Spain, P. G. (2017) Numerical range of a simple compression. Functional Analysis, Approximation and Computation, 9(1), pp. 25-35.

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.
http://eprints.gla.ac.uk/156484/

Deposited on: 31 January 2018

Enlighten - Research publications by members of the University of Glasgow_ http://eprints.gla.ac.uk

The Numerical Range of a Simple Compression

Philip G Spain

Abstract

The numerical range of the contraction $K:\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \mapsto\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]$ acting on $L\left(\mathbb{C}^{2}\right)$ is identified, so allowing one to exhibit a hermitian projection that is not ultrahermitian. An explicit formula for the norm of the operator $\kappa_{m}:=\left[\begin{array}{cc}a & b \\ c & d\end{array}\right] \mapsto\left[\begin{array}{cc}m a & b \\ c & d\end{array}\right](m \in \mathbb{C})$. translates into a family of inequalities in four complex variables.

Introduction

Although the product of hermitian operators on a Hilbert space is also hermitian if (and only if) they commute, this does not extend to hermitian operators on a Banach space. Indeed, the square of a hermitian need not be hermitian: and even the product of two commuting hermitian projections need not be hermitian.
Here I identify the numerical range of the simplest nontrivial compression operator K : $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \mapsto\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]$, and so can exhibit hermitian projections that are not ultrahermitian.
The norms of the related operators $\kappa_{m}:=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \mapsto\left[\begin{array}{cc}m a & b \\ c & d\end{array}\right]$ are calculated explicitly (as m varies in the complex plane).
Perhaps surprisingly, the quantity $a^{2}+b^{2}+c^{2}+d^{2}+\sqrt{\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{2}-4(a d \pm b c)^{2}}$ does not necessarily decrease when one replaces a by $0(a, b, c$ and d being arbitrary real numbers), but may increase by up to the factor $\left\|\kappa_{0}\right\|$.

1 Numerical range

I follow the standard notation and rehearse only a few salient details, referring the reader to $[\mathrm{BD}]$, for example, for a full exposition and other references.
Given a Banach space X we say that

$$
f \in X^{\prime} \text { supports } x \in X \text { if }\langle x, f\rangle=\|x\|=\|f\|=1 .
$$

The supporting set for X is

$$
\Pi_{X}:=\left\{(x, f) \in X \times X^{\prime}:\langle x, f\rangle=\|x\|=\|f\|=1\right\}
$$

The (spatial) numerical range of the operator $T(\in L(X))$ is

$$
V(T):=\left\{\langle T x, f\rangle:(x, f) \in \Pi_{X}\right\} .
$$

Definition 1.1 H in $L(X)$ is hermitian if its numerical range is real: equivalently, if $\left\|e^{i r H}\right\|=1 \quad(\forall r \in \mathbb{R}):$ equivalently, if $\left\|I_{X}+i r H\right\| \leq 1+o(r) \quad(\mathbb{R} \ni r \rightarrow 0)$.

2 The Banach space $L\left(\mathbb{C}^{2}\right)$ and some linear algebra

My example lives on $L\left(\mathbb{C}^{2}\right)$ with the operator norm. Facts to notice about this Banach space:

- Given $f \in L\left(\mathbb{C}^{2}\right)$ we can define a functional $\omega_{f}: y \mapsto \operatorname{tr}(y f)$ in $L\left(\mathbb{C}^{2}\right)^{\prime}$: here tr is the unnormalised trace: and

$$
\left\|\omega_{f}\right\|=\operatorname{tr}|f|=\operatorname{tr}\left(f^{*} f\right)^{\frac{1}{2}}
$$

Since any functional must be of this form we see that the [pre]dual of $L\left(\mathbb{C}^{2}\right)$ is, as a set, the same space as $L\left(\mathbb{C}^{2}\right)$: but with the trace norm.

- $\Pi_{L\left(\mathbb{C}^{2}\right)}$ is biunitarily invariant in the sense that

$$
\left(u x v, v^{*} f u^{*}\right) \in \Pi_{L\left(\mathbb{C}^{2}\right)} \Longleftrightarrow(x, f) \in \Pi_{L\left(\mathbb{C}^{2}\right)}
$$

for any unitaries u and v.

- $\Pi_{L\left(\mathbb{C}^{2}\right)}$ is invariant under complex conjugation too - so $V(T)$ is symmetric in the real axis when T has real entries.

Given an element $x=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ of $L\left(\mathbb{C}^{2}\right)$ define

$$
\sigma^{2}=|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}, \quad \nu^{2}=|a d-b c|, \quad \text { and } \quad \rho^{4}=\sigma^{4}-4 \nu^{4}
$$

Then (routine computation!) the eigenvalues of $x^{*} x$ are $\left(\sigma^{2} \pm \rho^{2}\right) / 2$ from which we have

$$
\|x\|_{L\left(\mathbb{C}^{2}\right)}^{2}=\frac{\sigma^{2}+\rho^{2}}{2} \quad \text { and } \quad \operatorname{tr}|x|=\left[\sigma^{2}+2 \nu^{2}\right]^{\frac{1}{2}} .
$$

Singular value decomposition

Given $x \in L\left(\mathbb{C}^{2}\right)$ there are unitaries u and v such that

$$
u x v=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

where λ_{1} and $\lambda_{2}\left(\lambda_{1} \geq \lambda_{2}\right)$ are the eigenvalues of $|x|$. In particular, if $\|x\|=1$, there are u, v such that

$$
u x v=\left[\begin{array}{cc}
1 & 0 \\
0 & \lambda
\end{array}\right]=: \quad x_{\lambda}
$$

with $0 \leq \lambda \leq 1$: and $\lambda=1$ precisely when x itself is unitary.

The supporting set $\Pi_{L\left(\mathbb{C}^{2}\right)}$

Define

$$
f_{(\alpha)}=\left[\begin{array}{cc}
\alpha & 0 \\
0 & 1-\alpha
\end{array}\right] .
$$

Lemma 2.1 The functionals $f_{(\alpha)}(0 \leq \alpha \leq 1)$ support x_{1} : and only these. The functional $f_{(1)}$ is the only support of x_{λ} when $0 \leq \lambda<1$.

Hence

Lemma 2.2

$$
\Pi_{L\left(\mathbb{C}^{2}\right)}=\left\{\left(u^{*} x_{\lambda} v^{*}, v f_{(\alpha)} u\right)\right\}
$$

where u, v are unitary, $0 \leq \lambda \leq 1$, \& $\alpha\left\{\begin{array}{ll}\in[0,1] & \lambda=1 \\ =1 & 0 \leq \lambda<1\end{array}\right\}$.

3 The compression K

Consider the selfadjoint projection $P=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ in $L\left(\mathbb{C}^{2}\right)$. Then the left and right multiplication operators

$$
L=L_{P} \quad \& \quad R=R_{P}
$$

are hermitian projections in $L\left(L\left(\mathbb{C}^{2}\right)\right)$, for $\left\|e^{i r L_{P}}\right\|=\left\|e^{i r R_{P}}\right\|=\left\|e^{i r P}\right\|=1(r \in \mathbb{R})$.
They commute, and their product

$$
K=L R=R L
$$

is a norm 1 projection on $L\left(\mathbb{C}^{2}\right)$, the compression $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \mapsto\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]$.
Theorem 3.1 K is not hermitian.
Proof. Note that $\|I-2 Q\|=\left\|e^{i \pi Q}\right\|=1$ for any hermitian projection Q. However, $\|I-2 K\| \geq \sqrt{2}-$ for $(I-2 K)\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 1 \\ 1 & 1\end{array}\right]$ and $\left\|\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right]\right\|=\sqrt{2}$ while $\left\|\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right\|=2$.
(In fact, $\|I-2 K\|=\left\|\kappa_{-1}\right\|=\sqrt{2}$: see $\S 5$ below.)
[AF] showed, also explicitly, that $\|\exp (3 \pi i K / 2)\|>1$.

Ultrahermitian projections

Consider the following two properties that may hold for a projection E on a Banach space X. Note that they are symmetrical in E and its complement $\bar{E}(=I-E)$. First,

$$
\begin{equation*}
\|E x\|\left\|E^{\prime} \phi\right\|+\|\bar{E} x\|\left\|\bar{E}^{\prime} \phi\right\| \leq\|x\|\|\phi\| \tag{U1}
\end{equation*}
$$

for $x \in X, \phi \in X^{\prime}$: and, second,

$$
\begin{equation*}
\|E A E+\bar{E} B \bar{E}\| \leq 1 \tag{U2}
\end{equation*}
$$

for any contractions $A, B \in L(X)$.
Hermitian projections on Hilbert spaces have both these properties, as is easy to check.
The present author showed, see $[\mathrm{S}]$, that the properties (U1) and (U2) are equivalent, and introduced the term ultrahermitian for a projection that has either [and so both] of them.
Ultrahermitian projections are automatically hermitian [S, Theorem 4.3] and the product of two hermitian projections of which one is ultrahermitian must be hermitian $[\mathrm{S}$, Corollary 4.8]. Hence

Theorem 3.2 The left and right multiplication operators L_{P} and R_{P}, though hermitian, are not ultrahermitian.

4 The numerical range $V(K)$

By Lemma 2.2 this is the convex set of all

$$
\begin{aligned}
\varpi_{\lambda, \alpha} & :=\left\langle K u^{*} x_{\lambda} v^{*}, v f_{(\alpha)} u\right\rangle \\
& =\operatorname{tr}\left(\left[P u^{*} x_{\lambda} v^{*} P\right]\left[v f_{(\alpha)} u\right]\right) \\
& =\operatorname{tr}\left(\left[P u^{*} x_{\lambda} v^{*} P\right]\left[P v f_{(\alpha)} u P\right]\right) \\
& =\left(u^{*} x_{\lambda} v^{*}\right)_{(1,1)}\left(v f_{(\alpha)} u\right)_{(1,1)}
\end{aligned}
$$

where u, v are arbitrary unitaries, $0 \leq \lambda \leq 1$, and $\alpha\left\{\begin{array}{ll}\in[0,1] & \lambda=1 \\ =1 & 0 \leq \lambda<1\end{array}\right\}$.
As a full set of unitaries we may take

$$
u:=\omega_{0}\left[\begin{array}{cc}
c & \omega_{2} s \\
\omega_{1} s & -\omega_{1} \omega_{2} c
\end{array}\right] \quad \text { and } \quad v:=\quad w_{0}\left[\begin{array}{cc}
C & w_{2} S \\
w_{1} S & -w_{1} w_{2} C
\end{array}\right]
$$

with $\left|\omega_{k}\right|=1, c=\cos \theta, s=\sin \theta, \quad(0 \leq \theta \leq \pi / 2)$, and $\left|w_{k}\right|=1, C=\cos \varphi, S=\sin \varphi$, ($0 \leq \varphi \leq \pi / 2$). Compute:

$$
\begin{aligned}
P u^{*} x_{\lambda} v^{*} P & =\overline{\omega_{0} w_{0}}\left[\begin{array}{cc}
c C+\lambda \overline{\omega_{1} w_{2}} s S & 0 \\
0 & 0
\end{array}\right] \\
P v f_{(\alpha)} u P & =\omega_{0} w_{0}\left[\begin{array}{cc}
\alpha c C+(1-\alpha) \omega_{1} w_{2} s S & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

So

$$
\begin{aligned}
\varpi_{\lambda, \alpha} & =\alpha c^{2} C^{2}+\lambda(1-\alpha) s^{2} S^{2}+\left[\alpha \lambda \overline{\omega_{1} w_{2}}+(1-\alpha) \omega_{1} w_{2}\right] c C s S \\
& =\left\{\begin{array}{lr}
c^{2} C^{2}+\lambda \overline{\omega_{1} w_{2}} c C s S \\
\alpha\left[c^{2} C^{2}+\overline{\omega_{1} w_{2}} c C s S\right]+(1-\alpha)\left[s^{2} S^{2}+\omega_{1} w_{2} c C s S\right] & 0 \leq \lambda<1^{*} \\
\lambda=1
\end{array}\right\}
\end{aligned}
$$

(* - also for $\lambda=1$ - put $\alpha=1$ in the following line.)
Replace $\overline{\omega_{1} w_{2}}$ by ω. The points $\varpi_{\lambda, 1}$, ie

$$
c^{2} C^{2}+\lambda \omega c \operatorname{CsS} \quad(0 \leq \lambda \leq 1)
$$

form the closed discs

$$
D(\theta, \varphi):=\left\{\cos ^{2} \theta \cos ^{2} \varphi+\zeta \cos \theta \cos \varphi \sin \theta \sin \varphi:|\zeta| \leq 1\right\}
$$

with boundaries as in Figure 1. This demonstrates
Theorem 4.1

$$
V(K)=\bigcup_{\substack{0 \leq \theta \leq \pi / 2 \\ 0 \leq \varphi \leq \pi / 2}} D(\theta, \varphi) .
$$

Remark 4.2 Since $-\frac{1}{8} \in V(K)$ we see that $\|I-2 K\| \geq|V(I-2 K)|=\frac{5}{4}$, so, again, K cannot be hermitian.

Figure 1: $\left\{\cos ^{2} \theta \cos ^{2} \varphi+\omega \cos \theta \cos \varphi \sin \theta \sin \varphi:|\omega|=1\right\}$

Lemma 4.3 (Cosine-geometric mean) Given θ, φ in the first quadrant define their cosine-geometric mean

$$
\psi:=\cos ^{-1} \sqrt{\cos \theta \cos \varphi} .
$$

Then the disc $D(\theta, \varphi)$ lies concentrically inside the disc

$$
D(\psi, \psi)=\left\{\cos ^{4} \psi+\zeta \cos ^{2} \psi \sin ^{2} \psi:|\zeta| \leq 1\right\}
$$

Proof. Just check that $\sin \theta \sin \varphi=\cos (\theta-\varphi)-\cos ^{2} \psi \leq 1-\cos ^{2} \psi=\sin ^{2} \psi$.
Next, for $0<\alpha<1$, the points $\varpi_{1, \alpha}$ of the numerical range ie

$$
\alpha\left[c^{2} C^{2}+\bar{\omega} c C s S\right]+(1-\alpha)\left[s^{2} S^{2}+\omega c C s S\right]
$$

lie in the convex hull of $D(\psi, \psi)$ and $D(\tilde{\psi}, \tilde{\psi})$, where $\tilde{\psi}$ is the cosine-geometric mean of $\frac{\pi}{2}-\theta$ and $\frac{\pi}{2}-\varphi$. Thus

Theorem 4.4

$$
V(K)=\bigcup_{\substack{0 \leq \theta \leq \pi / 2 \\ 0 \leq \varphi \leq \pi / 2}} D(\theta, \varphi)=\bigcup_{0 \leq \psi \leq \pi / 2} D(\psi, \psi) .
$$

The circles $\partial D(\theta, \varphi)$ and $\partial D(\psi, \psi)$ lie as shown in Figure 2; and $V(K)$, the union of the discs $D(\psi, \psi)$, is as in Figure 3.

Figure 2: $\partial D(\theta, \varphi)$ (red) \& $\partial D(\psi, \psi)$ (blue)

Figure 3: $V(K)=\bigcup_{0 \leq \theta \leq \pi / 2} D(\theta, \theta)$

The envelope and cusp

The circumference of the disc $D(\psi, \psi)$ is [setting $\gamma=\cos ^{2} \psi$]

$$
\left(x-\gamma^{2}\right)^{2}+y^{2}=\gamma^{2}(1-\gamma)^{2}=\gamma^{2}-2 \gamma^{3}+\gamma^{4} .
$$

To find the envelope of the $D(\psi, \psi)$ solve this equation simultaneously with its γ-derivative

$$
2\left(x-\gamma^{2}\right)[-2 \gamma]=2 \gamma-6 \gamma^{2}+4 \gamma^{3}
$$

to get

$$
\begin{aligned}
& 2 x=3 \gamma-1 \\
& 2 y= \pm(1-\gamma)\{4 \gamma-1\}^{\frac{1}{2}}
\end{aligned}
$$

for $\frac{1}{4} \leq \gamma \leq 1$.

Figure 4: The cusp angle

5 The map κ_{m} and its norm $(m \in \mathbb{C})$

The map κ_{m} is defined as

$$
\kappa_{m}:=I+(m-1) K: L\left(\mathbb{C}^{2}\right) \rightarrow L\left(\mathbb{C}^{2}\right):\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \mapsto\left[\begin{array}{cc}
m a & b \\
c & d
\end{array}\right] .
$$

As a first estimate $\left\|\kappa_{m}\right\| \geq 1$ and $\left\|\kappa_{m}\right\| \geq|m|$.

Figure 5: $\left\|\kappa_{m}\right\| \geq \max \{1,|m|\}$
Since κ_{m} attains its norm on the unit ball of $L\left(\mathbb{C}^{2}\right)$, the convex hull of the unitaries (the Russo-Dye theorem [BD, §38]), we next examine the values $\left\|\kappa_{m} u\right\|$ for unitary u. It will be more convenient to work with the expression $2\left\|\kappa_{m} u\right\|^{2}$.
With $c=\cos \theta, s=\sin \theta$, and $0 \leq \theta \leq \pi / 2$, consider a typical unitary

$$
u:=u(c)=\omega_{0}\left[\begin{array}{cc}
c & \omega_{2} s \\
\omega_{1} s & -\omega_{1} \omega_{2} c
\end{array}\right]
$$

where ω_{1} and ω_{2} are arbitrary unimodular complex numbers. Calculate:

$$
\begin{aligned}
\sigma\left(\kappa_{m} u\right)^{2} & =2+\left(|m|^{2}-1\right) c^{2} \\
\rho\left(\kappa_{m} u\right)^{4} & =c^{2}\left\{4|m-1|^{2}+\left[\left(|m|^{2}-1\right)^{2}-4|m-1|^{2}\right] c^{2}\right\} \\
F_{m}(c) & :=2\left\|\kappa_{m} u\right\|^{2} \\
& =\sigma\left(\kappa_{m} u\right)^{2}+\rho\left(\kappa_{m} u\right)^{2} \\
& =2+\left(|m|^{2}-1\right) c^{2}+c\left\{4|m-1|^{2}+\left[\left(|m|^{2}-1\right)^{2}-4|m-1|^{2}\right] c^{2}\right\}^{\frac{1}{2}}
\end{aligned}
$$

The ω_{1} and ω_{2} are now seen to be irrelevant, so, without loss of generality, take $\omega_{1}=$ $\omega_{2}=1$.
Put

$$
\Gamma:=4|m-1|^{2}-\left(|m|^{2}-1\right)^{2}
$$

Then

$$
F_{m}(c)=2+\left(|m|^{2}-1\right) c^{2}+c\left\{4|m-1|^{2}-\Gamma c^{2}\right\}^{\frac{1}{2}}
$$

Note that

$$
\begin{aligned}
F_{m}(0) & =2 \\
F_{m}(1) & =2+|m|^{2}-1+\left\{\left(|m|^{2}-1\right)^{2}\right\}^{\frac{1}{2}} \\
& =2 \max \left\{1,|m|^{2}\right\} \quad\left[\geq F_{m}(0)\right] .
\end{aligned}
$$

Thus

$$
\left\|\kappa_{m}\right\|=\max \{1,|m|\}
$$

when F_{m} has no turning point in $[0,1]$.

The cardioid $\Gamma=0$

The locus $\Gamma=0$, that is, $|m|^{2}-1=2|m-1|$, is the cardioid shown in Figure 6.

Figure 6: $|m|^{2}-1=2|m-1|$
In plane polar coordinates (r, ϕ) the equation is $8 r \cos \phi=3+6 r^{2}-r^{4}$.

Outside the cardioid $\Gamma=0$
The function $F_{m}(c)$ certainly increases on $[0,1]$ if $\Gamma \leq 0$ (which forces $|m| \geq 1$) so $\left\|\kappa_{m}\right\|=\max \{1,|m|\}=|m|$ outside the cardioid.

Inside the cardioid $\Gamma=0$

To find turning points differentiate with respect to c :

$$
\begin{aligned}
& F_{m}^{\prime}(c)=2\left(|m|^{2}-1\right) c+\left\{4|m-1|^{2}-\Gamma c^{2}\right\}^{\frac{1}{2}} \\
&-\Gamma c^{2}\left\{4|m-1|^{2}-\Gamma c^{2}\right\}^{-\frac{1}{2}} \\
&=2\left(|m|^{2}-1\right) c+2\left\{2|m-1|^{2}-\Gamma c^{2}\right\}\left\{4|m-1|^{2}-\Gamma c^{2}\right\}^{-\frac{1}{2}}
\end{aligned}
$$

Setting $F_{m}^{\prime}(c)=0$ and squaring [so possibly introducing spurious solutions] leads to the equation

$$
\Gamma c^{4}-4|m-1|^{2} c^{2}+|m-1|^{2}=0
$$

for c^{2}.
Note that if $|m|=1$ [leaving $m=1$ aside] the equation reduces to $\left(1-2 c^{2}\right)^{2}=0$, and therefore κ_{m} attains its norm at $\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$, independently of $\arg m$.
Otherwise the discriminant is

$$
\begin{aligned}
\Delta & =\left(2|m-1|^{2}\right)^{2}-\left[4|m-1|^{2}-\left(|m|^{2}-1\right)^{2}\right]|m-1|^{2} \\
& =|m-1|^{2}\left(|m|^{2}-1\right)^{2}>0
\end{aligned}
$$

and the candidate solutions are

$$
\begin{aligned}
c_{ \pm}^{2} & =\frac{2|m-1|^{2} \pm|m-1|\left(|m|^{2}-1\right)}{\left[2|m-1|-\left(|m|^{2}-1\right)\right]\left[2|m-1|+\left(|m|^{2}-1\right)\right]} \\
& =\frac{|m-1|}{2|m-1| \mp\left(|m|^{2}-1\right)}>0
\end{aligned}
$$

It is straightforward to check that

$$
\begin{aligned}
& 4|m-1|^{2}-\Gamma c_{ \pm}^{2}=\frac{|m-1|^{2}}{c_{ \pm}^{2}} \\
& 2|m-1|^{2}-\Gamma c_{ \pm}^{2}=\mp|m-1|\left(|m|^{2}-1\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
F_{m}^{\prime}\left(c_{ \pm}\right) & =2\left(|m|^{2}-1\right) c+2\left\{2|m-1|^{2}-\Gamma c^{2}\right\}\left\{4|m-1|^{2}-\Gamma c^{2}\right\}^{-\frac{1}{2}} \\
& =2 c_{ \pm}\left\{\left[|m|^{2}-1\right] \mp\left[|m|^{2}-1\right]\right\},
\end{aligned}
$$

which shows that c_{+}alone is a possible turning point for F_{m} : but does c_{+}lie in $[0,1]$?
The condition for this is that $|m-1| \leq 2|m-1|-\left(|m|^{2}-1\right) i e$ that

$$
|m|^{2}-1 \leq|m-1|
$$

The cardioidoid $\left||m|^{2}-1\right|=|m-1|$
The 'edge locus' $\left||m|^{2}-1\right|=|m-1|$, which, for lack of another name I shall call a cardioidoid, bounds the blue region in Figure 7.

Figure 7: The cardioidoid
In plane polar coordinates it has equation $2 r \cos \phi=3 r^{2}-r^{4}$.
However, the set $|m|^{2}-1 \leq|m-1|$ includes the unit disc too: I refer to this set as the filled cardioidoid.

Figure 8: Filled cardioidoid

Inside the filled cardioidoid

Suppose that m lies inside the filled cardioidoid, so that $c_{+} \in[0,1]$.
Then

$$
F_{m}\left(c_{+}\right)=\cdots=2 \frac{(|m-1|+1)^{2}-|m|^{2}}{2|m-1|+1-|m|^{2}} .
$$

Next

$$
F_{m}\left(c_{+}\right)-2=\frac{2|m-1|^{2}}{2|m-1|+1-|m|^{2}} \geq 0
$$

and

$$
F_{m}\left(c_{+}\right)-2|m|^{2}=\frac{2\left(|m|^{2}-1-|m-1|\right)^{2}}{2|m-1|+1-|m|^{2}} \geq 0
$$

so

$$
F_{m}\left(c_{+}\right) \geq F_{m}(1) \geq F_{m}(0) .
$$

Therefore

$$
\left\|\kappa_{m}\right\|^{2}=\frac{(|m-1|+1)^{2}-|m|^{2}}{2|m-1|+1-|m|^{2}}
$$

for m inside the filled cardioidoid. When m is real, within these limits, this expression reduces to $\frac{4}{3+m}$.
To sum up:

Theorem 5.1

$$
\left\|\kappa_{m}\right\|=\left\{\begin{array}{ll}
|m| & \text { outside } \\
\sqrt{\frac{(|m-1|+1)^{2}-|m|^{2}}{2|m-1|+1-|m|^{2}}} & \text { inside } \\
\sqrt{\frac{4}{3+m}} & \text { on real axis inside }
\end{array}\right\} \text { the filled cardioidoid. }
$$

Graph of $\left\|\kappa_{m}\right\|$ for m real

For real m inside the filled cardioidoid, $i e-2 \leq m \leq 1$, we have

$$
\left\|\kappa_{m}\right\|=\sqrt{\frac{4}{3+m}}
$$

The graph of norm κ_{m} is shown in Figure 9.

Figure 9: $\left\|\kappa_{m}\right\|$ is continuous for all m but is not differentiable at 1 , even as a function of a real variable

6 An inequality

The inequalities

$$
\left\|\kappa_{m} A\right\| \leq\left\|\kappa_{m}\right\|\|A\|
$$

(for complex 2×2 matrices A) are hardly transparent when written out explicitly. However, for $m=0$, the simplest case, we have $\|I-K\|=\left\|\kappa_{0}\right\|=2 / \sqrt{3}$ so, for any real numbers a, b, c, d, we have

$$
\begin{aligned}
& 3\left(b^{2}+c^{2}+d^{2}+\sqrt{\left(b^{2}+c^{2}+d^{2}\right)^{2}-4 b^{2} c^{2}}\right) \\
& \quad \leq 4\left(a^{2}+b^{2}+c^{2}+d^{2}+\sqrt{\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{2}-4(a d \pm b c)^{2}}\right)
\end{aligned}
$$

or, on rewriting,

$$
\begin{aligned}
& 3\left(b^{2}+c^{2}+d^{2}+\sqrt{\left[(b-c)^{2}+d^{2}\right]\left[(b+c)^{2}+d^{2}\right]}\right) \\
& \quad \leq 4\left(a^{2}+b^{2}+c^{2}+d^{2}+\sqrt{\left[(a-d)^{2}+(b \mp c)^{2}\right]\left[(a+d)^{2}+(b \pm c)^{2}\right]}\right) .
\end{aligned}
$$

Acknowledgment

It is a pleasure to thank R.E. Harte for piquing my interest in $V(K)$ and for bringing the paper [AF] to my attention.

References

[AF] J. Anderson \& C. Foiaş, Properties which normal operators share with normal derivations and related operators, Pacific J Math 61 (1975) 313-325.
[BD] F. F. Bonsall \& J. Duncan, Complete Normed Algebras, Springer (1973).
[S] P. G. Spain, Ultrahermitian Projections on Banach Spaces, — ResearchGate.

School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW Philip.Spain@glasgow.ac.uk

