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ABSTRACT: The net stress plus suction and the average skeleton stress plus modified 

suction are two alternative sets of energetically consistent stress variables for modelling 

the hydro-mechanical behaviour of unsaturated soils. When used in conjunction with 

their work-conjugate strains, both sets of stress variables correctly calculate the first-

order term of the hydro-mechanical work input into a soil element subjected to 

infinitesimal changes of deformation and water content. They therefore also correctly 

calculate the increment of internal energy along a given stress-strain path, that is the 

integral of the first-order term of the infinitesimal work input.  

This paper shows, however, that the above two sets of stress variables lead to different 

values of the second-order term of the hydro-mechanical work input. They are therefore 

no longer equivalent with respect to other aspects of material behaviour governed by 

the second-order work such as the flow rule of elasto-plastic models. The flow rule 

assumes the normality between plastic strains and equipotential surfaces defined in the 

conjugate stress-strain space. This normality is however lost when an elasto-plastic 

model originally formulated in terms of net stress plus suction is recast in terms of 

average skeleton stress plus modified suction (or vice versa) by means of standard 

mapping relationships between stress variables. To restore normality in both stress 

spaces, it is necessary to impose specific forms of elastic and plastic behaviour. 

 

KEYWORDS: unsaturated soils; effective stress; suction, work input; plastic flow; 

elasto-plasticity.  
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1. INTRODUCTION 

Since Alonso et al. [1] published the first elasto-plastic model for unsaturated soils, 

many alternative constitutive formulations have been proposed with the most recent 

ones coupling mechanical and hydraulic behaviour in a single analytical framework. 

An important aspect of these models is the choice of stress-strain variables. A large 

variety of possibilities exists in the literature as discussed, for example, by Gens [2] and 

D’Onza et al. [3]. Some stress-strain variables have been chosen because of 

experimental convenience, i.e. variables that are easier to measure or control during 

laboratory testing [4]. Other stress-strain variables have instead been chosen because of 

theoretical rigour, i.e. variables originating from a thermodynamic analysis and/or a 

physical interpretation of microscopic behaviour, as in the works of Houlsby [5], 

Gallipoli et al. [6], Sheng et al. [7] and Coussy et al. [8]. 

In the latter group, the following two alternative sets of work-conjugate stress-strain 

variables are commonly used because they both allow calculation of the internal energy 

change along a given stress-strain path: 

(1) The net stress (mechanical stress) plus suction (hydraulic stress) and the Cauchy 

strain (mechanical strain) plus water ratio strain (hydraulic strain) (Vaunat et al. [9] 

provide an example of a constitutive model using this set of variables); 

(2) The average skeleton stress (mechanical stress) plus modified suction (hydraulic 

stress) and the Cauchy strain (mechanical strain) plus water saturation strain 

(hydraulic strain) (Lloret-Cabot et al. [10] ; [11] provide an example of a 

constitutive model using this set of variables). 
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The above two sets of stress-strain variables correctly calculate the first-order term of 

the infinitesimal hydro-mechanical work input into an unsaturated soil element. 

Therefore, they also correctly calculate the change of internal energy along a given 

stress-strain path, which coincides with the integral of the first-order term of the work 

input under adiabatic conditions.  

However, as shown in this paper, the above two sets of variables lead to different 

expressions of the second-order term of the infinitesimal hydro-mechanical work input. 

This has implications for other aspects of material behaviour that are governed by the 

second-order work such as the flow rule of elasto-plastic models. In particular, the 

normality between plastic strains and potential function is lost when these quantities 

are mapped from one stress space to the other. This violates the very definition of plastic 

flow and can only be avoided if specific restrictions are imposed on the material 

constitutive law. 

2. WORK INPUT PER UNIT VOLUME 

For a single-phase material, the infinitesimal mechanical work input limited to the 

second order term is expressed as: 

 d𝑊 = d𝑊(%) + d𝑊(() (1) 

where the first- and second-order terms are respectively defined as: 

 d𝑊(%) = 	𝜎+,	d𝜖+,  (2) 

and 
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 d𝑊(() =
1
2	d𝜎+,	d𝜖+, 

(3) 

with 𝜎+, and 𝜖+,  being the stress and strain variables, respectively. 

The increment of internal energy of a material subjected to a given stress-strain path is 

calculated by integration of the first-order term d𝑊(%) while the second-order term 

d𝑊(() is comparatively negligible. The second-order term of the work input may 

however be important for reasons other than calculating the change of internal energy. 

For example, Drucker [12] postulated that the positiveness of the second-order work is 

a sufficient condition to ensure the stable response of a material subjected to controlled 

loading [13] ; [14]: 

 d𝜎+,	d𝜖+, > 0	 ⟹ 		𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (4) 

The second-order term of the work input is also linked to the flow rule of classic elasto-

plastic models whereby plastic strains are proportional to the gradient of a plastic 

potential function defined in the conjugate stress-strain space. Plastic strains are 

therefore normal to equipotential surfaces, which implies that the second-order plastic 

work made by any stress increment tangent to these surfaces is equal to zero.  

This aspect is further investigated in the present paper with reference to three-phase 

porous materials like unsaturated soils. The hydro-mechanical behaviour of these 

materials can be described by two alternative sets of energetically consistent stress 

variables, i.e. the net stress plus suction and the average skeleton stress plus modified 

suction, together with their respective conjugate strains, i.e. the Cauchy strain plus 

water ratio strain and the Cauchy strain plus water saturation strain. The present work 

investigates whether the normality between equipotential surfaces and plastic strains is 
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preserved when constitutive models are mapped from one stress-strain space to the 

other. The mapping relationships between the two spaces are simply derived from the 

definitions of the stress and strain variables.  

The paper starts by comparing the expressions of the first-order terms of the hydro-

mechanical work input in the two stress-strain spaces. This comparison does not bring 

any new knowledge but facilitates the subsequent analysis of the second-order terms, 

which provides the basis for the later study of plastic flow. 

First-order work input in an unsaturated soil 

The definitions of work input given by equations (2) and (3) apply to single-phase 

materials. In the case of three-phase materials, such as unsaturated soils, these 

definitions must be extended to take into account the contributions of liquid and gas 

phases inside material pores. Houlsby [5] showed that, if the movement of the air-water 

interfaces is neglected, the first-order term of the infinitesimal hydro-mechanical work 

input into an unsaturated soil element can be alternatively expressed in terms of net 

stress plus suction or average skeleton stress plus modified suction as: 

 d𝑊(%)〈𝐹𝑜𝑟𝑚	1〉 = 	𝜎+,ABC	𝑑𝜖+, + 𝑠d𝜖E (5) 

 𝑑𝑊(%)〈𝐹𝑜𝑟𝑚	2〉 = 	𝜎+,F 	d𝜖+, + 𝑠Fd(−𝑆I) (6) 

where: 

1. 𝜎+,JKL and 𝑠 are the net stress (tensor) and suction (scalar) respectively 

defined as: 
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 𝜎+,JKL = 𝜎+, − 𝑢N𝛿+, (7 a) 

 𝑠 = 𝑢N − 𝑢E (7 b) 

with 𝜎+, being the total stress (tensor), 𝑢N the pore air pressure (scalar), 𝑢E 

the pore water pressure (scalar) and 𝛿+,  the Kronecker’s delta. 

2. 𝜎+,F  and 𝑠F are the average skeleton stress (tensor) and the modified suction 

(scalar) defined as : 

 𝜎+,F = 𝜎+, − (𝑆I𝑢E + (1 − 𝑆I)𝑢N)𝛿+, = 𝜎+,JKL + 𝑆I𝑠𝛿+, (8 a) 

 𝑠F = 𝑛𝑠 (8 b) 

with 𝑆I being the degree of saturation and 𝑛 being the porosity. One 

advantage of using the average skeleton stress of equation (8a), instead of 

the net stress of equation (7a), is that the average skeleton stress 

automatically reduces to Terzaghi effective stress when the material is 

saturated by water (𝑆I = 1) or by air (𝑆I = 0). 

3. 𝜖+,  is the Cauchy strain (tensor), which is conjugate of the net stress 𝜎+,JKL 

and of the average skeleton stress 𝜎+,F . 

4. 𝜖E is the water ratio strain (scalar), which is conjugate of suction 𝑠. The 

infinitesimal change of water ratio strain is defined as: 

 d𝜖E 	= −
d𝑒E	
1 + 𝑒 (9) 

where 𝑒 is the void ratio and 𝑒E	 is the water ratio defined as the volume of 

water per unit volume of solids. A decrease of water ratio produces an 
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increase of water ratio strain due to the minus sign in equation (9), which is 

consistent with the soil mechanics convention of compression positive 

volumetric strains. 

5. −𝑆I  is the water saturation strain (scalar), which is simply the negative of 

the degree of saturation 𝑆I =
KQ
K

, and is conjugate of the modified suction 

𝑠F. The infinitesimal change of the water saturation strain is therefore 

expressed as: 

 d(−𝑆I) = d R−
𝑒E
𝑒 S =

𝑒Ed𝑒 − 𝑒d𝑒E
𝑒( =

𝑆Id𝑒 − d𝑒E
𝑒  (10) 

 

Second-order work input in an unsaturated soil 

Either net stress plus suction (equations (7a) and (7b)) or average skeleton stress plus 

modified suction (equations (8a) and (8b)) provide an adequate set of stress variables 

for calculating the first-order term of the hydro-mechanical work input when used in 

conjunction with their respective conjugate strains. The same is however not true for 

the second-order term of the hydro-mechanical work input, whose value changes 

depending on the chosen set of stress variables. To show this, the second-order term of 

the work input is here defined in terms of both net stress plus suction and average 

skeleton stress plus modified suction according to the following two alternative forms: 

 d𝑊(()〈𝐹𝑜𝑟𝑚	1〉 =
1
2
Td𝜎+,JKL	d𝜖+, + d𝑠	d𝜖EU (11) 

 d𝑊(()〈𝐹𝑜𝑟𝑚	2〉 = 	
1
2 Rd𝜎+,

F 	d𝜖+, + d𝑠Fd(−𝑆I)S (12) 



9 
 

To compare the above two forms we map the second one, i.e. equation (12), from the 

space of average skeleton stress plus modified suction to the space of net stress plus 

suction. For this, the relationships between stress increments in the two spaces are first 

obtained through differentiation of the average skeleton stress and modified suction 

expressions of equations (8a) and (8b), respectively. This leads to the following 

expressions of the increments d𝜎+,F  and d𝑠F in terms of the increments d𝜎+,JKL and d𝑠: 

 d𝜎+,F = d𝜎+,JKL + 𝑆I	d𝑠	𝛿+, + 𝑠	d𝑆I	𝛿+,  (13 a) 

 d𝑠F = 𝑛d𝑠 + 𝑠d𝑛 (13 b) 

which are then substituted into equation (12) to give: 

 

d𝑊(()〈𝐹𝑜𝑟𝑚	2〉

= 	
1
2 Rd𝜎+,

JKLd𝜖+, + 𝑆I	d𝑠	𝛿+,d𝜖+,

+ 𝑠	d𝑆I	𝛿+,d𝜖+, + 𝑛	d𝑠	d(−𝑆I)

+ 𝑠	d𝑛	d(−𝑆I)S 

(14) 

Next, the relationship between the increments of water saturation strain d(−𝑆I) and 

water ratio strain d𝜖E is obtained by substituting into equation (10) the definitions of 

porosity 𝑛 = K
%VK

, incremental water ratio strain d𝜖E 	= − WKQ	
%VK

 and incremental 

volumetric strain 𝛿+,d𝜖+, = − WK
%VK

 (compression positive): 

 d(−𝑆I) =
d𝜖E − 𝑆I𝛿+,d𝜖+,

𝑛  (15) 
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By substituting equation (15) into equation (14) and noting that d𝑛 = (𝑛 − 1)𝛿+,d𝜖+,, 

the second form of equation (12) is finally recast in terms of net stress plus suction and 

corresponding conjugate strains as: 

 

										d𝑊(()〈𝐹𝑜𝑟𝑚	2〉

=
1
2
Td𝜎+,JKLd𝜖+, + d𝑠	d𝜖EU −

1
2	
𝑠	(2 − 𝑛)

𝑛 R	𝛿+,d𝜖+,d𝜖E − 𝑆IT𝛿+,d𝜖+,U
(
S 

(16) 

Comparison of equations (11) and (16) shows a difference, which implies that only one 

of these two forms is correct. Equation (11) coincides with the expression of the second-

order work calculated by Buscarnera and di Prisco [15] by means of an energy balance 

approach similar to that followed by Houlsby [5] for deriving the expression of the first-

order work. Equation (11) is therefore the correct one and the net stress plus suction 

should be used for calculating the second-order term of the work input while the 

average skeleton stress plus modified suction should be avoided for this purpose.  

Note however that the above result has no impact on the calculation of material energy 

and both sets of variables remain energetically consistent. This is because, as shown by 

Houlsby [5], both sets of variables correctly calculate the first-order work, whose 

integration gives the change of internal energy along a generic stress-strain path. This 

result has consequences only for those aspects of material behaviour that are related to 

the second-order work like the plastic flow rule, as discussed in the next section. 

The difference 𝐸(() between the two forms of the second-order work given by equations 

(11) and (16) is: 

 𝐸(() = −
1
2	
𝑠	(2 − 𝑛)

𝑛 R	𝛿+,d𝜖+,d𝜖E − 𝑆IT𝛿+,d𝜖+,U
(
S (17) 
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which can alternatively be expressed in terms of dT−𝑆I U instead of d𝜖E  by recalling 

equations (15) : 

 𝐸(() = −
1
2 	𝑠	

(2 − 𝑛)	𝛿+,d𝜖+,d(−𝑆I) (18) 

Given that suction 𝑠 is generally positive and porosity  is bound between zero and 

one, this difference only vanishes for strain paths where no change of either volumetric 

or saturation strain occurs, i.e. when either 𝛿+,d𝜖+, = 0 or d(−𝑆I) = 0. 

3. PLASTIC FLOW RULE 

The two second-order work forms calculated in the previous section are here exploited 

to investigate the normality between plastic flow vectors and equipotential surfaces in 

both spaces of net stress plus suction and average skeleton stress plus modified suction.  

Let us first note that equation (15) can be separately written for the elastic and plastic 

strain components: 

 d(−𝑆IB) =
𝑑𝜖EB − 𝑆I𝛿+,𝑑𝜖+,B

𝑛  (19) 

 dT−𝑆I
YU =

d𝜖E
Y − 𝑆I𝛿+,d𝜖+,

Y

𝑛  (20) 

where superscripts "e" and "p" indicate the elastic and plastic components of strains, 

respectively. 

Consider now a material element at yielding which undergoes an infinitesimal change 

of plastic strain represented as Td𝜖+,
Y 	, d𝜖E

Y U in the conjugate strain space of net stress 

plus suction, and as Rd𝜖+,
Y 	, dT−𝑆I

YUS in the conjugate strain space of average skeleton 

n
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stress plus modified suction. Next, let us consider an arbitrary infinitesimal stress 

change, which is represented as Td𝜎+,JKL, d𝑠U in the space of net stress plus suction, and 

as Td𝜎+,F , d𝑠FU in the space of average skeleton stress plus modified suction. Note that 

the above are different representations (i.e. representations in distinct constitutive 

spaces) of the same infinitesimal increments of stresses and strains. It is therefore 

possible to change from one representation to the other by using the mapping 

relationships of equations (20), (13a) and (13b). 

These different representations of stress and strain increments produce the following 

two different representations of the second-order plastic work: 

 d𝑊(()Y〈𝐹𝑜𝑟𝑚	1〉 =
1
2
Td𝜎+,JKLd𝜖+,

Y + d𝑠	d𝜖E
Y U (21) 

 d𝑊(()Y〈𝐹𝑜𝑟𝑚	2〉 =
1
2 Rd𝜎+,

F d𝜖+,
Y + d𝑠FdT−𝑆I

YUS (22) 

For ease of comparison, the second form of equation (22) is mapped from the space of 

average skeleton stress plus modified suction to the space of net stress plus suction. To 

this end, the average skeleton stress and modified suction are first recast in terms of net 

stress and suction by using equations (13a) and (13b): 

 

d𝑊(()Y〈𝐹𝑜𝑟𝑚	2〉

=
1
2 R
Td𝜎+,JKL + 𝑆I	d𝑠	𝛿+, + 𝑠	d𝑆I	𝛿+,Ud𝜖+,

Y

+ (𝑠	d𝑛 + 𝑛	d𝑠)	dT−𝑆I
YUS 

(23) 

Then, the increments of water saturation strain are recast in terms of the corresponding 

increments of water ratio strain by replacing dT−𝑆I
YU with equation (20) and d𝑆I =
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−dT−𝑆I U with the opposite of equation (15) which, after noting that d𝑛 =

−(1 − 𝑛)𝛿+,d𝜖+, , yields: 

 

d𝑊(()Y〈𝐹𝑜𝑟𝑚	2〉

=
1
2
Td𝜎+,JKL	d𝜖+,

Y + d𝑠	d𝜖E
Y U

−
1
2
𝑠
𝑛 R
Td𝜖E + (𝑛 − 2)	𝑆I	𝛿+,	d𝜖+,U	𝛿+,	d𝜖+,

Y

+ (1 − 𝑛)	𝛿+,	d𝜖+,	d𝜖E
YS 

(24) 

Comparison of equations (21) and (24) indicates again that the two forms of the second-

order plastic work do not coincide and that the difference 𝐸(()Y is: 

 
𝐸(()Y = −

1
2
𝑠
𝑛 R
T𝑑𝜖E + (𝑛 − 2)	𝑆I	𝛿+,	𝑑𝜖+,U	𝛿+,	𝑑𝜖+,

^

+ (1 − 𝑛)	𝛿+,	𝑑𝜖+, 	𝑑𝜖E
^S 

(25) 

By recalling equations (15) and (20), the difference 𝐸(()Y can be alternatively expressed 

in terms of dT−𝑆I U and dT−𝑆I
YU instead of d𝜖E  and d𝜖E

Y  as: 

 
𝐸(()Y = −

1
2 𝑠 Rd

T−𝑆I U	𝛿+,	d𝜖+,
Y

+ (1 − 𝑛)	𝛿+,	d𝜖+,dT−𝑆I
YUS 

(26) 

The above result has some consequences on the definition of the plastic flow rule as 

explained in the following. 
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Normality of plastic flow vectors to plastic potential 

Let us consider an equipotential surface passing through a generic stress state at 

yielding. The mathematical expression of this equipotential surface can be mapped 

between the two spaces of average skeleton stress plus modified suction and net stress 

plus suction by using the stress definitions of equations (8a) and (8b).  

The flow rule imposes that, in the space of net stress plus suction, the infinitesimal 

changes of conjugate plastic strains are proportional to a flow vector defined as the 

gradient of the potential function,  : 

 d𝜖+,
Y = l

𝜕𝑔
𝜕𝜎+,JKL

 (27) 

 d𝜖E
Y = l

𝜕𝑔
𝜕𝑠  (28) 

where the constant of proportionality is given by plastic multiplier, l. 

Similarly, in the space of average skeleton stress plus modified suction, the flow rule 

imposes that the infinitesimal changes of conjugate plastic strains are proportional to a 

flow vector defined as the gradient of the potential function, 𝑔F : 

 d𝜖+,
Y = 𝜆F

𝜕𝑔F

𝜕𝜎+,F
 (29) 

 dT−𝑆I
YU = 𝜆F

𝜕𝑔F

𝜕𝑠F  
(30) 

where the constant of proportionality is given by the plastic multiplier, 𝜆F. 
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Taking into account equations (27) and (28), we rewrite the two forms of the second-

order plastic work given by equations (21) and (24) as: 

 d𝑊(()Y〈𝐹𝑜𝑟𝑚	1〉 =
l
2bd𝜎+,

JKL 	
𝜕𝑔
𝜕𝜎+,JKL

+ d𝑠	
𝜕𝑔
𝜕𝑠c (31) 

 

d𝑊(()Y〈𝐹𝑜𝑟𝑚	2〉

=
l
2bd𝜎+,

JKL 	
𝜕𝑔
𝜕𝜎+,JKL

+ d𝑠	
𝜕𝑔
𝜕𝑠c + 𝐸

(()Y 
(32) 

Let us now assume an arbitrary stress increment tangent to the equipotential surface in 

the space of net stress plus suction. By definition of flow rule, the chosen stress 

increment vector Td𝜎+,JKL, d𝑠U must be normal to the flow vector d ef
eghi

jkl ,
ef
em
n, which 

means that d𝜎+,JKL
ef

eghi
jkl + d𝑠

ef
em
= 0 and the second-order plastic work calculated by 

equation (31) vanishes: 

 d𝑊(()Y〈𝐹𝑜𝑟𝑚	1〉 = 0	 (33) 

If the stress increment and plastic flow vector were also normal in the space of average 

skeleton stress and modified suction, the second-order term of the plastic work 

calculated by equation (32) should be zero too. This is however not the case because, if 

d𝜎+,JKL
ef

eghi
jkl + d𝑠

ef
em
= 0 is substituted in equation (32), we are left with: 

 d𝑊(()Y〈𝐹𝑜𝑟𝑚	2〉 = 𝐸(()Y (34) 

In conclusion, the normality between plastic flow vectors and equipotential surfaces is 

not preserved when these quantities are mapped from the space of net stress plus suction 

to the space of average skeleton stress plus modified suction. Similarly, if plastic flow 
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vectors are perpendicular to equipotential surfaces in the space of average skeleton 

stress plus modified suction, this normality is lost when these quantities are recast in 

the space of net stress plus suction. This is also true for the particular case of an 

associated flow rule where the potential and yield functions coincide and plastic strains 

are therefore normal to the yield surface. An associated flow rule ensures the symmetry 

of the hydro-mechanical stiffness matrix in finite element models of boundary value 

problems. Symmetric matrices can be easily inverted using efficient algorithms that 

cannot be applied to asymmetric matrices. Mapping an associated flow rule from one 

stress space to another might therefore cause a loss of associativeness, which will in 

turn produce a loss of structural symmetry and will increase computational costs. 

The normality of the flow rule is preserved in both stress spaces only if the right hand 

side of equation (34) is equal to zero, that is if 𝐸(()Y = 0. This restriction can be 

formulated in terms of d𝜖E  and d𝜖E
Y  or, alternatively, in terms of d𝑆I  and d𝑆I

Y by 

imposing that either equation (25) or equation (26) is equal to zero. This gives the 

following two alternative expressions of the same restriction: 

 −
1
2
𝑠
𝑛 R
Td𝜖E + (𝑛 − 2)	𝑆I	𝛿+,	d𝜖+,U	𝛿+,	d𝜖+,

Y + (1 − 𝑛)	𝛿+,	d𝜖+,	d𝜖E
YS = 	0 (35) 

 −
1
2 𝑠 Rd

T−𝑆I U	𝛿+,	d𝜖+,
Y + (1 − 𝑛)	𝛿+,	d𝜖+,dT−𝑆I

YUS = 0 (36) 

By using the plastic flow rule of equations (27) and (28), equation (35) is rewritten as: 

 −
l
2
𝑠
𝑛
oTd𝜖E + (𝑛 − 2)	𝑆I	𝛿+,	d𝜖+,U	𝛿+, 	

𝜕𝑔
𝜕𝜎+,JKL

+ (1 − 𝑛)	𝛿+,	d𝜖+, 	
𝜕𝑔
𝜕𝑠
p = 0 (37) 
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Similarly, by using the plastic flow definitions of equations (29) and (30), equation (36) 

is rewritten as: 

 −
𝜆F

2 𝑠 bd
T−𝑆I U	𝛿+, 	

𝜕𝑔F

𝜕𝜎+,F
+ (1 − 𝑛)	𝛿+,	d𝜖+, 	

𝜕𝑔F

𝜕𝑠Fc = 0 (38) 

Given that suction and porosity are positive (𝑠 ≠ 0 and 𝑛 ≠ 0) and the plastic strain 

increment is non-null (l ≠ 0 and 𝜆F ≠ 0), equations (37) and (38) are only fulfilled if 

the following two conditions are satisfied: 

 Td𝜖E + (𝑛 − 2)	𝑆I	𝛿+,	d𝜖+,U	𝛿+, 	
𝜕𝑔
𝜕𝜎+,JKL

+ (1 − 𝑛)	𝛿+,	d𝜖+, 	
𝜕𝑔
𝜕𝑠 = 0 (39) 

 dT−𝑆I U	𝛿+, 	
𝜕𝑔F

𝜕𝜎+,F
+ (1 − 𝑛)	𝛿+,	d𝜖+, 	

𝜕𝑔F

𝜕𝑠F = 0 (40) 

Considering that 𝛿+,
efr

eghi
r =

efr

e^r
 (where 𝑝F is the mean average skeleton stress) and 

	𝛿+, 	
ef

eghi
jkl =

ef
e^jkl

	 (where 𝑝JKL is the mean net stress) equations (39) and (40) can be 

further rewritten as: 

 Td𝜖E + (𝑛 − 2)	𝑆I	𝛿+,	d𝜖+,U	
𝜕𝑔
𝜕𝑝JKL 	+

(1 − 𝑛)	𝛿+,	d𝜖+, 	
𝜕𝑔
𝜕𝑠 = 0 

(41) 

 dT−𝑆I U	
𝜕𝑔F

𝜕𝑝F +
(1 − 𝑛)	𝛿+,	d𝜖+, 	

𝜕𝑔F

𝜕𝑠F = 0 (42) 

Equation (41) imposes that 𝐸(()Y = 0 by enforcing a relationship between the plastic 

potential 𝑔 and the increments of Cauchy strain d𝜖+, and water ratio strain d𝜖E  along 

the generic equipotential surface in the space of net stress plus suction. Similarly, 

equation (42) imposes that 𝐸(()Y = 0 by enforcing a relationship between the plastic 
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potential 𝑔F and the increments of Cauchy strain d𝜖+, and water saturation strain 

dT−𝑆I U along the generic equipotential surface in the space of average skeleton stress 

plus modified suction. Note that equations (41) and (42) are different representations 

of the same restriction in two distinct stress spaces. Therefore, if one of them is verified, 

the other one is also automatically true. 

The consequences of equations (41) and (42) are further investigated in the following 

with respect to the two cases of elastic and elasto-plastic stress increments along the 

generic equipotential surface. 

Case 1: elastic stress increment 

We first consider the case of an elastic increment along the generic equipotential 

surface. If the flow rule is associated, the stress state will move along the yield locus, 

which coincides with the equipotential surface (Figure 1a). Conversely, if the flow rule 

is not associated, the stress state will head inside the yield locus along the equipotential 

surface (Figure 1b).  

Because the increments of water saturation strain dT−𝑆I U and Cauchy strain d𝜖+, 

coincide with their elastic components d(−𝑆IB) and 𝑑𝜖+,B , the two equations (41) and 

(42) can be rewritten as: 

 Td𝜖EB + (𝑛 − 2)	𝑆I	𝛿+,	d𝜖+,B U	
𝜕𝑔
𝜕𝑝JKL +

(1 − 𝑛)	𝛿+,	d𝜖+,B 	
𝜕𝑔
𝜕𝑠 = 0 

(43) 

 d(−𝑆IB)	
𝜕𝑔F

𝜕𝑝F +
(1 − 𝑛)	𝛿+,	d𝜖+,B 	

𝜕𝑔F

𝜕𝑠F = 0 (44) 

and, by recalling that d𝑛B = −(1 − 𝑛)	𝛿+,	d𝜖+,B : 
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 d𝑆I
𝑛 − 2
1 − 𝑛 	d𝑛

B − d𝜖EB n	
𝜕𝑔
𝜕𝑝JKL + d𝑛

B 	
𝜕𝑔
𝜕𝑠 = 0 

(45) 

 d𝑆IB
𝜕𝑔F

𝜕𝑝F + d𝑛
B 𝜕𝑔

F

𝜕𝑠F = 0 (46) 

Equations (45) and (46) impose a restriction on the elastic law, and in particular on the 

admissible elastic changes of porosity, degree of saturation and water ratio strain along 

the generic equipotential surface. Once again, equations (45) and (46) are alternative 

forms of the same restriction but in different stress spaces. This restriction must be 

respected if the normality between plastic flow vectors and equipotential surfaces is to 

be preserved in both stress spaces. Of course, this restriction is automatically respected 

if elastic strains are neglected altogether.  

Case 2: elasto-plastic stress increment 

Next, we consider the case of an elasto-plastic increment along the generic equipotential 

surface. If the flow rule is associated and the model is non-strain-hardening, the stress 

state will move along the yield locus which coincides with the equipotential surface 

(Figure 1a). If the flow rule is instead not associated and the model is strain-hardening, 

then the stress state will head outside the yield locus along the equipotential surface 

(Figure 1b).  

Note that, for the other two possibilities where the flow rule is associated and the model 

is strain-hardening or the flow rule is not associated and the model is non-strain-

hardening, only the previous case of an elastic increment can occur along the 

equipotential surface. Therefore, in these two instances, it is sufficient to satisfy only 

the elastic restriction imposed by equations (45) and (46) to preserve normality. 
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For an elasto-plastic increment, equations (41) and (42) can be rewritten by separating 

the elastic and plastic strains as: 

Td𝜖EB + (𝑛 − 2)	𝑆I	𝛿+,	d𝜖+,B U	
𝜕𝑔
𝜕𝑝JKL 	+

(1 − 𝑛)	𝛿+,	d𝜖+,B 	
𝜕𝑔
𝜕𝑠

+	Td𝜖E
Y + (𝑛 − 2)	𝑆I	𝛿+,	d𝜖+,

Y U	
𝜕𝑔
𝜕𝑝JKL 	+

(1 − 𝑛)	𝛿+,	d𝜖+,
Y 	
𝜕𝑔
𝜕𝑠 = 0 

(47) 

(−d𝑆IB)	
𝜕𝑔F

𝜕𝑝F +
(1 − 𝑛)	𝛿+,	d𝜖+,B 	

𝜕𝑔F

𝜕𝑠F +	
T−d𝑆I

YU	
𝜕𝑔F

𝜕𝑝F +
(1 − 𝑛)	𝛿+,	d𝜖+,

Y 	
𝜕𝑔F

𝜕𝑠F = 0 (48) 

Here, we assume that the elastic restriction imposed by equations (45) and (46) are 

already satisfied so that equations (47) and (48) can be rewritten with reference only to 

plastic increments as: 

 	Td𝜖E
Y + (𝑛 − 2)	𝑆I	𝛿+,	d𝜖+,

Y U	
𝜕𝑔
𝜕𝑝JKL 	+

(1 − 𝑛)	𝛿+,	d𝜖+,
Y 	
𝜕𝑔
𝜕𝑠 = 0 

(49) 

 T−d𝑆I
YU	

𝜕𝑔F

𝜕𝑝F +
(1 − 𝑛)	𝛿+,	d𝜖+,

Y 	
𝜕𝑔F

𝜕𝑠F = 0 (50) 

By further taking into account the plastic flow rule of equations (27), (28), (29) and 

(30), we rewrite equations (49) and (50) as: 

 (2 − 𝑛)
𝜕𝑔
𝜕𝑝JKL 	d

𝜕𝑔
𝜕𝑠 −	𝑆I 	

𝜕𝑔
𝜕𝑝JKLn = 0 

(51) 

 (2 − 𝑛)
𝜕𝑔F

𝜕𝑝F 	
𝜕𝑔F

𝜕𝑠F = 0 (52) 

Given that porosity 𝑛 is comprised between zero and one, equations (51) and (52) are 

fulfilled if the following conditions are respectively verified: 



21 
 

 
𝜕𝑔
𝜕𝑝JKL 	d

𝜕𝑔
𝜕𝑠 −	𝑆I 	

𝜕𝑔
𝜕𝑝JKLn = 0 (53) 

 𝜕𝑔F

𝜕𝑝F 	
𝜕𝑔F

𝜕𝑠F = 0 
(54) 

Equations (53) and (54) are alternative representations, in different stress spaces, of the 

same restriction imposed this time on the plastic potential function. This restriction 

must be respected if the normality of the plastic flow rule is to be preserved in both 

stress spaces of net stress plus suction and average skeleton stress plus modified 

suction.  

In the space of net stress plus suction, equation (53) requires that either the component 

ef
e^jkl

 of the plastic flow vector is zero or the ratio between the two components of the 

plastic flow vectors ef
em

ef
e^jkl
t  is equal to 𝑆I. This requirement is met by a constitutive 

model where the equipotential surfaces in the (𝑝JKL, 𝑠) plane are quadrilaterals with 

two sides parallel to the 𝑝JKL axis and the other two sides given by parallel lines with 

slope −1 𝑆I⁄ . 

Equivalently, in the space of average skeleton stress plus modified suction, equation 

(54) requires that at least one component of the plastic flow vector, that is either ef
r

e^r
 or 

efr

emr
,  is zero. This requirement is met by a constitutive model where the equipotential 

surfaces in the (𝑝F, 𝑠F) plane are rectangles with sides parallel to the 𝑝F and 𝑠Faxes. 

4. CONCLUSIONS 

Multiple choices of stress-strain variables are possible to describe the deformation and 

water retention behaviour of unsaturated soils. Among these, the net stress plus suction 
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and the average skeleton stress plus modified suction represent two alternative sets of 

energetically consistent stress variables. This means that, when used in conjunction 

with their conjugate strains, both sets of stresses correctly calculate the first-order work 

input and, by integration, the change of internal energy along a generic stress-strain 

path. 

However, as shown in this paper, the net stress plus suction and the average skeleton 

stress plus modified suction calculate different values of the second-order work input 

when used in conjunction with their respective conjugate strains. The correct value of 

the second-order work input is the one calculated by the net stress plus suction, as 

shown by Buscarnera and di Prisco [15] via energy balance. The error made by the 

average skeleton stress plus modified suction only vanishes for paths where the change 

of either volumetric strains or degree of saturation is zero. This result does not 

contradict the suitability of both sets of variables for evaluating internal energy changes 

because, as shown by Houlsby [5], both sets of variables correctly calculate the first-

order work whose integration gives the change of internal energy.  

The paper has also shown that a hydro-mechanical elasto-plastic model formulated in 

terms of one set of stress-strain variables can be recast in the other set of variables via 

standard mapping relationships between the two stress-strain spaces. However, if a 

model formulated in terms of net stress plus suction is recast in terms of average 

skeleton stress plus modified suction (or viceversa), the normality of flow vectors to 

the equipotential surfaces may be lost, which of course violates the very definition of 

plastic potential. For an associated flow rule, this loss of normality will result in a loss 

of symmetry of the hydro-mechanical stiffness matrix during the analysis of boundary 

value problems by finite element models, which will in turn produce a deterioration of 
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algorithmic efficiency. In order to preserve normality in both stress spaces, it is 

necessary to impose some restrictions on the constitutive law, i.e. specific forms of 

elastic behaviour and plastic potential must be assumed. 
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FIGURES 
 

 
 
 

  

 
 
 
 

CAPTIONS 
 
Figure 1. Schematic representation of plastic yield and equipotential surfaces with a) 
associated flow rule and b) non-associated flow rule 
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