University

of Glasgow

Herry, H. and Anderson, P. (2013) Planning Configuration Relocation on the BonFIRE
Infrastructure. In: IEEE 5th International Conference on Cloud Computing Technology
and Science (CloudCom), Bristol, UK, 2-5 Dec 2013, pp. 164-169. ISBN
9780769550954.

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/157060/

Deposited on: 12 February 2018

Enlighten — Research publications by members of the University of Glasgow_
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/157060/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Planning Configuration Relocation
on the BonFIRE Infrastructure

Herry Herry* and Paul Anderson'
School of Informatics, University of Edinburgh
Edinburgh, UK
*h.herry @sms.ed.ac.uk, Tdcspaul@ed.ac.uk

Abstract—The Nuri configuration tool uses automated plan-
ning techniques to reconfigure computing infrastructures from
one declarative state to another, while maintaining any required
constraints at all stages of the generated workflow. This paper
presents the results of our experiments using Nuri to relocate
complete 3-tier web applications between two BonFIRE sites. We
describe the architecture of the tool and present the results of the
experiment which demonstrate that Nuri is capable of planning,
and executing this relocation in a reasonable time, with guaran-
teed constraints on the system throughout the reconfiguration.

I. INTRODUCTION

Cloud computing is now an accepted option for deploying
application services — services can be easily created, deleted
and relocated to cater for changes in requirements, demand
and economics. Within a single installation, virtual machine
migration makes this a straightforward process — machine
images can be transferred between physical machines without
changes to the configuration, and without even interrupting
a running process. However, to fully exploit the potential
of the cloud, we need to be able to move services between
different infrastructures, reliably and without disrupting the
operation of the overall service during the transfer process.
This is much more complex; live VM migration is not nor-
mally possible between different sites, so new copies of the
services must be instantiated on the new infrastructure, and
any clients of the service must be reconfigured to reference
the new service, before we can tear down the old service.
This is likely to involve some reconfiguration of the services
themselves (as a minimum, the IP addresses will change). Any
significant distributed application will require a more complex
reconfiguration, and a carefully crafted workflow to preserve
a running service during all stages of the transfer. We will use
the term relocation to refer to this process, since migration is
commonly used for the simpler case where virtual images are
moved without reconfiguration.

Armstrong [1] offers a solution to this problem using a
recontextualization approach with dynamic virtual devices.
However this only works where an identical VM image can
be used on both sites. If the virtualisation technology is
different (for example), or if other aspects of the relocation
require reconfiguration above the VM level, then this is
not appropriate. System configuration tools such as Puppet
[2] allow us to configure a system according to a broadly
declarative specification. If the initial system is configured

using such as tool, then the same specification can be used
to configure the destination system in exactly the same way.
These tools are designed to support the portability of ap-
plication configurations, even in the face of differences at
other layers (for example, the operating system). However,
they make no guarantees about the order of the changes that
will be applied to move the system from one configuration
to another; to maintain a consistent application during the
transfer process requires a manually created workflow. The
prototype Nuri configuration tool [3], [4] is a declarative
configuration tool which uses automated planning techniques
to generate workflows between any two arbitrary states, while
maintaining any required (declarative) constraints at all stages
of the workflow.

The BonFIRE infrastructure provides an ideal testbed on
which to explore the relocation process; it is a federated
cloud infrastructure with heterogeneous platforms — for ex-
ample, HPLabs site, INRIA and EPCC, are all maintained
independently by different teams, using different technologies
(Cells and OpenNebula). There is no capability for transferring
virtual machines between sites, but there is a common broker
that can be used to manage virtual machines on multiple the
sites.

This paper describes an experiment which show that the
Nuri configuration tool is capable of automatically planning
and orchestrating the relocation of multi-tier applications
in this environment. Moreover, the planning and execution
happen within a reasonable amount of time, and the global
constraints are maintained automatically at every stage of the
relocation.

We start by describing the SFP language which is used
to model the configuration specification of the system. We
then illustrate the relocation process with a simple example
to transfer a cloud application service from one BonFIRE site
to another. This is followed by the details of the planning
and implementation stages, and a brief description of the Nuri
architecture. Finally, we present the experimental results using
an extended example.

II. MODELLING

To model the system, we use the object-oriented configura-
tion language SFP [4]. Inspired by SmartFrog [5], SFP adopts
a prototype-based language approach which allows an object
to be used as a template for another object. Each resource

EPCC INRIA EPCC INRIA
s1 |« s2 s2 |«
vm1 vm2 vm2

pc pc
(a) (b)

Fig. 1: System configuration of the example system in the
current (a) and desired (b) state.

is modelled as an object whose state is represented by a
collection of attribute-value pairs, and the union of all these
object states represents the state of the system.

A unique feature (among declarative configuration lan-
guages) of SFP is that it allows us to define a procedure
which represents the capability of an object to change its (or
another object’s) state by modifying particular attribute values,
whenever the current state satisfies a particular condition. Each
procedure declaration consists of a set of parameters, a set of
conditions, a set of effects, and a numeric cost value. This
information is used by the automated planner to determine
the actions available to move from one configuration state to
another.

SFP also allows us to define the desired state as a “loose”
constraint. This allows the administrator to work at a higher
level by defining a whole set of possible desired states. It
also affords the planner more flexibility in searching for the
best solution, and it allows us to define “global constraints”
which must be satisfied at every stage during a sequence of
reconfiguration steps.

III. EXAMPLE

Assume we have a production service (s1) which is running
on the EPCC BonFIRE site, and is currently being used by
a client (pc). Assume that we also have a new version of the
service (sg) which is being tested on the INRIA site. After
ensuring that the new version has passed the tests, we would
like to replace the production service with the new one, while
preserving the global constraint that the client is always using
a running service. Figure la and 1b illustrate the current and
desired state of the system respectively.

We use SFP configuration language to model the config-
uration state of the system. Figure 2 shows a declarative
specification of the current state. In the desired state, three
attributes are different:

1) The value of attribute created in line 7 is set to false
since the vm; and s; are no longer required;

2) The value of attribute in_cloud in line 15 is set to
proxy.epcc since we require vmg and service ss at
INRIA instead of EPCC;

3) The value of attribute refer in line 20 is set to vm2.s2
since we require pc to use so (the new version).

The final specification after the changes is shown in figure 3.
Note that the global constraint remains the same.

1 |include ”schemata.sfp”

2 | proxy isa Machine {

3 epcc isa Cloud { location = “uk—epcc”; }
4 inria isa Cloud { location = “fr—inria”; }
511}

6 |vml isa VM {

7 created = true

8 in_cloud = proxy.epcc

9 sl isa Service { installed = true
10 running = true
11 version = 1; }
12

13 |vm2 isa VM {

14 created = true

15 in_cloud = proxy.inria

16 s2 isa Service { installed = true
17 running = true
18 version = 2; }
19

20 | pc isa Client { refer = vml.sl; }
21 | global { pc.refer.running = true; }

Fig. 2: The (declarative) specification of the current state of
the example system in SFP, which uses the schema defined in
figure 4.

1 |include ”schemata.sfp”

2 | proxy isa Machine {

3 epcc isa Cloud { location = “uk—epcc”; }
4 inria isa Cloud { location = “fr—inria”; }
5

6 |vml isa VM { created = false

7 sl isa Service; }

8 |vm2 isa VM {

9 created = true

10 in_cloud = proxy.epcc

11 s2 isa Service { installed = true

12 running = true

13 version = 2; }

14

15 | pc isa Client { refer = vm2.s2; }

16 | global { pc.refer.running = true; }

Fig. 3: The (declarative) specification of the desired state of
the example system in SFP, which uses the schema defined in
figure 4.

Before deploying the changes, our prototype will submit
these specifications'to the planner which automatically gener-
ates the following sequence of actions:

1) proxy.inria.delete (vim=vm2)

2) proxy.epcc.create (vm=vm2)

3) vm2.s2.install

4) vm2.s2.start

5) pc.redirect (s=vm2.s2)

6) proxy.epcc.delete (vm=vml)

Clearly, the execution of the above plan will achieve the
desired state as defined in figure 3: service so will be relocated
from INRIA to EPCC site, all resources in vm; will be deleted
(including service s1), and pc will refer to service s;. Note

'In practice, the user will only need to specify the desired state (figure
3). The current state (figure 2) will be automatically generated on the master
node by aggregating the state of all client nodes.

1 | schema Machine

2 | schema Cloud {

3 location = 77

4 sub create_vm (vm : VM) {

5 condition { vm.created = false; }
6 effect { vm.created = true

7 vm.in_cloud = this; }
8

9 sub delete_vm (vm : W) { ... }

10 |}

11 | schema VM extends Machine {

12 created = false; in_cloud isref Cloud
13

14 | schema Service {

15 installed = false

16 running = false

17 sub install { ... }

18 sub uninstall { ... }

19 sub start { ... }

20 sub stop { ... }

21

22 | schema Client { refer isref Service
23 sub redirect (s Service) { ... }
24 |}

Fig. 4: The schema (schemata.sfp). For brevity, details of some
procedures are omitted. A complete version of the schema is
available at:

http://homepages.inf.ed.ac.uk/s0978621/bonfire/schemata.sfp.

that the intermediate states during configuration do not violate
any global constraint — i.e. pc will always refer to a running
service.

IV. PLANNING

Deployment of a specification involves a sequence of config-
uration steps which execute procedures to change the attribute
value towards the desired state, preserving the global con-
straints at every step. To achieve this, we employ a technique
described in [4] which compiles the current and desired state
specifications, together with the global constraints, into a clas-
sical planning problem (using a Finite-Domain Representation
(FDR) [6]). We then use an automated planner to generate the
workflow.

The complexity of finding a solution plan is generally
classified as a PSPACE-complete problem [7], which can be
very hard to solve. Fortunately, there are several heuristic
search techniques which can be used to significantly reduce
the computation time — for example a combination of an
admissible heuristic, with an A* search algorithm to generate
an optimal plan, and a combination of an inadmissible heuris-
tic with a greedy algorithm to generate a satisfying plan’.
Although the first technique has the advantage of producing
an optimal plan, in most cases it requires much longer to find a
solution. The second technique will find a solution in a shorter
time, but this is not guaranteed to be optimal.

In the system configuration domain, the planning time is
affected by several factors; the first is the total number of

2 A satisfying plan is a non-optimal solution. More detail on admissible and
inadmissible heuristics can be found in [8].

variables in the configuration specification that need to be
considered — this is related to the number of components since
the number of variables is the sum of components’ attributes;
the second is the complexity of the goal state as well as the
preconditions and postconditions of the operators — this is
related to the coupling degree of the planning problem which
determines the difficulty of the solution.

Our prototype combines these two techniques into a 2-stage
search:

1 We focus on solving the planning problem as quickly as
possible using the first combination — i.e. an inadmissi-
ble heuristic such as AFF [9] or A [10] with a greedy
search algorithm.

2 We optimise the solution plan found on the first stage by
solving the same planning task, but only use the actions
selected by the plan. We then use the first combination
— i.e. an admissible heuristic, such as A"™M-¢t [[1], with
A* search algorithm.

With this 2-stage search, we can achieve a suboptimal plan
within a reasonable time. In practice, we have found that this
usually produces a globally optimal plan for most test-cases.

V. IMPLEMENTATION

Figure 5 shows the architecture of the Nuri configuration
tool. A master node controls a set of client nodes. The
master node is responsible for generating and orchestrating the
execution of the plan to achieve the desired state. Each client
has an agent which is responsible for instantiating software
components, generating the current state of the node, and
invoking the actions. The communication between the nodes,
either master/client or between clients, uses an HTTP/JSON
protocol.

Currently, the whole of the configuration tool is imple-
mented in Ruby, apart from the planner which is implemented
in C++. We use a modified version of FastDownward planner
[12]. Every computing resource is managed by an instance of
a Nuri module which consists of:

1) An SFP schema, which is a declarative description of
an abstract resource;

2) A Ruby class, which has implementation code for query-
ing the current state of the component and implementing
the SFP procedures.

There is a clear separation between the SFP description and
the Ruby implementation. The mapping from SFP to Ruby
and vice versa is done by the agent using the SFP-Ruby
library. This clear separation allows us to have different
implementations, for example one in Ruby and another in
Java, communicating transparently via the SFP configuration
language.

The Nuri tool* consists of several parts whose interactions
can be summarised as follows®:

30r HTTPS.
4Source code: https://github.com/herry13/nuri
SNumbers correspond to the numbers in figure 5.

Master Node q h
~ 1 Client Node Client Node |+
SFP model Execution v 8 v v
»| (goal and global Manager _ﬁ Agent Daemon —>| Agent Daemon |
constraint) A @ KX
;dmin Component Component
v \ A 10 i
Compiler | SFP Object | SFP Object |
P @
@ | Ruby Object | Ruby Object |
Module Monitoring € ¢ 12 ¢ 13 ¢ ¢
Database Manager e Shell Resource Shell Resource
4 D Commands Ruby API Commands Ruby API
L
- J L
Fig. 5: The architecture of Nuri configuration tool.
1) An administrator defines and submits a declarative speci- INRIA EPCC

2)

3)

4)

5)

0)

fication (1) of the desired state and the global constraints
to the master (in SFP).

The SFP compiler (3) compiles this specification, to-
gether with any necessary files (for example schema files
from a module database (2)), to resolve any references
to a schema or object template. The compilation result
is then sent to the monitoring manager (4).

The monitoring manager (4) will send the relevant part
of the compiled specification to each target agent (8).
Based on this specification, the agent creates a set of
components (9), each of which is an instance of a Nuri
module. Each component manages a particular resource
using the Ruby implementation code (11). Since it is
possible that an agent may not have an implementation
of particular module, the monitoring manager is capable
of sending implementations from the module database
(2) to the agent.

After all the components have been created, the agent
generates the local current state by invoking a Ruby
method update_state on each component, and sends the
state of all components to the monitoring agent. By
combining the current state of all agents with the desired
state and the global constraints, the monitoring agent
then generates a configuration task which is sent to the
planner (5) for solving.

The planner compiles the configuration task into a
classical planning problem, and automatically searches
for a plan (6). If a solution is found, the plan is submitted
to the execution manager (7) for provisioning.

The execution manager (7) orchestrates the execution of
the plan by scheduling execution on the actions based
on the ordering constraints defined in the plan. Each
request contains an action description (i.e. the reference
of the target component and its method that should be
executed) and the value of each parameter. Whenever
an agent receives an execution request, it searches the
target component and invokes its method by passing

— WordpressDB (v2)
MySQL
VM

v

WordpressWeb (v2)
Apache
VM

— WordpressDB (v1)

MySQL

VM

e¥
pat WordpressWeb (v1)

Apache

VM

ApachelLB
VM

ApachelLB
VM

i

[Gionis |

Fig. 6: The current state of the two systems as described in
section VI.

the parameters’ value. The execution result will be
verified to detect any failure, in which case the execution
manager will automatically stop the plan execution, and
restart the process (i.e. back to step #4), in order to
generate an alternative plan.

VI. EXTENDED EXAMPLE

In order to evaluate Nuri on the BonFIRE infrastructure,
we used an example involving a typical 3-tier web application
consisting of a load balancer, a set of Wordpress application
servers, and a database service.

We evaluated a scenario where there are two systems; the
first system has version number 1, running on the EPCC
BonFIRE site, and being used by a number of clients. The
second system has version number 2, is running on the INRIA
BonFIRE site, and being tested by the engineers. This current
state is illustrated in figure 6. Since the second system has
passed all tests, we would like to relocate this version to the

INRIA EPCC

— WordpressDB (v2)
MySQL
VM

;‘: WordpressWeb (v2)
Apache
VM

\—; ApachelB
VM

[Gienis

Fig. 7: The desired state of the two systems as described in
section VI

EPCC site to replace the first system. Figure 7 illustrates this
desired state.

Although the software is deployed independently on dif-
ferent VMs, the relocation process must satisfy some global
constraints due to service dependencies. In addition, we do not
want to disturb any usage of the service by the clients during
the process. Thus, the following global constraints should be
maintained:

o The web services depend on the database service: when-
ever the web services are running then the database
service must be running as well;

o The load balancer depends on the web services: whenever
the load balancer is running then the web service must
be running as well;

o All clients should always refer to a running server.

To implement this relocation, we defined the desired state
and the global constraints in SFP. Figure 10 shows an example
of the configuration specification of the desired state with one
application layer. By submitting this specification to the master
node, we generated the plan shown in figure 8. The execution
of this plan relocated the first system from INRIA to EPCC,
configured the client to use this system, and finally deleted
the first system from EPCC site. The plan execution did not
violate any global constraints — the services were started in
the correct order, and the client was redirected to use another
running service before the old one was deleted.

In the experiments, we used a virtual machine with 2 CPUs
and 2 GB RAM in EPCC as the Nuri master. Each BonFIRE
site is managed by an instance of a proxy module that runs on a
Nuri agent. This proxy module uses a Restfully Ruby library
to connect to the BonFIRE broker to create or delete VMs
on a particular site. For the managed system, we used small
(1 CPU, 1 GB RAM) instance VMs. For the software stack,
we used unmodified Debian Squeeze 10G v5, Apache Web
Server, MySQL Database Server, and the Wordpress Content
Management application, each managed by a Nuri module®.

[proxy.inria. delete_vm(vm=vm21) [proxy.inria de\ele _vm(vm=vm22) | proxy.inria.delete_vm(vm=vm23) |

[proxy.epcc.create_vm(vm=vm21) |

vm21.apache.install

[vm21.apache.enable load_balancer |

[proxy.epcc.create_vm(vm=vm23) |

vm23.mysqgl.install

[vm23.mysqlstart |

[proxy.epcc. creale vm(vm=vm22)

vmz22.apache.install

[vm22. apachemstaH php_module |

[vm21.apache set Ib_.) | [[vm22.apache.install php mysal_module | vm23.wp_db.install |

vm22.wp_web.install
vm22.apache start

vm21.apache.start

pc.redirect(s=vm21.apache)

[proxy.inria delete_vm(vm=vm12)]

Fig. 8: The generated plan with one application layer.

proxy.inria.delete_vm(vm=vm11) proxy.inria.delete_vm(vm=vm13)

1800
—@— Execution
1600
-+ Planning
1400
v
T 1200
8
@ 1000
wv
£ 800 -
£
= 600
400
e RO ST L3
0 POPPRPTTTIIL @ooceocenes PO E 3
[6,24] [8,30] [10,36] [12,24] [14,48]

[Total VMs, Total Components]

Fig. 9: Planning and execution time for “configuration real-
location* between two BonFIRE sites with different number
of application layer. The axis is the total number of VMs and
components of the two systems.

All VMs were connected to BonFIRE WAN network.

We ran several experiments using the same scenario but with
different number of application layers to measure the effect of
the size of the system on the planning and execution times.
We ran each experiment five times and then took the average.
Figure 9 illustrates the comparison of planning and execution
times between various numbers of application layers. These
results show that the Nuri planner could generate the plan
for every case in a reasonable time — i.e. between 4-162
seconds. However, we believe that it is possible to improve
these times by using better heuristic and search techniques
and this is currently under investigation. On the other hand,
the execution time is near optimal since the Nuri execution
engine implements a partial-order execution algorithm — i.e.
operations are executed in parallel whenever possible. But

5There is a Nuri module which manages the client configuration and is
capable of redirecting service references in a similar way to a DNS lookup.

I |...

2 | proxy isa Machine {

3 sfpAddress = 7172.18.240.38”

4 // proxy component for EPCC site

5 epcc isa Bonfire { location = “uk—epcc”
6 experiment = “autocloud”; }

7 // proxy component for INRIA site

8 inria isa Bonfire { location = "fr—inria”
9 experiment = “autocloud”; }

10

11 | pc isa Client {

12 sfpAddress = 7172.18.240.39”

13 // change reference to the latest system
14 refer = vm21.apache

15

16 | // 7virtually” move machines of the latest
17 | // system to EPCC site by setting ”"in_cloud”
18 | // with value “proxy.epcc”

19 |vm2l isa WM { created = true

20 in_cloud = proxy.epcc

21 apache isa Apache {

22 running = true

23 is_load_balancer = true
24 Ib_members = (vm22.apache)
25 }

26 |}

27 |vm22 isa W { created = true
28 in_cloud = proxy.epcc

29 apache isa Apache { running = true; }
30 wp_web isa WordpressWeb {

31 version = 2

32 installed = true

33 http = vml2.apache

34 database = vm23.wp_db

35 }

36

37 |vm23 isa WM { created = true
38 in_cloud = proxy.epcc

39 mysql isa Mysql { running = true }
40 wp_db isa WordpressDB {

41 version = 2

42 installed = true
43 mysql = vm23.mysql
44

45

46 | // delete machines of old system
47 |vmll isa VW { created = false

48 apache isa Apache; }

49 |vml2 isa VM { created = false

50 apache isa Apache

51 wp_web isa WordpressWeb; }

52 |vml3 isa W { created = false

53 mysql isa Mysql

54 wp_db isa WordpressDB; }

55 | // global constraints

56 | global {

57 // pc always refers to a running system
58 pc.refer.running = true

59 // dependencies between services
60 if vmll.apache.running = true

61 then vml2.apache.running = true
62 if vml2.apache.running = true

63 then vml3.mysql.running = true
64 if vm2l.apache.running = true

65 then vm22.apache.running = true
66 if vm22.apache.running = true

67 then vm23.mysql.running = true
68 |}

Fig. 10: Configuration specification for the desired state.

figure 9 shows that the execution time is linear with the number
of VMs. We suspect that although VM creation requests were
submitted in same time by Nuri, but the broker or the site
agent processed them in a queue.

VII. CONCLUSIONS

This paper has presented experimental results which demon-
strate that declarative specifications, combined with automated
planning are a viable approach to practical “configuration
relocation” for cloud applications. By defining only the spec-
ification of the desired state and the global constraints, the
Nuri configuration tool can automatically generate a workflow
to implement the relocation within a reasonable time. The
execution of the generated workflow is guaranteed to achieve
the desired state as well as preserving the necessary constraints
during the relocation.

ACKNOWLEDGMENT

This research is fully supported by a grant from HP Labs
Innovation Research Program Award.

REFERENCES

[1] D. Armstrong, D. Espling, J. Tordsson, K. Djemame, and E. Elmroth,
“Runtime virtual machine recontextualization for clouds,” in Euro-Par
2012: Parallel Processing Workshops. Springer, 2013, pp. 567-576.

[2] Puppet Labs, “Puppet,” 2013. [Online]. Available: http://www.
puppetlabs.com/puppet

[3] H. Herry, P. Anderson, and G. Wickler, “Automated planning for
configuration changes,” in Proceedings of the 25th Large Installation
System Administration Conference (LISA ’11). Usenix Association,
2011.

[4] H. Herry and P. Anderson, “Planning with global constraints for com-

puting infrastructure reconfiguration,” in AAAI-12 Workshop on Problem

Solving using Classical Planners (CP4PS’12). AAAI Press, 2012.

P. Goldsack, J. Guijarro, S. Loughran, A. Coles, A. Farrell, A. Lain,

P. Murray, and P. Toft, “The smartfrog configuration management

framework,” ACM SIGOPS Operating Systems Review, vol. 43, no. 1,

pp. 16-25, 20009.

[6] M. Helmert, “Concise finite-domain representations for PDDL planning
tasks,” Artificial Intelligence, vol. 173, no. 5-6, pp. 503-535, 2009.

[71 T. Bylander, “The computational complexity of propositional strips

planning,” Artificial Intelligence, vol. 69, no. 1, pp. 165-204, 1994.

M. Ghallab, D. Nau, and P. Traverso, Automated Planning: theory and

practice. Morgan Kaufmann, 2004.

[9] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan genera-
tion through heuristic search,” Journal of Artificial Intelligence Research,
vol. 14, no. 1, pp. 253-302, 2001.

[10] M. Helmert and H. Geffner, “Unifying the causal graph and additive
heuristics.” in ICAPS, 2008, pp. 140-147.

[11] M. Helmert and C. Domshlak, “Landmarks, critical paths and abstrac-
tions: What’s the difference anyway?” in Nine-Teenth International
Conference on Automated Planning and Scheduling, 2009.

[12] M. Helmert, “The fast downward planning system,” Journal of Artificial
Intelligence Research, vol. 26, no. 1, pp. 191-246, 2006.

[5

=

[8

—

