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The Numerical Range of a Simple Compression

Philip G Spain

Abstract

The numerical range of the contraction K : [i Z] — [g 8} acting on L(C?) is identified,

so allowing one to exhibit a hermitian projection that is not ultrahermitian.

a b

An explicit formula for the norm of the operator k,, := [c d} > [":;a Z] (m e C).

translates into a family of inequalities in four complex variables.

Introduction

Although the product of hermitian operators on a Hilbert space is also hermitian if (and
only if) they commute, this does not extend to hermitian operators on a Banach space.
Indeed, the square of a hermitian need not be hermitian: and even the product of two
commuting hermitian projections need not be hermitian.

Here I identify the numerical range of the simplest nontrivial compression operator K :

[z Z} > [8 8], and so can exhibit hermitian projections that are not ultrahermitian.

The norms of the related operators k,, := [‘; Z} — [”z“ Z} are calculated explicitly (as

m varies in the complex plane).

Perhaps surprisingly, the quantity a®+b? 4+ ¢ +d? + /(a® + b + ¢ + d?)2 — 4(ad + bc)?
does not necessarily decrease when one replaces a by 0 (a, b, ¢ and d being arbitrary real
numbers), but may increase by up to the factor ||so]|.

1 Numerical range

I follow the standard notation and rehearse only a few salient details, referring the reader
to [BD], for example, for a full exposition and other references.

Given a Banach space X we say that
f e X supports x € X if (x, f) = ||z|| = ||f]| = 1.
The supporting set for X is
Ix = {(z, f) € X x X" (&, f) = |l=l| = [lf]| = 1}.
The (spatial) numerical range of the operator T'(€ L(X)) is
V(T) :={(Tz, f) : (z,f) € x}.
Definition 1.1 H in L(X) is hermitian if its numerical range is real: equivalently, if

||| =1 (Vr € R): equivalently, if ||Ix +irH|| <1+o(r) (R>r—0).
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2 The Banach space L(C?) and some linear algebra

My example lives on L(C?) with the operator norm. Facts to notice about this Banach
space:

e Given f € L(C?) we can define a functional wy : y ~— tr(yf) in L(C?)": here tr is
the unnormalised trace: and

gl = tr[f] = tx(f*f)2 .

Since any functional must be of this form we see that the [pre|dual of L(C?) is, as
a set, the same space as L(C?): but with the trace norm.

o Il (c2) is biunitarily invariant in the sense that
(uzv, v fu*) € 2y <= (2, f) € Uy
for any unitaries v and v.

o Il (c2) is invariant under complex conjugation too — so V(7) is symmetric in the
real axis when 7' has real entries.

Given an element = = [‘Z Z] of L(C?) define
ot =lal> + b +|c>+|d, v*=lad—be|, and p'=oc*—4.
Then (routine computation!) the eigenvalues of z*x are (02 4 p?)/2 from which we have

o2 4 2 .
Hl’Hi(cz) = Tp and tr|z| = [0 4+ 207]% .

Singular value decomposition

Given x € L(C?) there are unitaries u and v such that

uTY = Av 0
10 A
where \; and Ay (A\; > \y) are the eigenvalues of |z|. In particular, if ||z|| = 1, there are
u, v such that

—_ 1 0 _
ury =g | = Ty

with 0 < A < 1: and A = 1 precisely when x itself is unitary.
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The supporting set I c2)
Define

0
J) = B 1—a]'

Lemma 2.1 The functionals fq) (0 < a<1) support x1: and only these.
The functional f(1y is the only support of xx when 0 < A < 1. [

Hence

Lemma 2.2
Hpc2y = {(Wzav™, v fayu)}

: €0,1] Ax=1
where u,v are unitary, 0 < X < 1, @a{zl US)\<1}‘

3 The compression K

Consider the selfadjoint projection P = [é 8} in L(C?). Then the left and right multi-

plication operators
L=1Lp & R =Rp

are hermitian projections in L(L(C?)), for || e2r|| = || e Br|| = ||| = 1 (r € R).
They commute, and their product

K =LR=RL

is a norm 1 projection on L(C?), the compression [‘; Z} —> [g 8].
Theorem 3.1 K is not hermitian.

Proof. Note that ||[I —2Q]|| = || e™@|| = 1 for any hermitian projection ). However,
I1=2K) = v2—for (1-2K) [ | = [} 1] and H[‘ll | ’ - ﬂwhile’ ] ‘: 2.
(In fact, ||I — 2K|| = ||k_1|| = v/2: see §5 below.) O

[AF] showed, also explicitly, that |lexp(3miK/2)| > 1.

Ultrahermitian projections

Consider the following two properties that may hold for a projection £ on a Banach
space X. Note that they are symmetrical in F and its complement £ (= I — E). First,

) Bl |1E'6] + | Bo| |E'6| < ] o]
for x € X, ¢ € X’: and, second,
(U2) |EAE + EBE| <1

pgs 3 26 October 2016



for any contractions A, B € L(X).
Hermitian projections on Hilbert spaces have both these properties, as is easy to check.

The present author showed, see [S], that the properties (Ul) and (U2) are equivalent,
and introduced the term wltrahermitian for a projection that has either [and so both] of
them.

Ultrahermitian projections are automatically hermitian [S, Theorem 4.3] and the prod-
uct of two hermitian projections of which one is ultrahermitian must be hermitian [S,
Corollary 4.8]. Hence

Theorem 3.2 The left and right multiplication operators Lp and Rp, though hermitian,
are not ultrahermitian.

4 The numerical range V(K)

By Lemma 2.2 this is the convex set of all
Wra = (Ku'z\v*, vfayu)
= tr ([Pu'z\v*P] [vf(a)u])
= tr ([Pu*z\v*P] [Pvf(auP))
= (u*xw*)(lyl) (Uf(a)u)(l,l)

€0,1] = }

where u, v are arbitrary unitaries, 0 < A < 1, and « { ] 0<A<1

As a full set of unitaries we may take

{c Wy S ] [C’ wy S ]
U= Wy and vI= Wy

W1S —WwiwscC w S —wiwy C

with Jwg| = 1, ¢ = cosf, s =sinf, (0 <60 <7/2), and |wx| =1, C = cosg, S = sinp,
(0 < ¢ < 7/2). Compute:

Py o' P — o cC + Nwojws sS 0
0 0
PofyuP = woup acC+ (1 —a)wiwysS 0
0 0
So
Tra = ac?C? + A1 — a)s?5? + [adorws + (1 — @)wiws]cCsS
_ 2C? + NoqwzcCsS 0<A<1*
T @[c?C? + wrwaeCsS] + (1 — a)[s252 + wiwecC'sS] A=1

(* — also for A =1 — put a = 1 in the following line.)

Replace tiw; by w. The points @) 1, te

AC%* + dweCsS (0< A< 1)
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form the closed discs
D(0, ) := {cos®§cos® p + ( cosfcospsinfsing : [(| <1}
with boundaries as in Figure 1. This demonstrates

Theorem 4.1

VIK)=|J D(b,¢).
0<0<m/2
0<p<7/2

Remark 4.2 Since —5 € V(K) we see that |[I —2K|| > [V(I —2K)| = 2, so, again, K
cannot be hermitian.

Figure 1: {cos?§ cos® p + w cosfcospsinfsing : |w| =1}

Lemma 4.3 (Cosine-geometric mean) Given 0, ¢ in the first quadrant define their

cosine-geometric mean
Y = cos™ ! \/cos 6 cos .
Then the disc D(, ) lies concentrically inside the disc

D, ) = {cos4w+C cos? Psinep : |¢| < 1}.

Proof. Just check that sin @ sin ¢ = cos(f — ¢) — cos? 1) < 1 — cos? 1) = sin? . O
Next, for 0 < o < 1, the points @, , of the numerical range ie
al?C? + wceCsS] + (1 — )[s*S? + wcC'sS]

lie in the convex hull of D(¢, ) and D(1), ﬁ), where ¢ is the cosine-geometric mean of
5 —0and § — . Thus

Theorem 4.4
VIK)= |J D)= |J Dw.v). m
0<0<7/2 0<y<n/2
0<p<7/2

The circles 9D(0, ¢) and 0D(, 1) lie as shown in Figure 2; and V(K), the union of the
discs D(1, 1), is as in Figure 3.
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Figure 2: 0D(0, ) (red) & 0D(1,1)) (blue)

Figure 3: V(K) = U0§9§w/2 D(0,0)

The envelope and cusp

The circumference of the disc D(v, 1)) is [setting v = cos® /]
(= +y* =71 -7 =" =-29"+7",
To find the envelope of the D (v, 1) solve this equation simultaneously with its y-derivative

2@ — )27 =27y - 67° + 4’

to get

20 = 3y—1
1
2y = £(1—7){4y -1}z

forigygl.

cusp angle = m/3

Figure 4: The cusp angle
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5 The map x,, and its norm (m € C)

The map k,, is defined as

kom = I+ (m— DK : L(C?) = L(C?) : {i Z} - [”Z“ Z} .

As a first estimate ||k,,|| > 1 and ||K,,|| > |m].

Figure 5: ||k | > max{1, |m|}

Since k,, attains its norm on the unit ball of L(C?), the convex hull of the unitaries (the
Russo-Dye theorem [BD, §38]), we next examine the values ||k,u|| for unitary w. It will
be more convenient to work with the expression 2 ||kmul” .

With ¢ = cosf, s =sinf, and 0 < 0 < 7/2, consider a typical unitary

u:=u(c) =w ¢ wa s
T T 0w s —wiwsac

where w; and wy are arbitrary unimodular complex numbers. Calculate:

o(kmu)® = 2+ (Im[* = 1)
plimu)t = {dfm =17 + [(Im]’ = 1)2 = 4|m - 11’} |
Fun(e) 1= 2 |y

= o(kmu) + p(kmu)?

S

= 2+ (Im]> = 1)c® + c{4 Im = 12+ [(Jm|* = 1)* =4 |m — 1\2](:2}

The w; and wy are now seen to be irrelevant, so, without loss of generality, take w; =
Wo = 1.

Put
T:=4|m—1° = (jm|* = 1)
Then )
Fu(e)=2+(m> =1 +c{dlm -1 —=T*}*.
Note that

[SIE

Fm(o) = 27
Fo(l) = 2+ mf =1+ {(m|* - 1)?}2,
= 2max{1,|m[*} [> F.(0)].
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Thus
[ || = max{1, |m|[}

when F,,, has no turning point in [0, 1].

The cardioid I' =0

The locus I' = 0, that is, [m|> — 1 = 2|m — 1], is the cardioid shown in Figure 6.

Figure 6: |m|> —1=2|m — 1

In plane polar coordinates (7, ¢) the equation is 87 cos ¢ = 3 + 6r% — r4.

Outside the cardioid ' =0

The function F,(c) certainly increases on [0,1] if I' < 0 (which forces |m| > 1) so
|km|| = max{1,|m|} = |m| outside the cardioid.

Inside the cardioid I' =0

To find turning points differentiate with respect to c:

1
2

Fl(e) = 2(mf—1e + {4ym—1y2—rc2}

N

—Té {4|m— 112 —FCQ}_

=

= 2(|lm)* - 1)c+2{2|m—1y2—rc2} {4\m— 12 —rcﬂ}

Setting F! (¢) = 0 and squaring [so possibly introducing spurious solutions| leads to the
equation
It —4lm—1E+|m—-1=0
for 2.
Note that if |m| = 1 [leaving m = 1 aside] the equation reduces to (1 — 2¢?)* = 0, and

therefore k,, attains its norm at [} _11}, independently of arg m.

Otherwise the discriminant is
A = 2lm=1P=Hd|m—17 = (Im]> = 1)*] m — 1
= |Im—1 (Im|*—1)> >0
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and the candidate solutions are
s 2m — 1° & jm — 1] (jm|* — 1)
2(m = 1| = (jml* = )] [2[m = 1] + (m[* = 1)|

[m — 1]
2|m — 1| F (Im[* = 1)

It is straightforward to check that

2 2 Im — 1|2
dm—-1P-12 = 221
Ci

2|m—1]2—F02i = q:\m—1|(|m]2—1).

Thus

ol

F(ex) = 2(mf’ = De+2{2m 17 -1} {4jm -1 -1}
— e ([P - 1) % il - 1)),
which shows that ¢, alone is a possible turning point for F,,: but does ¢, lie in [0, 1]7
The condition for this is that |m — 1| < 2|m — 1| — (|m|* — 1) ie that

Im|> =1 < |m—1].

The cardioidoid Hm\2 —1|=|m-1

The ‘edge locus’ ||m|* — 1| = |m — 1|, which, for lack of another name I shall call a
cardioidoid, bounds the blue region in Figure 7.

Figure 7: The cardioidoid

In plane polar coordinates it has equation 2r cos ¢ = 3r? — r.

However, the set |m|* — 1 < |m — 1| includes the unit disc too: I refer to this set as the

filled cardioidoid.
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Figure 8: Filled cardioidoid

Inside the filled cardioidoid

Suppose that m lies inside the filled cardioidoid, so that ¢y € [0, 1].

Then )
(Jm = 1] +1)> — |m]

Folcy)=- = 2 )
(c) 2 m — 1|+ 1 — [m[?
Next )
2 |m—1]
Folcy)—2 = >0
(c) 2{m — 1|+ 1 — |m|*
and ) )
2(Im|]" =1 —|m—1])
E,(c.)—2lm|* =
(c4) ! 2|m—1]—|—1—|m\2
SO
Fn(ey) > Fn(1) > F,(0).
Therefore

(jm = 1] +1)* — |m|”
2/m — 1] +1— |m/|*

2
l#m ™ =

for m inside the filled cardioidoid. When m is real, within these limits, this expression

reduces to
+m
To sum up:
Theorem 5.1
( [m| outside )
m—1|+1)2—|m|? .
| Kl = (‘2|m—‘1|+)1—\1n\2| inside the filled cardioidoid.

4 on real axis inside
\ 3+m y,

bgs 10
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Graph of ||x,,|| for m real

For real m inside the filled cardioidoid, e —2 < m < 1, we have

4
||’fm|| = r~
m

The graph of norm &, is shown in Figure 9.

Figure 9: ||ky|| is continuous for all m but is not differentiable at 1, even as a function
of a real variable

6 An inequality

The inequalities
[m All < [ [ Al

(for complex 2 x 2 matrices A) are hardly transparent when written out explicitly. How-
ever, for m = 0, the simplest case, we have ||I — K| = ||ro|| = 2/V/3 so, for any real
numbers a, b, ¢, d, we have

3 (b2 +E+ &+ V(24 2+ d2)? — 4b2c2)

§4(a2—|—b2+02+d2—|—\/(a2+b2+c2+d2)2—4(adj:bc)2>

or, on rewriting,

(0 4+ &+ Vb =7+ @B+ + @)

<4 <a2+b2+c2+d2+ \/[(a—d)2+(b¢c)2][(a+d)2+(bic)2]>.
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