

support this notion. We find that while glutamatergic synaptic transmission is low or 
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absent in cultures lacking glial secreted factors, GABAergic synaptic transmission is 

nevertheless able to persist (Fig. 6a). Even when culturing glutamatergic and 

GABAergic neurons, we observed almost no glutamatergic synaptic transmission in the 

absence of glia, but we did observe robust GABAergic synaptic transmission regardless 

of the postsynaptic neuron type recorded. Importantly, when glial support was provided 

to mixed neuron cultures, glutamatergic synaptic transmission was dramatically 

increased, but GABAergic synaptic transmission was not further potentiated (Fig. 6b). 

Thus, we find that the presence of glial secreted factors correlates strongly to the level of 

glutamatergic synaptic transmission, but not GABAergic synaptic transmission. Further 

supporting these findings, is our observation that the local stimulation of purified 

GABAergic neurons produces evoked IPSCs of comparable amplitudes, even in the 

absence of glial support (Fig. 4d and e). Our results therefore indicate that glial secreted 

substances are important for the establishment of glutamatergic synaptic transmission, 

but are not essential for the establishment of GABAergic synaptic transmission in 

cortical networks.  

For the same reason, it is also difficult to explain precisely why glial support leads 

to an increase in the number of synaptically coupled GABAergic neurons (seen in Fig. 

4f). One possibility is that glial support directly promotes an increase in synapse 

formation. Alternatively, increased connectivity may simply be a consequence of 

increased survival and morphological development (Fig. 2c-f). It will be necessary, in 

future studies, to investigate whether glial secreted factors are able to directly modulate 

GABAergic synaptic transmission.  

In addition, it may also be useful to focus on other recently identified astrocyte 

secreted proteins, such as glypican 4/6, Hevin and SPARC, which have been shown to 
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play key roles in the regulation of glutamatergic synapse formation (Chung et al, 2015), 

but have not yet been investigated with regards to GABAergic synapse formation and 

function. Importantly, our purified GABAergic cell cultures should prove to be a valuable 

tool for investigating this, in the same way purified glutamatergic neuronal cultures 

significantly aided in the identification of glypicans 4 and 6 as important synaptogenic 

protein (Allen et al, 2012). In the future, using a similar approach of protein fractionation 

and mass spectroscopy, as described by Allen et al, 2012, it may be possible to identify 

novel glial derived factors that also influence the development of GABAergic neurons. 

In summary, our results support the idea that glia are important for the 

establishment of glutamatergic synaptic transmission (Segal 1991; Verderio et al. 1999; 

Christopherson et al. 2005; McKellar et al, 2009; Allen et al. 2012). They also provide 

important insights into the development of GABAergic neuronal networks, and help 

reconcile conflicting reports regarding the influence of glia on the establishment 

GABAergic synaptic transmission (Liu et al. 1996; Elmariah et al. 2005; Steinmetz et al. 

2006; Kaczor et al. 2015). 

 

Implications for network formation and function 

Neuronal networks require a delicate balance of excitation and inhibition for their proper 

function, as uncontrolled excitation can lead to seizures, glutamate toxicity and cell 

death. To avoid this, developing cortical networks initially rely on GABA as their primary 

neurotransmitter (Ben-Ari 2001, 2002). While being both excitatory and inhibitory at 

different stages of development (Katz and Shatz 1996; Holmes and Ben-Ari 1998; Ben-

Ari 2002), GABAergic transmission, in general, acts to stabilize cell excitability, as unlike 

glutamate receptors the reversal potential for GABAA receptors is close to the resting 



32 
 

membrane potential of most neurons (Staley and Mody 1992; Kaila 1994; Banke and 

McBain 2006). In vitro slice recordings made from mouse cortex and excised at 

embryonic or early postnatal stages, indicate that GABAergic synaptic transmission is 

established prior to glutamatergic synaptic transmission (Tyzio et al. 1999; Gozlan and 

Ben-Ari 2003; Ben-Ari et al. 2004), at a time when there are few mature astrocytes in the 

developing cortex (Qian et al. 2000; Yuasa 2001). The emergence of GABAergic 

synaptic transmission prior to glutamatergic transmission might be explained by the 

early maturation of GABAergic neurons (Gozlan and Ben-Ari 2003), consistent with the 

different developmental origins of the two cell types (Marín and Müller 2014). However, 

more recently, it has been suggested that GABAergic neurons, unlike glutamatergic 

neurons, may not require glial secreted signals to establish synapses (Steinmetz et al. 

2006). This idea is now directly supported by our experimental findings and represents 

an attractive mechanism for ensuring the formation of GABAergic networks prior to 

glutamatergic networks during development. This mechanism requires three conditions: 

First, glutamatergic synapse formation depends on glial secreted factors (Ullian et al. 

2001); second, glial proliferation and maturation occur late in embryonic development 

(Yuasa 2001); finally, GABAergic synapse formation is independent of glial support. 

These conditions provide GABAergic neurons with the opportunity to establish synaptic 

connections prior to glutamatergic neurons, during early development (Gozlan and Ben-

Ari 2003). 
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Figure legends: 

 

Figure 1. Purified GABAergic cell cultures produced by FAC sorting fluorescent neurons 

from VGAT-Venus-A Wistar rats. (a) A schematic of the VGAT-Venus-A bacterial 

artificial chromosome (BAC) construct. GABAergic neurons express Venus under the 

Vesicular GABA transporter (VGAT) promoter. (b) A schematic of the FAC sorting 

procedure used to collect either GABAergic neurons (positive sort), or all cells 

(unsorted), from the neocortex and hippocampus of VGAT-Venus-A rats. (c) 

Representative fluorescence intensity plots of WT (left) or VGAT-Venus-A (right) 

dissociated cells. Fluorescence intensities were measured through emission filters 

optimized for either Venus (X-axis) or red fluorescent protein (RFP, Y-axis). Fluorescent 

Venus-positive cells were collected for positive-sorted cultures (polygon area, black 

arrow). (d) Confocal images (maximal Z-projection) of Neuronal Nuclei protein (NeuN, 

magenta pseudocolor) and Venus (green) immunofluorescence, in unsorted (left panel) 

and positive-sorted cultures (middle panel, both DIV 15). White arrows indicate 

GABAergic neurons expressing both NeuN and Venus. Scale bar: 20 µm. (e) Bar chart 

summarizing the proportion of Venus positive neurons in unsorted (3 cell culture batches 

analyzed) and positive-sorted cultures (6 cell culture batches analyzed). (f) Confocal 

images of glial fibrillary acidic protein (GFAP, magenta) and Venus (green) 

immunofluorescence in unsorted (left panel) and positive-sorted cultures (right panel, 

both DIV 16). White arrow indicates a GFAP-positive process. Scale bar: 50 µm. Mann-

Whitney nonparametric test. Significance indicated: (***) = P<0.001. 
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Figure 2. Glia are necessary for the long-term survival and morphological development 

of purified GABAergic neurons. (a) Schematic illustration of the three culture conditions 

used to study the survival of GABAergic neurons: unsorted cell culture (left), positive-

sorted cell culture (middle), and positive-sorted cell culture with glial support (right, glia 

to neuron ratio 4:1). Glia were grown separately in the same medium on permeable cell 

culture inserts. (b) Confocal images (maximal Z-projection) of Venus-

immunofluorescence, at the indicated time points. White arrows indicate surviving 

neurons. (c) Representative reconstructions of biocytin-filled GABAergic neurons in 

each culture type (Axon: colored, Dendrites: black) at DIV 14 ± 2. (d ,e) Summary bar 

charts of the total length of the axon (d) and dendrites (e) in the three culture types. (f) 

Sholl plot summarizing dendritic arbor distribution for each culture type (Sholl radius 

interval: 25 µm). Measurements were made from ≥3 cell culture batches. Kruskal-Wallis 

nonparametric test with Dunn’s post test. Significance indicated: (*) = P<0.05, (**) = 

P<0.01, (***) = P<0.001. 

  

Figure 3. Electrophysiological properties of cultured GABAergic neurons. (a) 

Representative examples of the recorded neurons from the three culture types. On the 

left, composite images of the IR-oblique illumination (grey) and fluorescent Venus signal 

(yellow) of the recorded GABAergic neurons. On the right, voltage responses of the 

neurons to hyperpolarizing and depolarizing current pulses (hyperpolarizing pulses: -200 

pA to -20 pA in 20 pA steps, depolarizing pulses: +20 pA and +200 pA, 500 ms 

duration). The inset to the right shows the voltage response of the same GABAergic 

neuron to a 1000 pA current step in the glial supported culture.  (b-d) Summary bar 

charts of the intrinsic electrophysiological properties, including: resting membrane 
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potential (Vm, b), whole cell capacitance (Cm, c) and input resistance (Ri, d). (e) 

Current-frequency plot of neurons recorded in the three culture types. The neurons were 

kept at resting membrane potential and injected with depolarizing current pulses (20 pA 

incremental current steps, 500 ms duration). Measurements were made from ≥6 cell 

culture batches. Unsorted: n = 80; positive sort: n = 66; glial support: n = 22. Means are 

± S.D. Kruskal-Wallis nonparametric test with Dunn’s post test. Significance indicated: 

(*) = P<0.05, (**) = P<0.01, (***) = P<0.001. 

  

Figure 4. Purified GABAergic neurons establish synaptic transmission in the absence of 

glia. (a) Representative voltage-clamp recordings of spontaneous synaptic events (60 

second duration) from unsorted (top), positive-sorted (middle), and glial supported 

cultures (bottom). At a holding potential (Vh) of 0 mV. (b) Summary bar chart of the peak 

amplitude of IPSCs recorded from GABAergic neurons in each cell culture type. 

Measurements were made from ≥3 cell culture batches. (c) Evoked IPSCs traces 

(averages of ≥12 individual responses each). Stimulus artifacts have been removed to 

aid visualization. (d, e) Bar charts summarizing mean eIPSC amplitudes (d) and the 

proportion of connected cells (e). Measurements were made from 3 cell culture batches. 

Statistics: Kruskal-Wallis nonparametric test with Dunn’s post test (b and d) and Fisher's 

exact test (e). Significance indicated: (*) = P<0.05, (**) = P<0.01, (***) = P<0.001. 

 

Figure 5. Glial secreted factors promote glutamatergic, but not GABAergic synaptic 

transmission. (a) A schematic of the “mixed” neuron culture configuration used to study 

the influence of glia on glutamatergic and GABAergic synaptic transmission. FAC sorted 

tdTomato-positive neurons (magenta) and Venus-positive neurons (yellow) were 
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cultured at a ratio of 4:1, in the presence or absence of glia (grey). (b) Fluorescent 

images of endogenous Venus expression (left), tdTomato expression (middle) and a 

merged composite (right) at DIV 0. (c,d,f,g) Representative voltage-clamp recordings 

(60 seconds) from neurons in “mixed” cell cultures in the absence (c,f) or presence of 

glia (d,g) at a holding potentials of 0 mV (c,d) to record IPSCs or -50 mV to record 

EPSCs (f,g). Hash symbols (#) highlight the presence of excitatory events. The patched 

cell type (tdTomato or Venus) is indicated in brackets below the recording trace. (e, h) 

Summary bar charts of the frequency of IPSCs (e) and EPSCs (h) recorded from each 

culture configuration. Measurements were made from 4 cell culture batches. Kruskal-

Wallis nonparametric test with Dunn’s post test. Significance (*) = P<0.05, (**) = P<0.01, 

(***) = P<0.001. 

 

Figure 6. Glial secreted factors are required for the establishment of functional 

glutamatergic synapses, but not for GABAergic synapses. (a) Schematic drawing 

illustrates GABAergic (yellow) and glutamatergic (magenta) neurons in the absence of 

glial secreted factors. In this configuration neuron growth is limited, and synaptic 

transmission is only established at GABAergic synapses. (b) Schematic showing the 

influence of glial secreted factors on the development of GABAergic and glutamatergic 

neurons. In this configuration, both neuron classes have improved neurite growth and 

survival, and synaptic transmission is established at both GABAergic and glutamatergic 

synapses.  


