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Abstract 13 
The primary challenge for efficient geothermal doublet design and deployment is the adequate prediction of the 14 
size, shape, lateral extent and thickness (or: aquifer architecture) of aquifers. In the West Netherlands Basin, 15 
Lower Cretaceous sandstone-rich successions form the main aquifers for geothermal heat exploitation. Large 16 
variations in the thickness of these successions are recognised in currently active doublet systems that cannot be 17 
explained. This creates an uncertainty in aquifer thickness prediction, which increases the uncertainty in doublet 18 
lifetime prediction as it has an impact on net aquifer volume. The goal of this study was to improve our 19 
understanding of the thickness variations and regional aquifer architecture of the Nieuwerkerk Formation 20 
geothermal aquifers. For this purpose new palynological data were evaluated to correlate aquifers in currently 21 
active doublet systems based on their chronostratigraphic position and regional Maximum Flooding Surfaces. 22 
Based on the palynological cuttings analysis, the fluvial interval was subdivided into two successions; a Late 23 
Ryazanian to Early Valanginian succession and a Valanginian succession. Within these successions trends were 24 
identified in sandstone content. In combination with seismic interpretation, maps were constructed that predict 25 
aquifer thickness and their lateral extent in the basin. The study emphasises the value of palynological analyses 26 
to reduce the uncertainty of fluvial Hot Sedimentary Aquifer exploitation. 27 

 28 
 29 
 30 
Keywords: Direct-use geothermal, Hot Sedimentary Aquifers, Nieuwerkerk Formation, Sporomorph Eco-31 
Grouping, West Netherlands Basin. 32 
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Introduction 43 

In geothermal exploitation of sedimentary rocks, it is crucial to adequately predict the regional aquifer 44 

distribution. Often geological data is sparse and property extrapolation is required over large distances. 45 
This is especially challenging for fluvial aquifers, which are notorious for lateral variation in lithofacies and 46 
aquifer properties. The prediction of the regional sandstone distribution (henceforth fluvial architecture) from 47 
well logs in fluvial aquifers is often ambiguous because lithofacies distribution could be affected by both 48 
allogenic and autogenic processes (e.g., Hajek et al., 2010; Donselaar et al., 2013; Flood and Hampson, 2015; 49 
Van Toorenenburg et al., 2016). This is reflected by large aquifer thickness variations that are recognised in 50 
currently active geothermal doublet wells in the West Netherlands Basin (WNB). The fluvial, sandstone-rich 51 
successions that form the aquifer of the geothermal HON-GT doublet range in thickness from 50 to 150 m in 52 
approximately 1.5 km spaced wells (Figure 1). In addition, the depth of this aquifer below the top of the 53 
marginally marine Rodenrijs Claystone Member (e.g. Van Adrichem Boogaert and Kouwe, 1993) ranges from 54 
almost 100 m to more than 200 m in different geothermal wells. Up to now, these variations cannot be explained 55 
and create uncertainty in the prediction of lifetime and drilling costs of future doublet systems in the WNB.  56 

 57 

 58 
Figure 1: Gamma-ray logs of two geothermal doublets HON-GT and PNA-GT. Fault interpretation is based on Duin et al. 59 
(2006). Well-log correlation is based on ‘End-of-well reports’ (NLOG, 2017). 60 

 61 

  62 
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The aquifer in the geothermal wells of Figure 1 is interpreted as the Delft Sandstone Member which is 63 

part of the Lower Cretaceous Nieuwerkerk Formation (e.g., Van Adrichem Boogaert chriand Kouwe, 64 

1993; Den Hartog Jager, 1996; Herngreen and Wong, 2007, Donselaar et al., 2015). This member is 65 

characterised as a syn-rift, sandstone-rich interval ranging in age from Valanginian to Early 66 

Hauterivian, deposited in a meandering fluvial environment. Regional transgression and subsidence 67 

resulted in an increasingly marine character of the overlying sediments ranging from the restricted 68 

marine Rodenrijs Claystone Member to the marine Rijnland Group (Figure 2).  69 

 70 

 71 
Figure 2: Stratigraphic column for the Early Cretaceous section in the WNB indicating tectonic activity during deposition of 72 
the Rijnland Group, the Nieuwerkerk Formation and the main geothermal aquifers in the WNB: the Rijswijk Sandstone 73 
Member and the Delft Sandstone Member (Van Adrichem Boogaert and Kouwe, 1993). 74 
 75 

The interpretation of the Delft Sandstone Member as a single sandstone-rich interval in the upper 76 

section of the Nieuwerkerk Formation (Figure 3-A) is derived from lithostratigraphic regional well-log 77 

correlation from numerous hydrocarbon wells in the WNB (e.g., Racero-Baena and Drake, 1996; 78 

Herngreen and Wong, 2007). This model is commonly used in geothermal exploitation in the basin for 79 

doublet design and deployment. However, recent regional stratigraphic studies based on sequence 80 

stratigraphic principles did not acknowledge the Delft Sandstone Member (DeVault and Jeremiah, 81 

2002; Jeremiah et al., 2010). DeVault and Jeremiah (2002) state that because of the syn-rift origin of 82 

the Nieuwerkerk Formation, clusters of amalgamated sandstone-rich zones can exist throughout the 83 

Nieuwerkerk Formation that not necessarily form one single, continuous sandstone-rich interval 84 

(Figure 3-B). The existence of two geological models that describe sandstone distribution in the 85 

Nieuwerkerk Formation creates uncertainty for geothermal exploitation because both models have a 86 

different impact on possible interference and aquifer thickness prediction. If the aquifer is formed by a 87 

single continuous sandstone-rich interval, pressure communication could affect injectivity and 88 

productivity of adjacent doublets, as is illustrated in Figure 3-A. In contrast, pressure communication 89 

is less straightforward if different sandstone-rich zones occur with limited lateral extent. In the 90 

example of Figure 3-B, claystone-dominated zones can form flow barriers or baffles between doublets 91 

1 and 2. Furthermore, when the aquifer is not formed by a single sandstone-rich zone, the aquifer 92 

thickness depends on the lateral extent of the sandstone-rich zones that the doublets can encounter as 93 

is illustrated for doublet 2 in Figure 3-B. Furthermore, the model in Figure 3-B suggests that multiple 94 
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aquifer targets can be present at deeper and hotter stratigraphic intervals affecting the geothermal 95 

potential in the region. 96 

 97 

 98 

 99 

 100 
Figure 3: (A) Cartoons illustrating the difference in sandstone distribution in the Nieuwerkerk Formation in schematic strike 101 
sections on graben scale according to (A) the Delft Sandstone model and (B) the multiple sandstone-rich zones models. 102 

 103 

The goal of this study is to place the fluvial aquifers in a chronostratigraphic framework. The results 104 

should decrease the uncertainty in the prediction of aquifer thickness for new doublet systems in the 105 

WNB and contribute to optimised doublet design. To reach this goal, palynological samples from drill 106 

cuttings are analysed in three geothermal wells: HON-GT-01, HON-GT-02, and PNA-GT-02 to define 107 

the chronostratigraphic position of fluvial intervals and identify regional Maximum Flooding Surfaces 108 

(MFS’s). The analyses are used to create a framework for a well-to-well correlation from which an 109 

explanation of aquifer thickness variations in the different doublets is proposed. This explanation is 110 

used to interpret regional aquifer architecture in different fault blocks.   111 
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Data and Methods 112 

Overview  113 

This study was based on a combination of seismic interpretation, Gamma-Ray (GR) log correlation, 114 

and palynological analysis of cuttings. In the seismic interpretation, faults were identified in our study 115 

area in the WNB, which were active during deposition of the Nieuwerkerk Formation. In combination 116 

with a regional structural interpretation by Duin et al., (2006) the lateral extent of these faults was 117 

identified. Secondly, by utilising palynological analyses of cuttings the chronostratigraphic position of 118 

each aquifer sandstone interval was identified and MFS’s were interpreted. This formed the 119 

framework of improved geothermal GR well-log correlation. GR logs of eleven geothermal wells in 120 

our study area were used to compare fluvial architecture in different fault blocks. All results were 121 

finally combined in maps that predict the lateral extent of the sandstone-rich successions in the basin. 122 

An overview of the data that was used in our study is presented in Figure 4. 123 

 124 

 125 
Figure 4: Location of the geothermal wells for the GR well-log correlation, cuttings analysis, the outline of the seismic cross-126 
section and the regional structural interpretation by Duin et al. (2006). 127 

 128 

 129 

 130 

Structural setting of the Nieuwerkerk Formation 131 

On a seismic section perpendicular to the major fault trend, two seismic horizons were interpreted: the 132 

top and base of the Nieuwerkerk Formation. The basin wide section was derived by merging ten 3D 133 

seismic sections (Figure 4; Vondrak, 2016). Using horizon flattening of the top of the Formation, fault 134 

blocks were identified that experienced different tectonic movement affecting fluvial architecture of 135 

the Nieuwerkerk Formation. This is derived from thickness differences of the Formation between the 136 

major faults. Using structural interpretation by Duin et al. (2006), the regional outlines of the fault 137 

blocks that experienced different tectonic movement during deposition of the Nieuwerkerk Formation 138 

were mapped. This result was used as the basis for regional well-log correlations and generation of 139 

maps that describe the distribution of sandstone-rich successions.  140 
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Palynological analysis 141 

A total of 42 cuttings samples from well PNA-GT-02, 40 samples from HON-GT-01 and 28 samples 142 

from HON-GT-02 was analysed. Two additional samples from well VDB-GT-04 (at depth 1890 m 143 

and 1910 m) complemented the palynological analysis of Munsterman (2012). The samples were 144 

processed at the TNO laboratory using the standard sample processing procedures (e.g., Janssen and 145 

Dammers, 2008), which involved HCl and HF treatment, and sieving over an 18 µm mesh sieve. The 146 

well selection was based on the well location in different graben blocks and the total thickness of the 147 

Nieuwerkerk Formation that these wells encountered. Larger total thickness could potentially reveal 148 

more information from the fluvial interval. The cuttings descriptions and the GR logs in the ‘End-of-149 

well-reports’ (NLOG, 2017), in combination with results from Munsterman (2010) provided an basis 150 

for the selection of sample depths. The location of the wells in different fault blocks allowed relating 151 

differences in fluvial architecture to the syn-tectonic origin of the interval. The palynological analysis 152 

consisted of age dating and identification of the Elegans MFS and the Paratollia MFS (e.g., Jeremiah 153 

et al., 2010), which formed the framework of our regional correlation scheme.  154 

 155 

 156 

 157 

Age dating 158 

The age interpretation was based on the Last Occurrence Datum (LOD) of palynomorphs, in particular 159 

dinoflagellate cysts (dinocysts), and pollen and spores (sporomorphs). Key-references concerning the 160 

palynostratigraphy of the Early Cretaceous from the North Sea region were: Abbink (1998), Costa and 161 

Davey (1992), Davey (1979; 1982), Duxbury et al. (1999), Duxbury (2001), Heilmann-Clausen 162 

(1987), Herngreen et al. (2000), Partington et al. (1993) and Riding and Thomas (1992). The 163 

international geological time scale of Gradstein et al. (2012) was followed.  164 

  165 
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Sporomorph Eco-Grouping (SEG) method 166 

The SEG method (Abbink, 1998; Abbink, 2001; Abbink et al., 2004A and 2004B) was used to identify 167 

the Paratollia MFS in the fluvial aquifer interval of HON-GT-01, HON-GT-02, and PNA-GT-02. With 168 

this method, sporomorph types were related to vegetation eco-groups. Abbink et al. (2004) classified 169 

Jurassic to Lower Cretaceous sporomorphs into six eco-groups. (1) Upland vegetation grows on higher 170 

terrain well above ground water level, which is never submerged by water. (2) Lowland vegetation is 171 

found on plains with or without fresh water swamps. It is not influenced by salt water. When 172 

periodically submerged it is referred to as ‘Wet-Lowland’ otherwise ‘Dry-Lowland’. (3) River 173 

vegetation is found on riverbanks and could be periodically submerged.  (4) Pioneering vegetation 174 

occupies recently developed eco-space that has been previously submerged by seawater. (5) Coastal 175 

vegetation is found along the coast. (6) Tidally influenced vegetation is daily influenced by tidal 176 

changes and regularly submerged in a salt-water regime. Quantitative analysis of sporomorphs 177 

indicated percentages of eco-groups that were represented in the cuttings samples. In the SEG method 178 

it is assumed that the lower coastal plain area is reduced during a transgression (Figure 5-A to B). 179 

Therefore the relative share of Lowland eco-group vegetation is minimal on the moment of maximum 180 

transgression, when a MFS is formed. Based on this assumption, trends in relative representation of 181 

eco-groups were related to sea-level fluctuation. MFS’s were assigned to samples where the relative 182 

share of ‘Upland’ sporomorphs peaked with respect to the ‘Lowland’ eco-group while the marine 183 

influenced eco-groups were poorly represented or absent. Cuttings samples with 10 m intervals were 184 

analysed in the 2560 to 2810 m (MD) interval in HON-GT-01, 2590 to 2860 m (MD) in HON-GT-02 185 

and 2440-2850 m (MD) in PNA-GT-02. These intervals were selected based on their fluvial origin 186 

which was derived from the cuttings description in the ‘End-of-well-reports’ (NLOG, 2017).  187 

 188 

 189 

Figure 5: Schematic representation of the impact of (A) low sea level and (B) high sea level on the relative occurrence of eco-190 
groups: 1=Upland, 2=Lowland, 3=River, 4=Pioneer, 5=Coastal, 6=Tidally influenced. Note the lower relative occurrence of the 191 
‘Lowland’ eco group with high sea level in (B). Modified from Abbink et al. (2004a,b). 192 

  193 
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Results  194 

Seismic interpretation 195 

On the seismic cross-section three half-grabens and one horst block were recognised (Figure 6-A). The 196 

fault blocks were referred to as ‘Westland graben’, ‘Pijnacker graben’, ‘VDB graben’ and 197 

‘Bergschenhoek horst’. The interpretation of the top and base of the Nieuwerkerk Formation indicated 198 

a lateral thickness variation of the Nieuwerkerk Formation in these grabens and horst, created by syn-199 

depositional fault movement. Horizon flattening of the Top Nieuwerkerk Formation horizon was 200 

applied to highlight fault blocks where sedimentation might be affected by this tectonic movement 201 

(Figure 6-B). The associated faults that were active during deposition of the formation are highlighted 202 

in red. The regional extent of these faults was derived from the structural interpretation by Duin et al. 203 

(2006). The three grabens are highlighted on the map in Figure 6. These results were used for the 204 

comparison of fluvial reservoir architecture in these three fault blocks.  205 

 206 

 207 
Figure 6: (A) Seismic section with interpretation of faults as well as top (yellow) and base (pink) of the Nieuwerkerk 208 
Formation horizons. (B) Horizon flattening on top Nieuwerkerk Formation. The outline of the seismic section and the outline 209 
of the interpreted faults are indicated on the map. 210 

  211 
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Palynological analysis 212 

Palynological age dating formed the basis of the GR well-log correlation scheme. An overview of the 213 

results is presented in Figure 7 and Table 1. A detailed description of the analysis of all samples is 214 

presented in Appendix 1. Two MFS’s were identified in HON-GT-01 and HON-GT-02 and four 215 

MFS’s in PNA-GT-02. The MFS that is close to the Early Valanginian to Late Ryazanian boundary is 216 

associated with the Paratollia MFS in all wells. In well PNA-GT-02, this was based on the LOD of 217 

Stiphrosphaeridium dictyophorum (Sdi) at 2600 m and the LOD of Canningia compta (Cco) at depth 218 

2620 m (Appendix 1). In HON-GT-01, the Paratollia MFS was interpreted at depth 2730 m based on 219 

the LODs of Canningia compta (and a morphologically closely related Escharisphaeridia spp. at 2730 220 

m) and Perisseiasphaeridium insolitum at depth 2740 m MD (Costa and Davey, 1992; Strauss et al., 221 

1993). In well HON-GT-02, this is based on the LOD of a single dinoflagellate cyst 222 

Stiphrosphaeridium dictyophorum.  223 

 224 

 225 

Figure 7: Combination GR logs, Palynological age dating of intervals and results of the SEG analysis. Age interpretation in 226 
VDB-GT-04 is based on Munsterman (2012). (A) Sandstone-rich zone of Valanginian age, (B) sandstone-rich zones of Early 227 
Valanginian/Late Ryazanian age. 228 

  229 
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The palynofacies and their relative occurrence in both HON-GT wells and PNA-GT-02 indicate that 230 

the Valanginian to Late Ryazanian interval was formed in a relatively humid, fluvial lowland 231 

environment, not directly positioned close to the coast. This last observation is derived from the 232 

absence or rare recognition of marine indicators. Both the sandstone content and the relative 233 

occurrence of sporomorphs associated to the ‘Lowland-dry’ eco-group is higher in HON-GT-02 234 

compared to HON-GT-01, despite the relatively small distance of approximately 1.5 km between the 235 

wells in this doublet (Figure 7). 236 

 237 

  238 

 239 
Table 1: Overview of interval age dating. 240 

 241 
 242 

 243 

 244 

In VDB-GT-04, the recognition of the Paratollia Ammonite Zone was based on the presence of 245 

Perisseiasphaeridium insolitum, Stiphrosphaeridium dictyophorum, Canningia compta, 246 

Hystrichosphaeridium scoriaceum and Oligosphaeridium diluculum in the samples at 1890 m and 247 

1910 m MD (Costa and Davey, 1992). A marine origin of the sample at 1890 m MD was recognised 248 

and therefore it may most likely be associated with the Paratollia MFS. Note that this is not based on 249 

SEG analysis in this well.   250 

 251 

The results indicate that the aquifers in the four wells are not part of a single sandstone-rich 252 

succession. At least two sandstone-rich zones are encountered of Valanginian and Ryazanian age with 253 

limited lateral extent (Figure 7). The Valanginian sandstone-rich zone A in HON-GT-01 relates to the 254 

upper section of the sandstone-rich zone in PNA-GT-02 with the same age. In contrast, the 255 

Valanginian succession in VDB-GT-04 is claystone-dominated. In this well, the aquifer is formed by a 256 

Ryazanian sandstone rich-zone B that relates to the Ryazanian sandstone-rich zone in PNA-GT-02. In 257 

HON-GT-01 the Ryazanian succession is claystone-dominated. Stacking of both sandstone-rich zones 258 

Depth (m) MD PNA-GT-02

2120-2175 Late Barremian

2195-2215 late Early Barremian, elegans Ammonite Zone or older

2235-2275 earliest Barremian variabilis Ammonite Zone or older

2440-2590 Valanginian

2600-2850 Late Ryazanian- Early Valanginian

HON-GT-01

2320 Late Barremian

2340-2360 early Late Barremian

2380-2420 late Early Barremian, elegans Ammonite Zone or older

2560-2730 Valanginian

2740 Early/earliest Valanginian

2750-2810 Late Ryazanian, post-kochi Ammonite Zone

HON-GT-02

2610-2820 Valanginian

2830-2860 Early Valanginian

VDB-GT-04

1320-1530 Barremian (Munsterman, 2012)

1530-1625 Barremian - Hauterivian (Munsterman, 2012)

1625-1890 Valanginian (Munsterman, 2012)

1890-1910 Late Ryazanian- Early Valanginian
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A and B accounts for the increased aquifer thickness in well PNA-GT-02. In contrast, lower aquifer 259 

thickness could be explained by the presence of a single sandstone-rich zone in HON-GT-01 and 260 

VDB-GT-04. 261 

 262 

Regional well-log correlation 263 

In the four wells with palynological analysis, the Paratollia MFS was recognised at approximately 264 

300 m true vertical depth below the Elegans MFS (Figure 8). In the wells without palynological 265 

cuttings analysis or in wells that did not reach sufficient depth, the top and base of the Valanginian 266 

succession were interpreted  by extrapolation GR log patterns assuming constant thickness of the 267 

Valanginian interval. The resulting correlation scheme indicates that the Valanginian interval is 268 

sandstone-rich in both the Westland and Pijnacker grabens. In contrast, this interval has low sandstone 269 

content in the VDB fault block (Figure 8). The Early Valanginian/Ryazanian interval has a low 270 

sandstone content in the Westland fault block, but high sandstone content in the Pijnacker and VDB 271 

fault blocks. Our correlation scheme suggests that the prevailing position of the meander belts in 272 

which sand was deposited shifted from the east to the west side of the basin during the Ryazanian and 273 

Valanginian. In the Pijnacker fault block, both the Valanginian and the Early Valanginian/Ryazanian 274 

intervals have a high sandstone content. This accounts for the largest interval with high sandstone 275 

content in all geothermal wells in the basin of approximately 250 m thickness in the PNA-GT-02 well. 276 

The other wells in this fault block have a limited total depth. Therefore they did not intersect the total 277 

Early Valanginian/Ryazanian interval. Similarly, the limited total depth of the VDB-GT-04 well only 278 

shows 70 m of the Early Valanginian/Ryazanian interval of which approximately 50 m is sandstone-279 

rich. In the Westland fault block, the Valanginian aquifer thickness ranges from 50 to 150 m. In the 280 

HON-GT-01 well, the lower half of the Valanginian interval is claystone-rich, unlike the other wells. 281 

The net-sandstone content (N/G) of the combined Valanginian and Early Valanginian intervals is 282 

calculated for each well. A specific GR log cut-off value is used in each well to take the differences in 283 

GR calibration into account. The N/G values range from 20% in the HON-GT-01 well where thick, 284 

non-aquifer intervals are included in the calculation, to 50% in the HAG-GT-01 well where the N/G 285 

calculation is based on the sandstone-dominated Valaginian interval. The arithmetic average N/G in all 286 

wells of the combined Valanginian and Early Valanginian/Late Ryazanian intervals is 35%. 287 

 288 



12 
 

 289 
Figure 8: Well-log correlation of geothermal wells in three different fault blocks in the WNB. Solid lines indicate MFS 290 
interpretation based on cuttings analysis, dotted line is the projected MFS based on TVD, in wells without cuttings analysis. 291 
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Discussion  292 

Ryazanian/Early Valanginian shift of sandstone-dominated facies 293 

The seismic facies interpretation of a regional westward shift of sandstone-dominated facies during the 294 

Valanginian (Den Hartog Jager, 1996) is corroborated  by our palynology-based correlation (Figure 9). 295 

Because of the unidirectional nature of the shift in sandstone-dominated facies in our study, we 296 

propose a tectonic origin of the shift. In absence of such tectonic control, successive meander-belt 297 

avulsions and inherent compensational stacking would be the ruling processes, and a random spatial 298 

distribution of the fluvial sandstones the characteristic sedimentary architecture (e.g., Stouthamer and 299 

Berendsen, 2007; Hajek et al., 2010; Donselaar et al., 2013; Flood and Hampson, 2016; Van 300 

Toorenenburg et al., 2016). Based on this hypothesis, maps are generated that predict the lateral extent 301 

of the Ryazanian/Early Valanginian sandstone-rich zone (Figure 9-A) and the Valanginian sandstone-302 

rich zone (Figure 9-B).  303 

 If tectonic movement had a strong impact on sedimentation, this might invalidate our 304 

assumption that the Valanginian interval has a constant thickness in our study area.  In that case, it 305 

could be expected that the thickness of the Valanginian interval would increase in wells that are closer 306 

towards the hanging wall of grabens. However, we expect that this would not have a significant impact 307 

on the trend in Figure 8 for two reasons. Firstly, the geothermal wells in the ‘Pijnacker Graben’ and 308 

‘Westland Graben’, are drilled more or less parallel to the major fault trend and therefore the thickness 309 

correction would affect them equally. Secondly, in the wells with our palynological analysis an 310 

approximately constant thickness was observed, despite the fact that the four geothermal wells are 311 

located in different fault blocks. Additional palynological analysis in other WNB doublets, could 312 

verify if the assumption is valid.  313 

 314 

 315 
Figure 9: Series of maps indicating the location of sand-dominated sedimentation during the (A) Ryazanian / Early 316 
Valanginian and (B) Valanginian. Arrows indicate fluvial palaeoflow direction. (C) Cartoon illustrating facies distribution in 317 
the fluvial interval of the Nieuwerkerk Formation on a cross-section perpendicular to the fault trend. 318 
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Regional aquifer architecture  319 

In the present study, the correlation of the sandstone intervals in the Nieuwerkerk Formation are based 320 

on their chronostratigraphic position and the occurrence of two MFS’s, whereas previous studies used 321 

a  lithostratigraphic correlations. Van Adrichem Boogeart and Kouwe (1993) identified the youngest 322 

fluvial sandstone-rich interval in the Formation as the Delft Sandstone Member. Their regional aquifer 323 

architecture model (Figure 2-A) is used in current geothermal exploitation in the basin but does not 324 

adequately explain aquifer thickness variations like shown in Figure 1. DeVault and Jeremiah (2002) 325 

described the regional aquifer architecture as a more random distribution of amalgamated sand 326 

complexes with limited lateral continuity that occur throughout the Nieuwerkerk Formation. These 327 

previous descriptions of the aquifer architecture were based on hydrocarbon wells on structural highs 328 

in the basin. Previously aquifer thickness prediction in the grabens was uncertain without well control, 329 

especially because these fault blocks might have experienced different tectonic movement. New well 330 

data from the graben fault blocks and the palynological analysis of our study suggest the aquifer 331 

architecture as sketched in Figure 9.  332 

Because the number of geothermal wells in the grabens is still limited, the continuity of 333 

sandstone complexes is still uncertain. In the entire fluvial Valanginian to Late Ryazanian interval, 334 

N/G ranges from 20% to 50% with and arithmetic average of 35% (Figure 8). These percentages are 335 

an initial estimate of N/G, as no sensitivity study of GR cut-off value is included. Nevertheless this 336 

indicates that significant volumes of claystone are preserved. The Nieuwerkerk Formation is deposited 337 

by a relatively small meandering fluvial system with a paleoflow depth of approximately 4 m (e.g., 338 

DeVault and Jeremiah, 2002). The associated paleo channel width and channelbelt width are therefore 339 

estimated to be approximately 40 m and 1 to 2 km, respectively (e.g., Gibling, 2006, Bridge, 2006). 340 

The maximum width of individual sandstone bodies is smaller than the channelbelt widths (e.g., 341 

Donselaar and Overeem, 2008, Donselaar et al., 2015). Through amalgamation sandstonebody width 342 

might extend further. However, claystone bodies are likely to form flow baffles or barriers 343 

perpendicular to the paleoflow direction. This should be taken into account in doublet design and 344 

doublet placement as it will have an impact on possible interference between adjacent doublets and 345 

flowpath formation between injection- and production wells of individual doublets (e.g., Willems et 346 

al., 2017).   347 

Our results have an impact on expected aquifer thickness in different fault blocks. Larger 348 

aquifer thickness could be expected in the Pijnacker fault block where sandstone-dominated zones in 349 

both succession overlap. Furthermore, our results affect expected aquifer depth and therefore drilling 350 

costs in different fault blocks. As is illustrated in Figure 9-C, the aquifer is found at larger depth in the 351 

VDB fault block compared to the other two fault blocks. In addition, our results can be used for 352 

aquifer property extrapolation for new geothermal doublets. For example, the expected injectivity and 353 

productivity of future doublets should be based more on values, which are measured in geothermal 354 

doublets in the same fault block. It is also possible that stratigraphically different sandstone 355 

successions have different properties. In current WNB doublets, productivity and injectivity vary 356 

considerably (van Wees et al., 2012). However, the variation could also be due to other factors such as 357 

scaling or skin formation. Van Wees et al. (2012) pointed out that unfortunately it is not possible to 358 

identify a single cause of this variability because of limited available data.  359 

 360 

Palynological analyses and SEG method 361 

Comparison of our results with those of Munsterman (2012) shows that the Valanginian interval in 362 

VDB-GT-04 has a relatively more lower coastal plain character with respect to the HON-GT doublet 363 

and the PNA-GT-02 well. This could be due to a topographical difference between the fault blocks 364 

during the Valanginian. The SEG analysis indicated that in the HON-GT-02 well, a relatively higher 365 

fraction of ‘Lowland-dry’ type sporomorphs were recognised which could point at a more inland 366 
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location of the well compared to HON-GT-01 that is drilled more towards the paleo-coastline in the 367 

north (e.g., Den Hartog Jager, 1996). The Valanginian interval of HON-GT-01 also has a higher 368 

claystone content that could also be explained by a more near coastal location of this well. In addition, 369 

the change in sandstone content could be explained by fault movement that directed the location of 370 

sand-rich meander belt deposits towards well HON-GT-02 while HON-GT-01 was located in the 371 

floodplain region. Due to the limited number of wells in our study, it is currently unclear how these 372 

observations are related to the fluvial architecture, sandstone distribution and the location of the paleo-373 

coastline. 374 

The palynological age dating gives an indication of the age of interval and is not able to 375 

identify exact age boundaries or the exact location of the Paratollia MFS. The resolution of the age 376 

dating is limited by the sample spacing of 10 m and the risk of caving from higher sections. 377 

Uncertainty in age interpretation applies most to the Valanginian - Late Ryazanian boundary in our 378 

study area. Often, our interpretation of this boundary was based on the recognition of a limited number 379 

of palynological indicators. In contrast, identification of the marine Elegans MFS has a lower degree 380 

of uncertainty because it was based on a combination of GR log interpretation and palynological 381 

analysis. This is because GR log signals in marine intervals are more often related to sea-level changes 382 

compared to GR log signals in fluvial intervals, like the Valanginian to Late Ryazanian interval in our 383 

study area. In addition marine dinoflagellate cysts provide a higher resolution dating than (long 384 

ranging) terrestrial spores and pollen.  385 

Our results underline the importance of palynological analysis for fluvial well-log correlation. 386 

These analyses enabled the identification of markers within fluvial claystone-dominated as well as 387 

sandstone-dominated successions, which would not have been possible based on GR log interpretation 388 

alone.  389 

  390 

 391 

Conclusions 392 

Based on the results of this study we can conclude that: 393 

• Current WNB geothermal doublets encounter sandstone-rich zones in at least two stratigraphic 394 

intervals of  Valanginian age and of Early Valanginian/Ryazanian age. 395 

• Sandstone-rich zones in both intervals can overlap, which accounts for the large aquifer 396 

thickness in the PNA-GT-02 well.  397 

• Valanginian tectonic movement induced a shift of the deposition of sandstone-dominated 398 

facies from the east to the west of the basin.  399 

• This shift has an impact on expected aquifer thickness and aquifer depth in different fault 400 

blocks in the basin. 401 

 402 
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