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Abstract. Recently, micro-sphere based methods derived from the angular integration ap-

proach have been used for excluding fibers under compression in the modeling of soft biolog-

ical tissues. However, recent studies have revealed that many of the widely used numerical

integration schemes over the unit sphere are inaccurate for large deformation problems even

without excluding fibers under compression. Thus, in this study, we propose a discrete fiber

dispersion model based on a systematic method for discretizing a unit hemisphere into a fi-

nite number of elementary areas, such as spherical triangles. Over each elementary area we

define a representative fiber direction and a discrete fiber density. Then, the strain energy of

all the fibers distributed over each elementary area is approximated based on the deformation

of the representative fiber direction weighted by the corresponding discrete fiber density. A

summation of fiber contributions over all elementary areas then yields the resultant fiber strain

energy. This treatment allows us to exclude fibers under compression in a discrete manner by

evaluating the tension–compression status of the representative fiber directions only. We have

implemented this model in a finite element program and illustrate it with three representative

examples, including simple tension and simple shear of a unit cube, and non-homogeneous

uniaxial extension of a rectangular strip. The results of all three examples are consistent and

accurate compared with the previously developed continuous fiber dispersion model, and that

is achieved with a substantial reduction of computational cost.

Keywords: Discrete fiber dispersion model; exclusion of compressed fibers; constitutive mod-

eling; finite element analysis; fibrous tissue
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1 Introduction

Collagen fibers in soft biological tissues provide the overall stiffness and strength of the mate-

rial. The latest imaging techniques, such as second-harmonic generation, have enabled detailed

visualization of the underlying microscopic constitution of biological tissues such as arterial

walls [1–3], carotid arteries [4], the myocardium [5, 6], the pericardium [7], articular cartilage

[8, 9], and other tissues. The collagen fibers in these tissues may be dispersed randomly in

space, in a certain pattern such as predominately in a particular direction [10], as a rotation-

ally symmetric dispersion about a mean direction, or as the recently observed non-symmetric

dispersion in arterial walls [1, 11], or other arrangements. Continuum constitutive laws that

account for such underlying material micro-structure have been proposed and employed exten-

sively in the last few decades to model the mechanical response of these fibrous tissues (see,

e.g., [11–13]). In particular, constitutive laws that incorporate the three-dimensional (3D) fiber

dispersion in fibrous tissues have attracted a lot of interest in the last decade. However, the pre-

cise description of the 3D fiber dispersion in a constitutive equation for the modeling of fibrous

tissues poses formidable challenges even when considerable simplifications and idealizations

are made.

Currently, there are two main approaches for modeling the dispersed fiber distributions in

a constitutive equation, namely the ‘generalized structure tensor’ and the ‘angular integration’

(AI) approaches [11]. In the AI approach [14], the strain energy of a single collagen fiber is

assumed to be a function of the fiber stretch. The fiber dispersion in the tissue is incorporated

into the strain-energy function by an integration of the single fiber strain energy over all the fiber

directions weighted with a continuous probability density function (PDF). Since the terminology

‘angular integration’ is rather imprecise and does not explicitly mention fiber dispersion, in the

present paper instead of AI henceforth we use the terminology ‘continuous fiber dispersion’,

abbreviated as CFD. If the fiber dispersion is incorporated as a summation of a finite number of

discrete fiber contributions then we refer to this as the ‘discrete fiber dispersion’ (DFD) method.

The CFD approach has attracted a lot of interest, and since it was introduced in 1983 there

have been numerous studies based on this approach; see [15] and references therein. Briefly,

the fiber contribution Ψf to the strain-energy function of a tissue per unit reference volume is

obtained by integrating the weighted strain energy Ψn(λ) for each fiber direction N over the

unit sphere S2, i.e.

Ψf =

∫
S2
ρ(N)Ψn(λ) dΩ, (1)

where λ is the fiber stretch in the direction N, the PDF ρ(N) represents the probability density
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of the fiber in that direction in the reference configuration, and dΩ is the solid angle on the

sphere. Note that we are considering one fiber family of the same type embedded in the matrix

material. The original study [14] allowed for different fibers to have different properties, but

here we consider all the fibers to have the same properties. If additional fiber families of the

same or different type exist in the tissue they can be included additively [16] with corresponding

fiber volumetric ratios. The PDF in (1) must satisfy the normalization condition

1

4π

∫
S2
ρ(N) dΩ = 1. (2)

The computational implementation of the CFD approach (1) requires two-dimensional inte-

gration over a unit sphere at each Gauss point during a finite element analysis. In general, due

to the complex natures of ρ and Ψn, analytical solutions of the integration in (1) only exist for

some special cases. Frequently, it is evaluated by numerical methods such as

Ψf ≈
m∑

n=1

ρ(Nn)Ψn(λn)wn, (3)

where Nn and wn, respectively, for n = 1, . . . ,m, are integration points (orientations) and

weights defined by the particular integration scheme over the unit sphere, m is the number of

integration points, and λn, n = 1, . . . ,m, are the stretches associated with the integration points.

In a recent study [17], large errors in the stress–strain result have been observed with some of

the commonly used numerical integration schemes over the unit sphere, such as the method in

[18]. The author of [17] concluded that the errors observed could be ‘partially explained by

the inability of standard methods to handle non-smooth functions even with a large number of

integration points’. Out of the 20 numerical integration schemes over the unit sphere studied

in [19], the best two integration schemes [18, 20] have been found to be inaccurate for large

deformation problems in a more recent study [21].

The only integration scheme found to be accurate is the FM900 scheme [22] which involves

900 integration points. However, the authors only tested the integration scheme under uniaxial

and biaxial extensions. It is unknown whether this integration scheme would work for more

complex loading conditions. Furthermore, in this scheme a few integration points have negative

weights [22]. In the extreme case, if only fibers at these integration points are under tension,

then the micro-sphere based model would produce a negative stress even for fibers under ten-

sion. When the exclusion of compressed fibers is accounted for in finite element analyses [23],

the integration error is even larger with low order integration schemes. Although the authors

of [23] obtained a homogeneous stress distribution in the circumferential direction of the artery

by using high order integration schemes with 368 or 600 integration points, it is still unknown
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whether the tested high order integration schemes are accurate enough for other large deforma-

tion problems.

Due to the waviness and slenderness of the fibers, it is often assumed that they do not

contribute to the strain energy of the tissue when loaded under compression [24]. To incorporate

such tension–compression behavior of the fibers in the strain-energy function, Ψn(λn) is often

set to zero in (3) when the fiber stretch λn at a particular integration point Nn is less than one

[23, 25]. Setting Ψn(λn) to zero within a sub-domain of sphere renders some strain-energy

functions or their derivatives discontinuous. However, existing numerical integration schemes

are often proposed for continuous functions such as polynomials over the entire unit sphere,

as in the widely used numerical integration schemes described in [20] and [18], which were

proposed for polynomial functions of certain degrees. In addition, setting Ψn(λn) to zero within

a sub-domain of the sphere is equivalent to using some of the integration points and weights for

numerical integration of a function over only its complement. This treatment is questionable

because the accuracy of the integration scheme may not be maintained for polynomial functions

up to a certain degree locally over a sub-domain. Besides, if a realistic PDF measured from

experiment is adopted, for example [3], the integrand could become more complex, and it could

even be a discontinuous function.

The computational cost for the numerical evaluation of the fiber contribution over a subset

of the unit sphere could be substantially reduced by using a recently proposed general invariant

[27] or by using parallel computing platforms such as OPENMP [28]. Besides using parallel

computing techniques on a high performance computing cluster, another possibility for model-

ing the tension–compression behavior of fibers is to use the DFD approach, which could reduce

computational time while maintaining accuracy, as shown in this study. Although it is not

practical to count the actual number of fibers in a tissue, the concept of the DFD approach has

already been applied in several areas. For example, a 3D DFD model with 30 fiber directions

was proposed for the modeling of human skin [29], and a bivariate normal distribution was

adopted to describe the fiber arrangement. With appropriate parameters the model was able

to represent various fiber arrangements such as aligned fibers or rotationally symmetric fiber

dispersions. Although only 30 fiber directions were determined by using the parameters of

the bivariate normal distribution, the model was able to capture the fiber undulation and fiber

compression–tension behavior of skin tissue under simple loading scenarios.

Similarly, a DFD model that consists of six weighted fiber bundles was proposed in [30],

with all the fibers in each bundle oriented in the same direction. The volume fraction of fibers

in each bundle was given by the weights. The six weights were then used as structure parameters
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in the model fitting. The case of six equal weights represents a 3D uniform fiber dispersion. The

strain energy of each fiber bundle was assumed to be a function of the fiber stretch in the bundle

direction, and that of all the fibers was determined by a weighted summation of the contributions

from all six fiber bundles. Any fiber bundle under compression can easily be excluded from the

fiber contribution to the strain-energy function. Although only six fiber bundles appeared in the

constitutive equation, the model was able to approximately capture the mechanical response of

rabbit skin, porcine skin, porcine aortic valve cusp, and rat myocardial tissues. However, one

limitation of this model, because of the discretization, is that the material response is not always

isotropic even when the six weights are the same. To overcome this unphysical prediction, the

authors improved the model by using a generalized strain invariant [31], and more recently by

increasing the number of equally weighted fiber bundles [32] since the fitting of a large number

of different weights is not practical.

In the present study, we propose a systematic approach for determining the discrete fiber

density of each fiber bundle directly from the fiber PDF in a straightforward way. Briefly, we

first discretize the unit hemisphere into a finite number of spherical triangles and then compute

a representative fiber direction at the centroid of each spherical triangle. The discrete fiber

density for each representative fiber direction is then determined by numerical integration of

the continuous fiber PDF over the corresponding spherical triangle. With this treatment, we can

easily incorporate the tension–compression behavior of the fibers over each spherical triangle.

Through three numerical examples we demonstrate that the current model is able to accurately

match predictions of the previously developed CFD model when compressed fibers are excluded,

with a substantial reduction of computational cost.

The present paper is structured as follows. In Section 2 we present the continuum mechan-

ical framework for the proposed DFD model, including the discretization scheme for the unit

sphere, the strain-energy function, and the Cauchy stress and elasticity tensors for 3D fiber

dispersions. In Section 3 we introduce the von Mises distribution for the PDF specialized to

a rotationally symmetric dispersion for illustration. Next, we provide a guideline for the im-

plementation of the proposed discretization scheme in a finite element program. Additionally,

specific forms of the strain-energy function associated with the fibers are provided. The theory

introduced in Sections 2 and 3 is then applied to several representative examples with the aim of

demonstrating the efficacy and efficiency of the proposed model. Finally, Section 4 summarizes

the proposed computational approach and suggests some future directions.
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2 Discrete Fiber Dispersion Model

In this section, we briefly present the continuum mechanical framework for the proposed DFD

model including kinematics, the strain-energy function, and the corresponding Cauchy stress

and elasticity tensors, which are introduced in a decoupled form.

2.1 Kinematics

The deformation map x = χ(X) transforms a material point X in the stress-free reference con-

figuration into a spatial point x in the deformed configuration. The deformation gradient is

defined as F(X) = ∂χ(X)/∂X, and its determinant J = det F(X) > 0 represents the local

volume ratio at point X, with J ≡ 1 for a strictly incompressible material. Following the multi-

plicative decomposition of the deformation gradient [33, 34], we decouple F into a volumetric

(dilatational) part J1/3I and an isochoric (distortional) part F = J−1/3F, with det F ≡ 1. Based

on F we define the right Cauchy–Green tensor as C = FTF and its isochoric counterpart as

C = FTF, with the corresponding first invariants defined by

I1 = trC, Ī1 = trC, (4)

respectively. Let N be a fixed vector in the reference configuration; then C : N⊗N, denoted I4,

represents the square of the stretch in the direction N. Its isochoric counterpart is denoted Ī4.

Hence,

I4 = C : N⊗ N, Ī4 = C : N⊗ N. (5)

Let us now introduce unit Cartesian basis vectors E1, E2, E3 and then express N in terms of

spherical polar angles Θ and Φ relative to E1, E2, E3 such that

N = sin Θ cos ΦE1 + sin Θ sin ΦE2 + cos ΘE3. (6)

2.2 Strain-energy Function

We assume that the 3D fiber dispersion inside the matrix material can be described by an inte-

grable function ρ(N), which we now write as ρ(Θ,Φ), defined over the unit hemisphere

S = {(Θ,Φ) | Θ ∈ [0, π],Φ ∈ [0, π]}. (7)

Ideally, ρ should be determined by imaging analysis [3].
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If the strain energy associated with an individual fiber direction N is described by a function

Ψn(I4), where I4 is defined in (5)1, we require

Ψn(1) = 0, Ψ′n(1) = 0, (8)

and, following the CFD approach [35], the strain-energy function of all fibers in the reference

configuration can be written over the unit hemisphere as

Ψf =
1

2π

∫
S
ρ(Θ,Φ)Ψn(I4) sin Θ dΘ dΦ. (9)

Inspired by the discrete nature of fibers dispersed within the ground matrix, and the fact that

the number of fibers is finite, we may treat the fibers in a discrete manner. Ideally, the dispersion

of fibers and the number of fibers should be determined by experimental measurement. How-

ever, due to the large number of fibers, their actual number and orientations at a specific point

in the tissue may not be possible to determine accurately. Thus, in the present study we first

discretize the unit hemisphere into a finite number of elementary areas ∆Sn, n = 1, . . . ,m. An

example of such a discretization with spherical triangles is shown in Fig. 1(b). Note that only

half of the representative fiber directions are needed because of symmetry. We then identify

representative fiber angles (Θn,Φn) (associated with the centroids of the spherical triangles)

for each elementary area and use these angles to represent all the fibers distributed within ∆Sn.

Thus, the number of representative fiber angles is equal to the number of spherical triangles over

the unit sphere, as can be seen in Figure 1. If the area of ∆Sn is chosen to be very small, then

the variation of the fiber directions within ∆Sn becomes negligible. In the extreme case when

∆Sn shrinks to a point, then the fiber direction is unique. The normalized number of fibers

within each elementary area can then be determined from a set of m discrete fiber densities ρn
defined by

ρn =
1

2π

∫
∆Sn

ρ(Θ,Φ) sin Θ dΘ dΦ, n = 1, . . . ,m. (10)

In fact, ρ(Θ,Φ) could be a discontinuous function over the hemisphere because the integra-

tion in (10) can be carried out over continuous sub-domains of the hemisphere. Similarly, the

discrete fiber densities ρn satisfy the normalization condition over the unit hemisphere, i.e.

m∑
n=1

ρn = 1, (11)

which is the discrete counterpart of (2) on a hemisphere, where m denotes the number of rep-

resentative fiber directions embedded in the matrix at a specific material point. The value of ρn
depends on the area of ∆Sn and the fiber dispersion. The areas of the ∆Sns on the sphere can
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Figure 1: (a) Contour plot of the PDF ρ(Θ,Φ) defined over the unit sphere by the von Mises

distribution with mean fiber direction M and a concentration parameter b = 1.0, see (25); (b)

example of a triangular discretization of the sphere with 2m representative fiber directions Nn

(black arrows) defined at the centroids (red dots) of the spherical triangles.

vary or be nearly equal, as shown in Fig. 1(b). If necessary, regions with higher fiber density, for

example, the region near the mean fiber direction M in Fig. 1(b), can be discretized with smaller

∆Sn. However, in this study, for the purpose of demonstration, we choose the triangular dis-

cretization shown in Fig. 1. With a discretized hemisphere, we then re-define the strain-energy

function (9) for all the fiber contributions as

Ψf =
m∑

n=1

ρnΨn(I4n), (12)

where I4n = C : Nn ⊗ Nn and Nn is defined at the centroid of each spherical triangle via (6)

with Θ = Θn and Φ = Φn; see the black arrows in Fig. 1(b). Next, in order to exclude fibers

under compression within a dispersion, we define Ψn as

Ψn(I4n) =

f(I4n) if I4n ≥ 1

0 if I4n < 1.
(13)

A representative plot of the strain-energy function associated with one fiber versus I4n is shown

in Fig. 2. As can be seen, the strain energy is only non-zero when I4n > 1. Note that the first

derivative of the strain-energy function with respect to I4n is continuous and equal to zero at

I4n = 1, and hence, with the requirement (8), f(1) = f ′(1) = 0.
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Figure 2: An example of a strain-energy function Ψn given by (13) associated with one fiber

versus the invariant I4n. Note that at I4n = 1, Ψn(1) = Ψ′n(1) = 0.

For efficient computational implementation, we write the strain-energy function in a decou-

pled form, namely Ψ = Ψvol + Ψiso, where Ψvol is the volumetric strain-energy function and

Ψiso is the isochoric part of the strain-energy function associated with one family of embedded

fibers, given by

Ψiso = Ψg + Ψf , (14)

where Ψg denotes the isochoric strain energy of the ground matrix, which is assumed to be

isotropic and to depend only on Ī1. Then, from (12) and (14) we have

Ψiso = Ψg(Ī1) +
m∑

n=1

ρnΨn(Ī4n), Ψn(Ī4n) =

f(Ī4n) if I4n ≥ 1

0 if I4n < 1,
(15)

where Ī4n = C : Nn ⊗ Nn. For strictly incompressible materials we have limJ→1 Ī4n = I4n.

Since our focus is on incompressible materials, the volumetric strain-energy function is used

as a penalty function, and it is convenient to adopt a form for Ψvol given in FEAP [36], i.e.

Ψvol =
K

4
(J2 − 1− 2lnJ), (16)

where K is a penalty parameter. The derivations of the volumetric parts of the stress and

elasticity tensors are straightforward and have been well documented [12, 37]. Hence, in the

following we only derive the isochoric parts of the stress and elasticity tensors.
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2.3 Cauchy Stress Tensor

The so-called fictitious second Piola–Kirchhoff stress tensor S is determined by differentiation

of the isochoric strain-energy function with respect to C/2. Thus, from (15) we obtain

S = 2
∂Ψiso

∂C
= 2ψ′g(Ī1)I + 2

m∑
n=1

ρnSn, Sn =

f
′(Ī4n)Nn ⊗ Nn if I4n ≥ 1

0 if I4n < 1,
(17)

where I is the second-order unit tensor, ψ′g(Ī1) = ∂Ψg(Ī1)/∂Ī1, f ′(Ī4n) = ∂f(Ī4n)/∂Ī4n, and

Ī1 is given in (4)2. Push-forward of S yields the fictitious Cauchy stress tensor σ as

σ = J−1F S FT
= 2J−1

[
ψ′g(Ī1)b +

m∑
n=1

ρnσn

]
, σn =

f
′(Ī4n)nn ⊗ nn if I4n ≥ 1

0 if I4n < 1,

(18)

where b = F FT
is the modified left Cauchy–Green tensor, and nn = FNn. The isochoric

Cauchy stress tensor σiso is then determined as

σiso = P : σ, (19)

where P = I− 1
3
I⊗ I is the fourth–order Eulerian projection tensor, and the symmetric fourth–

order unit tensor I is defined in component form by (I)abcd = 1
2
(δacδbd + δadδbc), where δad is the

Kronecker delta.

2.4 Elasticity Tensor

The fourth-order fictitious elasticity tensor C in the Lagrangian description is obtained via dif-

ferentiation of S with respect to C/2 followed by multiplication by a factor J−4/3. This, with

(17), gives

C = 2J−4/3 ∂S
∂C

= 4J−4/3ψ′′g(Ī1)I⊗ I + 4J−4/3
m∑

n=1

ρnCn,

Cn =

f
′′(Ī4n)Nn ⊗ Nn ⊗ Nn ⊗ Nn if I4n ≥ 1

0 if I4n < 1,

(20)

where

ψ′′g(Ī1) =
∂2Ψg(Ī1)

∂Ī1∂Ī1

, f ′′
(
Ī4n

)
=
∂2f

(
Ī4n

)
∂Ī4n∂Ī4n

. (21)

Note that for the neo-Hookean model, for which

Ψg(Ī1) =
µ

2
(Ī1 − 3), (22)
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we have ψ′′g(Ī1) = 0, where the constant µ (> 0) is the shear modulus. We adopt this model

here because it has been shown in [38] that it is sufficient to use a neo-Hookean model for the

ground matrix.

A push-forward operation of C with F yields the fictitious elasticity tensor in the Eulerian

description, i.e.

C = 4J−1
m∑

n=1

ρnCn, Cn =

f
′′(Ī4n)nn ⊗ nn ⊗ nn ⊗ nn if I4n ≥ 1

0 if I4n < 1,
(23)

where the neo-Hookean model has been used. If ψ′′g(Ī1) 6= 0, then an additional term should

be included in (23)1. Finally, with (23), we obtain the resulting isochoric part of the elasticity

tensor in the Eulerian description, i.e.

Ciso = P : C̄ : P +
2

3
tr(σ̄)P− 2

3
(σiso ⊗ I + I⊗ σiso), (24)

which is needed for the finite element implementation together with the volumetric part [37].

3 Computational Aspects and Representative Examples

3.1 Choices of Fiber Distribution and Fiber Model

We have implemented the proposed DFD model (15) in the general purpose finite element anal-

ysis program FEAP [36] at the integration point level. Note that in the continuum mechanical

framework described in Section 2 we have not specified any particular form of the fiber PDF

ρ(Θ,Φ). Thus, our model is applicable to any type of fiber dispersion, symmetric or non-

symmetric. Here, for illustration of the method, we choose the rotationally symmetric fiber

dispersion described by the von Mises distribution

ρ(Θ,Φ) = 4

√
b

2π

exp[2b(N ·M)2]

erfi(
√

2b)
, (25)

where b is a concentration parameter describing how closely the fibers are distributed around the

mean fiber direction M, erfi(x) = −i erf(ix) denotes the imaginary error function and erf(x) is

the standard error function. This distribution will be used in all the numerical examples.

On substituting (25) into (10), we obtain a set of m discrete fiber densities ρn for the repre-

sentative fiber directions Nn, n = 1, . . . ,m. A general guideline for discretizing the hemisphere

and for determining the ρn is given in the accompanying box (Algorithm 1).
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Algorithm 1: Discretization of the PDF ρ(Θ,Φ)

Data: input the mean fiber direction M and the PDF ρ(Θ,Φ)

Result: set of representative fiber directions Nn and associated densities ρn
begin

set the dummy mean fiber direction as Md for Θ = Φ = 0

define ρ(Θ,Φ) with respect to Md via (25)

compute the three vertices and Nn at the centroid of each spherical triangle with the

code provided in Appendix A

for each spherical triangle do
compute the discrete fiber densities ρn by using the numerical integration rule of

[39]

rotate Nn to the corresponding location of the actual M by using Rodrigues’

rotation formula [40]

end

end

For the numerical examples, we also need to specify the single fiber strain-energy function

f(Ī4). For example, one possible choice is the exponential form f(Ī4) proposed in [24] that can

capture the highly nonlinear behavior of soft tissues, i.e.

f(Ī4) =
k1

2k2

{
exp[k2(Ī4 − 1)2]− 1

}
, (26)

where k1 is a positive material parameter with the dimension of stress, and k2 is a positive

dimensionless parameter. For comparison with existing results, we have also implemented the

quadratic form (the standard fiber reinforcing model [41]) of f(Ī4), i.e.

f(Ī4) =
ν

2
(Ī4 − 1)2, (27)

where ν is a non-negative material constant with the dimension of stress. It is easy to verify that

both relations (26) and (27) satisfy f(1) = f ′(1) = 0, f(Ī4) > 0 and f ′(Ī4) > 0 for Ī4 > 1.

On substituting either (26) or (27) into the isochoric Cauchy stress tensor (19) and the Eulerian

fictitious elasticity tensor (23), we obtain the specific forms of the Cauchy stress and Eulerian

elasticity tensors.
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3.2 Representative Numerical Examples

In order to illustrate the performance of the proposed DFD model we present three representative

examples, specifically the homogeneous simple tension and simple shear of a unit cube with a

3D fiber dispersion, and the inhomogeneous extension of a rectangular strip with a mean fiber

direction which does not coincide with the loading direction. For each of the three examples we

assume that the material is incompressible. To enforce the incompressibility condition, we use

the augmented Lagrangian method [42] in FEAP. In each example, the geometry of the model

is discretized with 8–node hexahedral mixed Q1/P0 elements, and each problem is solved by

using the Newton–Raphson method. The proposed model is implemented at the Gauss point

level. During the finite element analysis, the frequency by which the stress and elasticity tensors

is updated depends on the actual problem. The finite element solutions of the first two examples

are verified by MATLAB or MATHEMATICA solutions [43, 44] based on analytical expressions

obtained using the corresponding CFD model, as previously reported in [16]. The last example

is verified by comparing with the numerical solution obtained by the CFD model, which is

reported in [35].

3.2.1 Simple Tension

Here we consider a uniaxial tension test of an incompressible unit cube, as described in Sec-

tion 3.1 of [16]. Briefly, we consider one family of fibers with a rotationally symmetric disper-

sion embedded in an isotropic matrix material. The mean fiber direction is taken to be aligned

with the loading direction E3, as depicted in Fig. 3. Thus, only a subset of fibers around the

mean fiber direction over the hemisphere and the mean fiber direction itself are under tension.

The fibers under tension form a right circular cone [45], and the fibers outside the cone are un-

der compression. We apply a displacement boundary condition on the top face of the unit cube

to impose a stretch of 1.2, as indicated in Figure 3.

For this particular example, I4(N) for any fiber direction N is given by

I4(N) = λ−1 sin2 Θ + λ2 cos2 Θ, (28)

where λ is the fiber stretch in the loading direction. Note that I4(N) is independent of Φ in this

special case. The general form of the Cauchy stress tensor σ for this problem is given by [16]

σ = −pI + µb +
k1

π

∫
Ω

ρ(Θ,Φ) exp[k2(I4 − 1)2](I4 − 1) sin Θ n⊗ n dΘ dΦ, (29)

where for this special case we define the integration domain as Ω = {(Θ,Φ) | Θ ∈ [0, π/2],Φ ∈
[0, 2π], I4 > 1}, p is the Lagrange multiplier, n = FN, and, because of symmetry, the PDF
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E3

Figure 3: Deformation of a unit cube under simple tension. Rotationally symmetric fiber dis-

persion with the mean fiber direction M aligned along the loading direction E3 in the reference

configuration (solid lines). An arbitrary fiber direction within the dispersion is denoted by N.

The fiber dispersion is 3D but only a cross-section in the (E1,E3)-plane is shown. The dashed

lines refer to the deformed configuration of the cube, shown in gray, at a stretch of 1.2.

ρ(Θ,Φ) reduces to

ρ(Θ) = 4

√
b

2π

exp(2b cos2 Θ)

erfi(
√

2b)
. (30)

As given in [16], the uniaxial Cauchy stress σ ≡ σ33 in the loading direction E3 is

σ = (µ+ α)λ2 − (µ+ β)λ−1, (31)

where α and β are defined over the domain Σ = {Θ ∈ [0, π/2] | I4 > 1} as

α = 2k1

∫
Σ

ρ(Θ) exp[k2(I4 − 1)2](I4 − 1) sin Θ cos2 Θ dΘ,

β = k1

∫
Σ

ρ(Θ) exp[k2(I4 − 1)2](I4 − 1) sin3 Θ dΘ.
(32)

The Cauchy stress-stretch result (31) was implemented in MATLAB, and we obtained solutions

of this problem with material parameters µ = 1.64 kPa, k1 = 5.63 kPa and k2 = 14.25 [16].

The relationship between the Cauchy stress and the stretch in the loading direction is shown

in Fig. 4 for b = 0.01 and b = 5 (solid curves). For comparison we have also plotted the

finite element solutions (open circles) by using the proposed DFD model in FEAP with the same
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Figure 4: Comparison of the solutions of a simple tension test, obtained by using the previously

developed CFD model [16] in MATLAB, and the finite element solutions obtained by using the

proposed DFD model in FEAP with m = 640 discrete fiber directions. The material parameters

µ = 1.64 kPa, k1 = 5.63 kPa, and k2 = 14.25, and the values b = 0.01 and b = 5 of the

concentration parameter were used in each case.

material parameters as in our previous study, and with m = 640 discrete fiber directions, which

is enough to obtain very accurate results; see Figure 4. Note that the implementation of the

proposed model in FEAP is based on the continuum mechanical framework of Section 2. As can

be seen in Fig. 4, a very good match between the MATLAB and the finite element solutions for

different concentration parameters has been obtained. This indicates that the DFD model is able

to predict the same result as the CFD model for this particular problem.

Remark. For reason of completeness we now address the numerical results obtained by

using the micro-sphere based approach. We rewrite the coefficients α and β in (31) over a subset

of the whole unit sphere, i.e. Ω = {(Θ,Φ) | Θ ∈ [0, π],Φ ∈ [0, 2π], I4 > 1}. Thus,

α =
k1

2π

∫
Ω

ρ(Θ)exp[k2(I4 − 1)2] (I4 − 1) cos2 Θ dΩ,

β =
k1

2π

∫
Ω

ρ(Θ)exp[k2(I4 − 1)2] (I4 − 1) sin2 Θ cos2 Φ dΩ.
(33)

We then adopt the numerical integration scheme FM900 of [22] with 900 integration points,

as discussed in [19]. To exclude fibers under compression, we only use the angles (Θi,Φi) and
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weights wi of the FM900 scheme if the fiber stretches in those directions are greater than one.

Thus,

α ≈ k1

2π

∑
i∈ω

ρ(Θi) exp[k2(I4(Θi)− 1)2](I4(Θi)− 1)wi cos2 Θi,

β ≈ k1

2π

∑
i∈ω

ρ(Θi) exp[k2(I4(Θi)− 1)2](I4(Θi)− 1)wi sin2 Θi cos2 Φi,
(34)

where ω represents the set of angles that lie inside Ω. We have carried out the numerical in-

tegration in MATLAB and obtained the results for the Cauchy stress versus stretch with the

concentration parameters b = 5 and 0.01. The relative error of the numerical result obtained by

using the micro-sphere based approach (34) with the FM900 integration scheme [22] is small

compared with the MATLAB solution based on the CFD model [16]. However, the numerical

integration scheme with 21 points used in [18] is not able to reproduce the curves in Fig. 4.

Similar results for the uniaxial and biaxial tension tests have also been observed for the case

when the compressed fibers are not excluded [21]. Further numerical investigations are needed

to verify whether this integration scheme is applicable in a finite element analysis with complex

loading conditions.

3.2.2 Simple Shear

Similarly to the previous section, here we test the capability and efficiency of the proposed DFD

model by subjecting the same unit cube to a simple shear deformation, as described in [16].

Briefly, with reference to Fig. 5, all the nodes on the bottom face of the cube in the (E1,E2)-

plane are constrained in all three translational degrees of freedom, and a horizontal displacement

in the E1 direction is applied on the top face. We take the mean fiber direction M to be at

135◦ clockwise from the E3 direction in the (E1,E3)-plane in the reference configuration, as

illustrated on a cross-section of the cube in Fig. 5. This orientation was chosen so that the

exclusion of fibers under compression has a significant influence on the resulting shear stress.

The Cauchy shear stress component σ13 in the (E1,E3)-plane is given by [16]

σ13 = (µ+ α)c+ γ, (35)

where α and γ are defined by

α =
k1

π

∫
Ω

ρ(Θ,Φ)(I4 − 1) exp [k2(I4 − 1)2] sin Θ cos2 Θ dΘ dΦ,

γ =
k1

π

∫
Ω

ρ(Θ,Φ)(I4 − 1) exp [k2(I4 − 1)2] sin2 Θ cos Θ cos Φ dΘ dΦ,
(36)
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Figure 5: Deformation of a unit cube under simple shear in the (E1,E3)-plane. The mean fiber

direction M is aligned at 135◦ clockwise from the E3 direction in the reference configuration

(solid lines). The 3D fiber dispersion is rotationally symmetric about M, although only a cross-

section in the (E1,E3)-plane is shown. The unit vector N in that cross-section represents a

general fiber direction. The dashed lines refer to the deformed configuration of the cube, shown

in gray, with an amount of shear c = 0.5.

and Ω = {(Θ,Φ) ∈ S | I4 > 1}. For this particular example, the invariant I4(N) has the explicit

form

I4 = 1 + c2 cos2 Θ + c sin 2Θ cos Φ. (37)

We implemented the result (35) in MATHEMATICA and obtained the solution for σ13 as a func-

tion of the amount of shear c. For this problem we used the parameters µ = 7.64 kPa, b = 1.08,

k1 = 996.6 kPa, and k2 = 5.249 [16]. For comparison we have also computed the case for

b = 2. In Fig. 6 we have plotted the solutions from [16] and the numerical results by using

the proposed DFD model with the same material parameters as in our previous study and with

m = 640 discrete fiber directions. As can be seen, the numerical results match very well with

the corresponding results from [16]. For higher values of m we obtained the same stress re-

sponse, but for smaller values of m the prediction of the stress response became less accurate.
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Figure 6: Comparison of the MATHEMATICA solutions obtained by the CFD model [16] and the

finite element solutions obtained by the proposed DFD model withm = 640 for the simple shear

of a unit cube. The material parameters are µ = 7.64 kPa, k1 = 996.6 kPa, and k2 = 5.249, and

the concentration parameters are b = 1.08 and 2.

3.3 Extension of a Rectangular Strip

In the previous two sections, we have verified the proposed DFD model with a unit cube under

simple tension and simple shear. In the present example, we consider the uniaxial extension

of a rectangular strip with loading direction different from the mean fiber direction. For this

problem the deformation field is non-homogeneous, as distinct from the two previous examples.

We choose this example because a solution of this problem obtained by using the corresponding

CFD model has already been presented in [35]. Hence, we compare the results of the proposed

DFD model with the existing results of the CFD model.

The geometry, the boundary conditions, and the 3D fiber dispersion of the rectangular strip

are described in [35]. However, here we align the longitudinal direction with the E3 axis instead

of the E1 axis, as shown in Fig. 7. Briefly, a rectangular strip of 10 × 4 × 1 mm is discretized

with 320 hexahedral elements. All nodes on the bottom face of the strip are constrained in the

E3 direction. In addition, to prevent rigid body translation, we constrained the center node of

the bottom face in the E1 and E2 directions. Furthermore, the E2 degree of freedom at node A

on the bottom face of the strip, see Fig. 7(b), is also constrained to prevent rigid body rotation

about the E3 axis. A 3D rotationally symmetric fiber dispersion is assumed with the mean
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Figure 7: Comparison of the σ33 component of the Cauchy stress (kPa) distribution obtained by

using (a) the CFD model [35], and the DFD model with discretization densities (b) m = 4000,

(c) m = 2571, (d) m = 640 and (e) m = 40 for the uniaxial extension test of a rectangular

strip at an axial stretch of λ = 1.4 with parameters µ = 5 kPa, ν = 10 kPa and b = 2.9. We

assumed a 3D rotationally symmetric fiber dispersion with a mean fiber direction M aligned at

ΘM = 60◦ counterclockwise from the E3 axis in the (E1,E3)-plane.

fiber direction aligned at 60◦ from the E3 direction counterclockwise in the (E1,E3)-plane, see

Fig. 7(b). A displacement boundary condition is applied on the top face of the strip to impose a

stretch of λ = 1.4 in the E3 direction.

The numerical result for this problem obtained by using the CFD model with the quadratic

fiber strain-energy function (27) has been provided in Section 4.2.1 of [35], and is reproduced

here in Fig. 7(a). In Fig. 7(b)–(e), for comparison, the distributions of the Cauchy stress compo-

nent σ33 in the deformed configuration obtained by using the DFD model with different values

of m are also plotted. As can be seen, the numerical result by the DFD model approaches that

of the CFD model as m increases. As shown in Fig. 7(b), the DFD result is essentially identical

to the CFD result for m = 4000. This shows that we are able to approach the result of the CFD

model with the proposed DFD model even when exclusion of compressed fibers is considered.

An important advantage of the DFD model is the substantial reduction in processing time.

For example, the numerical simulation with the CFD model was completed in 3.3 hours on a

typical Windows computer with an Intel R© CoreTM i7-4770 Processor and 16 GB of memory.

19



With the proposed DFD model, and a discretization density of m = 4000, the same problem

was computed in only 53 seconds – a speedup of 224! Certainly, a further reduction of the

processing time can be achieved with a smaller value of m, but the accuracy would then be

reduced.

4 Concluding Remarks

In the present study we have proposed an efficient discrete fiber dispersion model capable of

excluding fibers under compression in the modeling of the nonlinear behavior of fibrous tissues.

We have introduced a systematic approach for discretizing the unit sphere into a finite number

of spherical triangles and for computing the discrete fiber densities over each elementary spher-

ical triangle. The discrete fiber densities associated with each spherical triangle are analogous

to the weighting factors used in the micro-sphere based approach but have a direct physical

meaning. We were then able to conceive of and formulate a strain-energy function in terms

of contributions from each fiber bundle distributed within the corresponding spherical triangle.

This discrete treatment of fiber contributions, inspired by the discrete nature of fibers embedded

in fibrous tissues, allows us to exclude any fibers under compression within a 3D dispersion in

a rather straightforward way. The resulting nonlinear elastic constitutive model depends only

on those fiber bundles under tension as well as the matrix material under arbitrary 3D finite

deformations.

With a volumetric/isochoric split of the deformation gradient we presented analytical ex-

pressions of the corresponding Cauchy stress and elasticity tensors in decoupled forms espe-

cially suitable for finite element implementation. By using the augmented Lagrangian method

for enforcing material incompressibility and a mixed finite element formulation in FEAP, we

have demonstrated the capability and efficiency of the proposed DFD model with three repre-

sentative examples. For each of these examples we have observed very good agreement between

the discrete model and the previously developed continuous model [16, 35]. The results indi-

cate that the capability of the discrete model is equivalent to that of the continuous model when

excluding fibers under compression but with a substantial computational speedup.

For demonstration purposes, we discretized the unit sphere simply with spherical triangles.

Future studies on the optimization of the discretization scheme may include non-uniform or lo-

cally refined discretizations. In addition, we have tested the proposed model with a rotationally

symmetric fiber dispersion. It is straightforward to implement other types of fiber arrangements

such as the recently observed non-symmetric fiber dispersion [11]. The only part that needs

20



to be changed is the computation of the discrete fiber densities over each spherical triangle via

numerical integration (Algorithm 1). The remaining part of the implementation is the same.

Compared with the micro-sphere based method, the proposed DFD model has several ad-

vantages.

• In the DFD model dispersed fibers are treated in a discrete manner, as they would occur

naturally. For example, Fig. 7(e) shows the result of a rectangular strip with 40 discrete

fiber bundles under uniaxial stretch. This result would then be exact for such a real fiber

arrangement. On the other hand in the micro-sphere based method the dispersed fibers

are considered to be continuously distributed. But their contribution is approximated by a

numerical integration scheme, in which case the method is only valid for the functions for

which the scheme was originally proposed. By contrast, the DFD method is independent

of such numerical integration schemes, and any mechanical and failure properties of the

fibers can be defined locally for each elementary area. If the representative fiber direction

Nn is under compression, then all the fibers within ∆Sn can be excluded.

• The discretization scheme used in the DFD method can be locally refined in a straightfor-

ward way as, for example, in [46]. When fibers are concentrated in several particular areas

on a unit hemisphere, then the corresponding spherical triangles can be further divided

into smaller ones to account for such locally concentrated fiber dispersions. However, if

a micro-sphere based method is used, it may not be possible to add additional integration

points locally within a sub-domain of the unit hemisphere.

• Within each elementary area (spherical triangle) the discrete fiber density ρn is evaluated

by using a large number of ρ(Θ,Φ) values, whereas in the micro-sphere based method

ρ(Θ,Φ) is evaluated at a single integration point. Thus, the DFD model uses more ρ(Θ,Φ)

information.

• In the DFD model the discrete fiber densities are computed by using a simple numerical

integration scheme over the spherical triangles [39], and this integration is easy to perform

because the variation of ρ(Θ,Φ) over an elementary area is usually small. However, in the

micro-sphere based method the computation of the integration points over the unit sphere,

and the associated weights of a particular integration scheme could be very complex or

even impossible to perform by users.

A future comparison study of the two methods with locally concentrated fibers, as doc-

umented in [3], and various loading conditions will provide more insight into their relative

performance.
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As shown in the example of Section 3.3, the DFD solution approaches that of the CFD

model as the discretization number m increases. With increasing m the solution of the DFD

model should theoretically approach the result of the CFD model for any problem. However,

for larger m, the computational cost is higher. Thus, one aim when using the DFD model is to

seek a balance between accuracy and computational efficiency. Certainly, we believe that the

potential of this novel discrete model is far beyond its capability for excluding the compressed

fibers that was demonstrated in the representative examples. The DFD model enables us to ‘fine

tune’ the mechanical behavior and failure properties of any fiber orientation at any point within

the tissue. Future studies on the modeling of fiber recruitment and anisotropic fiber damage

with the DFD model will demonstrate the further potential of the approach presented here.

Appendix A: MATHEMATICA Code for Discretization of a Unit

Sphere

We have written a MATHEMATICA code that was used for the discretization of the unit sphere

into a finite number of spherical triangles, and we have tested the code in MATHEMATICA

11.0 on a Windows machine. Thereby the number of spherical triangles can be increased by

increasing the number ‘2’ in the definition of gridFaces in the following code.

$PreRead = (# /. s_String /; StringMatchQ[s, NumberString] &&

Precision@ToExpression@s == MachinePrecision :> s <> "‘17." &);

<< PolyhedronOperations‘

Quiet@Needs["VectorAnalysis‘"]

gridFaces = Cases[Normal@Geodesate[PolyhedronData["Icosahedron"], 2,

{0, 0, 0}, 1.0], _Polygon, Infinity];

Mappg = CoordinateTransformData["Cartesian" -> "Spherical", "Mapping"];

Mg [vr_] = CoordinatesFromCartesian[vr, Spherical];

Grid[Table[

Flatten[{Mg[Partition[gridFaces[[i, 1]], 3][[1]][[1]]][[2 ;; 3]],

Mg[Partition[gridFaces[[i, 1]], 3][[1]][[2]]][[2 ;; 3]],

Mg[Partition[gridFaces[[i, 1]], 3][[1]][[3]]][[2 ;; 3]],

Normalize[RegionCentroid[ gridFaces[[i]] ]]}], {i,

Length[gridFaces]}] , ItemStyle -> "Text" ];

NumberForm[N[%, 16], {17, 8}, NumberFormat -> (#1 &)]
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For each spherical triangle, this program outputs the spherical coordinates of the three vertices

in radians and the three Cartesian coordinates of its centroid in one row. Note that similar

algorithms are also available for MATLAB, see, for example, [47].

References

[1] A. J. Schriefl, G. Zeindlinger, D. M. Pierce, P. Regitnig, and G. A. Holzapfel. Determi-

nation of the layer-specific distributed collagen fiber orientations in human thoracic and

abdominal aortas and common iliac arteries. J. R. Soc. Interface, 9:1275–1286, 2012.

[2] A. J. Schriefl, H. Wolinski, P. Regitnig, S. D. Kohlwein, and G. A. Holzapfel. An auto-

mated approach for 3D quantification of fibrillar structures in optically cleared soft bio-

logical tissues. J. R. Soc. Interface, 10:20120760, 2013.

[3] J. A. Niestrawska, Ch. Viertler, P. Regitnig, T. U. Cohnert, G. Sommer, and G. A.

Holzapfel. Microstructure and mechanics of healthy and aneurysmatic abdominal aortas:

experimental analysis and modeling. J. R. Soc. Interface, 13:20160620, 2016.

[4] L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao. High resolution

imaging of the fibrous microstructure in bovine common carotid artery using optical po-

larization tractography. J. Biophotonics, 10:231–241, 2017.

[5] W. J. Karlon, J. W. Covell, A. D. McCulloch, J. J. Hunter, and J. H. Omens. Automated

measurement of myofiber disarray in transgenic mice with ventricular expression of ras.

Anat. Rec., 252:612–625, 1998.

[6] J. W. Covell. Tissue structure and ventricular wall mechanics. Circulation, 118:699–701,

2008.

[7] M. S. Sacks. Biomechanics of native and engineered heart valve tissues. In F. Guilak,

D. L. Butler, St. A. Goldstein, and D. J. Mooney, editors, Functional Tissue Engineering,

pages 243–257, New York, 2003. Springer-Verlag.

[8] M. B. Lilledahl, D. M. Pierce, T. Ricken, G. A. Holzapfel, and C. de Lange Davies. Struc-

tural analysis of articular cartilage using multiphoton microscopy: input for biomechanical

modeling. IEEE Trans. Med. Imaging, 30:1635–1648, 2011.

23



[9] G. A. Ateshian, V. Rajan, N. O. Chahine, C. E. Canal, and C. T. Hung. Modeling the

matrix of articular cartilage using a continuous fiber angular distribution predicts many

observed phenomena. J. Biomech. Eng., 131:61003, 2009.

[10] K. Zuo, T. Pham, K. Li, C. Martin, Z. He, and W. Sun. Characterization of biomechanical

properties of aged human and ovine mitral valve chordae tendineae. J. Mech. Behav.

Biomed. uMater., 62:607–618, 2016.

[11] G. A. Holzapfel, J. A. Niestrawska, R. W. Ogden, A. J. Reinisch, and A. J. Schriefl.

Modelling non-symmetric collagen fibre dispersion in arterial walls. J. R. Soc. Interface,

12:20150188, 2015.

[12] T. C. Gasser, R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers

with distributed collagen fibre orientations. J. R. Soc. Interface, 3:15–35, 2006.

[13] G. A. Holzapfel and R. W. Ogden. Constitutive modelling of arteries. Proc. R. Soc. Lond.

A, 466:1551–1597, 2010.

[14] Y. Lanir. Constitutive equations for fibrous connective tissues. J. Biomech., 16:1–12,

1983.

[15] G. A. Holzapfel and R. W. Ogden. On the tension–compression switch in soft fibrous

solids. Eur. J. Mech. A/Solids, 49:561–569, 2015.

[16] K. Li, R. W. Ogden, and G. A. Holzapfel. An exponential constitutive model excluding

fibers under compression: application to extension-inflation of a residually stressed carotid

artery. Math. Mech. Solids. in press.

[17] E. Verron. Questioning numerical integration methods for microsphere (and microplane)

constitutive equations. Mech. Mat., 89:216–228, 2015.
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