The NC property for Banach algebras, and C^{*}-equivalence

Philip G Spain

Abstract

Consider a unital Banach algebra \mathcal{A} having the $N C$ property: that $$
1-\mathcal{A}_{1}^{+} \subseteq \mathcal{A}_{1}^{+}
$$

Then

$$
|h|_{\sigma}=\|h\| \quad\left(h \in \mathcal{A}^{+}\right) .
$$

Any unital hermitian Banach $*$-algebra with this property is therefore C^{*}-equivalent.

Introduction

All Banach algebras considered here will be unital, with $\|1\|=1$.
As usual, given an element a of a unital Banach algebra \mathcal{A} write $\sigma(a)$ for its spectrum and $|a|_{\sigma}$ for its spectral radius.
Write \mathcal{A}^{r} for the set $\{h \in \mathcal{A}: \sigma(h) \subseteq \mathbb{R}\}$, the set of elements in \mathcal{A} with real spectrum; write \mathcal{A}^{+}for the set $\left\{h \in \mathcal{A}: \sigma(h) \subseteq \mathbb{R}^{+}\right\}$(the positive elements of \mathcal{A}); and \mathcal{A}_{1}^{+}for the set $\left\{h \in \mathcal{A}^{+}:\|h\| \leq 1\right\}$. We write $h \gg 0$ to indicate that $\sigma(h) \subseteq \mathbb{R}^{+} \backslash\{0\}$ - equivalently, that h is positive and invertible.
The $N C$ property introduced in [4] is that

$$
1-\mathcal{A}_{1}^{+} \subseteq \mathcal{A}_{1}^{+},
$$

or, alternatively put,

$$
\text { if } \sigma(h) \subseteq \mathbb{R}^{+} \&\|h\| \leq 1 \quad \text { then }\|1-h\| \leq 1
$$

As we shall show, given $N C$ one can produce positive square roots of positive elements, with control of their norm, and prove that the norm and spectral radius agree on positive elements. (This was claimed in $[4, \S 11]$ but the argument there presented was both overclumsy and undercorrect.) The essential tool is the family of real polynomial functions π_{n} defined recursively by:

$$
\begin{aligned}
\pi_{0}(t) & =0 \\
2 \pi_{n+1}(t) & =t+2 \pi_{n}(t)-\pi_{n}(t)^{2} .
\end{aligned}
$$

Recall that on $[0,1]$ these polynomials increase monotonically and uniformly to the square root function.

The $N C$ Square Root Lemma

Let \mathcal{A} be a unital Banach algebra. Given an element $a \in \mathcal{A}$ we define

$$
a_{n}=\pi_{n}(a) \quad(n=0,1, \ldots)
$$

and check that then, for $n=0,1, \ldots$,

$$
\begin{aligned}
2\left(1-a_{n+1}\right) & =1-a+\left(1-a_{n}\right)^{2} \\
2\left(a_{n+2}-a_{n+1}\right) & =\left(a_{n+1}-a_{n}\right)\left(2-a_{n+1}-a_{n}\right) .
\end{aligned}
$$

Lemma 1. Consider a unital Banach algebra \mathcal{A} satisfying NC and an element $h \in \mathcal{A}^{+}$ for which $h \gg 0$ and $\|h\|<1$.
Define $h_{n}=\pi_{n}(h)$ for $n=0,1, \ldots$. Then $\left(h_{n}\right)$ is a Cauchy sequence and its limit h_{∞} lies in \mathcal{A}_{1}. Moreover, $h_{\infty}^{2}=h$.

Proof. Choose an $\varepsilon>0$ such that

$$
2 \varepsilon \leq h \quad \& \quad\|h\|+2 \varepsilon<1
$$

and put $\lambda=1-\varepsilon$. Note that $2 \varepsilon<1<2 \lambda$.
Now $\|h-\varepsilon\| \leq\|h\|+\varepsilon \leq 1-\varepsilon=\lambda$, and $1-h=\lambda\left[1-\frac{h-\varepsilon}{\lambda}\right]$; so

$$
\|1-h\| \leq \lambda
$$

Also, $\|h-2 \varepsilon\| \leq\|h\|+2 \varepsilon<1$, and $1-h_{1}=1-\frac{h}{2}=\lambda\left[1-\frac{h-2 \varepsilon}{2 \lambda}\right]$; so

$$
\left\|1-h_{1}\right\| \leq \lambda
$$

From this, the induction steps being

$$
\begin{aligned}
2\left\|1-h_{n}\right\| & \leq\|1-h\|+\left\|\left(1-h_{n}\right)^{2}\right\| \\
& \leq \lambda+\lambda^{2} \leq 2 \lambda
\end{aligned}
$$

and

$$
2\left\|h_{n+2}-h_{n+1}\right\| \leq\left\|h_{n+1}-h_{n}\right\|\left(\left\|1-h_{n+1}\right\|+\left\|1-h_{n}\right\|\right) \leq 2 \lambda\left\|h_{n+1}-h_{n}\right\|,
$$

we deduce that

$$
\begin{aligned}
\left\|1-h_{n}\right\| & \leq \lambda \quad\left(\text { whence }\left\|h_{n}\right\| \leq 1\right) \quad \text { and } \\
\left\|h_{n+1}-h_{n}\right\| & \leq \lambda^{n+1}
\end{aligned}
$$

for $n=1,2, \ldots$ Thus $\left(h_{n}\right)$ is a Cauchy sequence in \mathcal{A}_{1} and its limit h_{∞}, also in \mathcal{A}_{1}, must satisfy the relation

$$
2 h_{\infty}=h+2 h_{\infty}-h_{\infty}^{2},
$$

that is

$$
h_{\infty}^{2}=h .
$$

The $N C$ Theorem

Theorem 2. If \mathcal{A} is a unital Banach algebra satisfying NC then

$$
|h|_{\sigma}=\|h\| \quad\left(h \in \mathcal{A}^{+}\right)
$$

Consequently positive square roots of positives exist and are uniquely determined. Further,

$$
\|h\| \leq 2|h|_{\sigma} \quad\left(h \in \mathcal{A}^{r}\right)
$$

Proof. First suppose that $h \gg 0$ and that $\left\|h^{2}\right\|<1$. Put $k=h^{2}$ and apply the Lemma to obtain a $k_{\infty},=\lim \pi_{n}(k)$, such that $k_{\infty}^{2}=k=h^{2}$. By construction, k_{∞} commutes with h.
Consider any character φ on the unital commutative Banach subalgebra of \mathcal{A} generated by h. We have $\varphi\left(k_{\infty}\right)^{2}=\varphi(h)^{2}$; and, since both k_{∞} and h are positive, we have $\varphi\left(k_{\infty}\right)=$ $\varphi(h)$. Thus $\min \sigma\left(k_{\infty}+h\right)=2 \min \sigma(h)>0$, which shows that $k_{\infty}+h$ is invertible.
Now $\left(k_{\infty}-h\right)\left(k_{\infty}+h\right)=k_{\infty}^{2}-h^{2}=0$, whence $k_{\infty}=h$. That is, $h=\lim \pi_{n}\left(h^{2}\right)$ and therefore

$$
\|h\| \leq 1, \quad \text { so long as } h \gg 0 \text { and }\left\|h^{2}\right\|<1 .
$$

Suppose now that $h \geq 0$ and $\left\|h^{2}\right\|<1$. Then $h+\varepsilon \gg 0$ and $\left\|(h+\varepsilon)^{2}\right\|<1$ for ε positive and small enough. Thus $\|h+\varepsilon\| \leq 1$ for ε small enough: so $\|h\| \leq 1$. The usual scaling argument shows that $\|h\|^{2} \leq\left\|h^{2}\right\|$ and therefore

$$
|h|_{\sigma}=\|h\|
$$

for all $h \in \mathcal{A}^{+}$.
Since the norm and spectral norm agree on positives we have

$$
k=\lim \pi_{n}\left(k^{2}\right) \quad\left(k \in \mathcal{A}_{1}^{+}\right)
$$

Thus, if k and l are positive square roots of the same element (which, without loss of generality, we may assume to be in $\left.\mathcal{A}_{1}^{+}\right)$then $k=\lim \pi_{n}\left(k^{2}\right)=\lim \pi_{n}\left(l^{2}\right)=l$. That is, positives have unique positive square roots.
Given $h \in \mathcal{A}$ with $\sigma(h) \subseteq \mathbb{R}$ we can define its absolute value $|h|=\left(h^{2}\right)^{\frac{1}{2}}$ and then define h^{+}and h^{-}by $2 h^{ \pm}=|h| \pm h$. This provides the decomposition $h=h^{+}-h^{-}$where $h^{ \pm} \geq 0$, $h^{+} h^{-}=0$ and $\left\|h^{ \pm}\right\| \leq|h|_{\sigma} \leq\|h\|$. Hence $\|h\| \leq\left\|h^{+}\right\|+\left\|h^{-}\right\| \leq 2|h|_{\sigma}$.

Hermitian Banach *-algebras with NC

When \mathcal{A} is a *-algebra write $\mathcal{A}^{h}=\left\{h \in \mathcal{A}: h=h^{*}\right\}$.
A unital Banach ${ }^{*}$-algebra \mathcal{A} is hermitian if $\sigma(h) \subseteq \mathbb{R}$ for all $h \in \mathcal{A}^{h}$: that is, if $\mathcal{A}^{h} \subseteq \mathcal{A}^{r}$. Such an algebra is symmetric: $\sigma\left(a^{*} a\right) \subseteq \mathbb{R}^{+}$for all $a \in \mathcal{A}$ (the Shirali-Ford Theorem).
In his seminal paper [2, §5] Ptak showed that on a hermitian Banach *-algebra the Ptak seminorm, the function $a \mapsto|a|_{\Sigma}=\left|a^{*} a\right|_{\sigma}^{\frac{1}{2}}$, is a C^{*}-seminorm. Moreover, he showed that a hermitian Banach ${ }^{*}$-algebra \mathcal{A} is C^{*}-equivalent if there exists a $\beta>0$ such that $\|h\| \leq \beta|h|_{\sigma}$ for all $h \in \mathcal{A}^{h}$. Hence

Corollary 3. If \mathcal{A} is a unital hermitian Banach *-algebra with the NC property then \mathcal{A} is C^{*}-equivalent.

Remark. We have $\|a\| \leq 4|a|_{\Sigma}$ for all $a \in \mathcal{A}$. When the involution is isometric, as was hypothesized in [4], we also have $|a|_{\Sigma} \leq\|a\|$ for all a.

Remark. One cannot improve this: $N C$ does not imply that the original norm is C^{*}. As remarked by B.A. Barnes, reported by R.B. Burckel in his review of [1], if we take $\mathcal{B}=\left(\mathbb{R}[0,1],\|\cdot\|_{\infty}\right)$ and construct a Banach algebra norm $\|\cdot\|_{c}$ on $\mathcal{A}=\mathbb{C}[0,1]$ as the complexification of \mathcal{B} following [3, Theorem 1.3.2] then, taking $h, k \in \mathcal{B}, \quad h k=0$, $\|h\|_{\infty}=\|k\|_{\infty}>0$, we find that $\|h+i k\|_{c} \geq \sqrt{2}\|h+i k\|_{\infty}$. So the norm $\|\cdot\|_{c}$ is a C^{*}-norm on \mathcal{A}^{+}but is not a C^{*}-norm on \mathcal{A}.

References

[1] H. Behncke, A remark on C*-algebras, Comm. Math. Phys. 12 (1969) 142-144. MR 0243363 (39 \#4685).
[2] V. Ptak, Banach algebras with involution, Manuscripta Math. 6 (1972) 245-290. MR 0296705.
[3] C.E. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, N.J. (1960). MR 0115101 (22 \#5903).
[4] P. G. Spain, Order and Square Roots in Hermitian Banach *-Algebras, Operator Theory: Advances and Applications (Bela Szokefalvi-Nagy Memorial Volume) 127 (2001) 561-584. MR 1902902.

Department of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW Philip.Spain@glasgow.ac.uk

