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The Numerical Range of a Simple Compression

Philip G Spain

Abstract

The numerical range of the contraction K :
[
a b
c d

]
7→
[
a 0
0 0

]
acting on L(C2) is identified,

so allowing one to exhibit a hermitian projection that is not ultrahermitian.

An explicit formula for the norm of the operator κm :=
[
a b
c d

]
7→
[
ma b
c d

]
(m ∈ C).

translates into a family of inequalities in four complex variables.

Introduction

Although the product of hermitian operators on a Hilbert space is also hermitian if (and
only if) they commute, this does not extend to hermitian operators on a Banach space.
Indeed, the square of a hermitian need not be hermitian: and even the product of two
commuting hermitian projections need not be hermitian.

Here I identify the numerical range of the simplest nontrivial compression operator K :[
a b
c d

]
7→
[
a 0
0 0

]
, and so can exhibit hermitian projections that are not ultrahermitian.

The norms of the related operators κm :=
[
a b
c d

]
7→
[
ma b
c d

]
are calculated explicitly (as

m varies in the complex plane).

Perhaps surprisingly, the quantity a2 + b2 + c2 + d2 +
√

(a2 + b2 + c2 + d2)2 − 4(ad± bc)2
does not necessarily decrease when one replaces a by 0 (a, b, c and d being arbitrary real
numbers), but may increase by up to the factor ‖κ0‖.

1 Numerical range

I follow the standard notation and rehearse only a few salient details, referring the reader
to [BD], for example, for a full exposition and other references.

Given a Banach space X we say that

f ∈ X ′ supports x ∈ X if 〈x, f〉 = ‖x‖ = ‖f‖ = 1.

The supporting set for X is

ΠX := {(x, f) ∈ X ×X ′ : 〈x, f〉 = ‖x‖ = ‖f‖ = 1} .

The (spatial) numerical range of the operator T (∈ L(X)) is

V (T ) :=
{
〈Tx, f〉 : (x, f) ∈ ΠX

}
.

Definition 1.1 H in L(X) is hermitian if its numerical range is real: equivalently, if
‖ eirH‖ = 1 (∀r ∈ R): equivalently, if ‖IX + irH‖ ≤ 1 + o(r) (R 3 r → 0).
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2 The Banach space L(C2) and some linear algebra

My example lives on L(C2) with the operator norm. Facts to notice about this Banach
space:

• Given f ∈ L(C2) we can define a functional ωf : y 7→ tr(yf) in L(C2)
′
: here tr is

the unnormalised trace: and

‖ωf‖ = tr |f | = tr(f ∗f)
1
2 .

Since any functional must be of this form we see that the [pre]dual of L(C2) is, as
a set, the same space as L(C2): but with the trace norm.

• ΠL(C2) is biunitarily invariant in the sense that

(uxv, v∗fu∗) ∈ ΠL(C2) ⇐⇒ (x, f) ∈ ΠL(C2)

for any unitaries u and v.

• ΠL(C2) is invariant under complex conjugation too — so V (T ) is symmetric in the
real axis when T has real entries.

Given an element x =
[
a b
c d

]
of L(C2) define

σ2 = |a|2 + |b|2 + |c|2 + |d|2 , ν2 = |ad− bc| , and ρ4 = σ4 − 4ν4 .

Then (routine computation!) the eigenvalues of x∗x are (σ2 ± ρ2)/2 from which we have

‖x‖2L(C2) =
σ2 + ρ2

2
and tr |x| =

[
σ2 + 2ν2

] 1
2 .

Singular value decomposition

Given x ∈ L(C2) there are unitaries u and v such that

uxv =

[
λ1 0
0 λ2

]
where λ1 and λ2 (λ1 ≥ λ2) are the eigenvalues of |x|. In particular, if ‖x‖ = 1, there are
u, v such that

uxv =

[
1 0
0 λ

]
=: xλ

with 0 ≤ λ ≤ 1: and λ = 1 precisely when x itself is unitary.
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The supporting set ΠL(C2)

Define

f(α) =

[
α 0
0 1− α

]
.

Lemma 2.1 The functionals f(α) (0 ≤ α ≤ 1) support x1: and only these.
The functional f(1) is the only support of xλ when 0 ≤ λ < 1. �

Hence

Lemma 2.2
ΠL(C2) = {(u∗xλv∗, vf(α)u)}

where u, v are unitary, 0 ≤ λ ≤ 1, & α

{
∈ [0, 1] λ = 1
= 1 0 ≤ λ < 1

}
·

3 The compression K

Consider the selfadjoint projection P =
[
1 0
0 0

]
in L(C2). Then the left and right multi-

plication operators
L = LP & R = RP

are hermitian projections in L(L(C2)), for ‖ eirLP ‖ = ‖ eirRP ‖ = ‖ eirP‖ = 1 (r ∈ R).

They commute, and their product

K = LR = RL

is a norm 1 projection on L(C2), the compression
[
a b
c d

]
7→
[
a 0
0 0

]
.

Theorem 3.1 K is not hermitian.

Proof. Note that ‖I − 2Q‖ = ‖ eiπQ‖ = 1 for any hermitian projection Q. However,

‖I − 2K‖ ≥
√

2 — for (I−2K)
[
−1 1
1 1

]
=
[
1 1
1 1

]
and

∥∥∥[−1 1
1 1

]∥∥∥ =
√

2 while
∥∥∥[1 1

1 1

]∥∥∥ = 2.

(In fact, ‖I − 2K‖ = ‖κ−1‖ =
√

2: see §5 below.) �
[AF] showed, also explicitly, that ‖exp(3πiK/2)‖ > 1.

Ultrahermitian projections

Consider the following two properties that may hold for a projection E on a Banach
space X. Note that they are symmetrical in E and its complement E (= I − E). First,

(U1) ‖Ex‖ ‖E ′φ‖+
∥∥Ex∥∥∥∥∥E ′φ∥∥∥ ≤ ‖x‖ ‖φ‖

for x ∈ X, φ ∈ X ′: and, second,

(U2)
∥∥EAE + EBE

∥∥ ≤ 1
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for any contractions A,B ∈ L(X).

Hermitian projections on Hilbert spaces have both these properties, as is easy to check.

The present author showed, see [S], that the properties (U1) and (U2) are equivalent,
and introduced the term ultrahermitian for a projection that has either [and so both] of
them.

Ultrahermitian projections are automatically hermitian [S, Theorem 4.3] and the prod-
uct of two hermitian projections of which one is ultrahermitian must be hermitian [S,
Corollary 4.8]. Hence

Theorem 3.2 The left and right multiplication operators LP and RP , though hermitian,
are not ultrahermitian.

4 The numerical range V (K)

By Lemma 2.2 this is the convex set of all

$λ,α := 〈K u∗xλv
∗, vf(α)u〉

= tr
(
[Pu∗xλv

∗P ] [vf(α)u]
)

= tr
(
[Pu∗xλv

∗P ] [Pvf(α)uP ]
)

=
(
u∗xλv

∗)
(1,1)

(
vf(α)u

)
(1,1)

where u, v are arbitrary unitaries, 0 ≤ λ ≤ 1, and α

{
∈ [0, 1] λ = 1
= 1 0 ≤ λ < 1

}
.

As a full set of unitaries we may take

u := ω0

[
c ω2 s
ω1 s −ω1ω2 c

]
and v := w0

[
C w2 S
w1 S −w1w2C

]
with |ωk| = 1, c = cos θ, s = sin θ, (0 ≤ θ ≤ π/2), and |wk| = 1, C = cosϕ, S = sinϕ,
(0 ≤ ϕ ≤ π/2). Compute:

Pu∗xλv
∗P = ω0w0

[
cC + λω1w2 sS 0

0 0

]
Pvf(α)uP = ω0w0

[
α cC + (1− α)ω1w2 sS 0

0 0

]
So

$λ,α = αc2C2 + λ(1− α)s2S2 + [αλω1w2 + (1− α)ω1w2]cCsS

=

{
c2C2 + λω1w2cCsS 0 ≤ λ < 1 ∗

α[c2C2 + ω1w2cCsS] + (1− α)[s2S2 + ω1w2cCsS] λ = 1

}
(∗ — also for λ = 1 — put α = 1 in the following line.)

Replace ω1w2 by ω. The points $λ,1, ie

c2C2 + λω cCsS (0 ≤ λ ≤ 1)
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form the closed discs

D(θ, ϕ) :=
{

cos2 θ cos2 ϕ+ ζ cos θ cosϕ sin θ sinϕ : |ζ| ≤ 1
}

with boundaries as in Figure 1. This demonstrates

Theorem 4.1
V (K) =

⋃
0 ≤ θ ≤ π/2
0 ≤ ϕ ≤ π/2

D(θ, ϕ).

Remark 4.2 Since −1
8
∈ V (K) we see that ‖I − 2K‖ ≥ |V (I − 2K)| = 5

4
, so, again, K

cannot be hermitian.

Figure 1: {cos2 θ cos2 ϕ+ ω cos θ cosϕ sin θ sinϕ : |ω| = 1}

Lemma 4.3 (Cosine-geometric mean) Given θ, ϕ in the first quadrant define their
cosine-geometric mean

ψ := cos−1
√

cos θ cosϕ.

Then the disc D(θ, ϕ) lies concentrically inside the disc

D(ψ, ψ) =
{

cos4 ψ + ζ cos2 ψ sin2 ψ : |ζ| ≤ 1
}
.

Proof. Just check that sin θ sinϕ = cos(θ − ϕ)− cos2 ψ ≤ 1− cos2 ψ = sin2 ψ. �

Next, for 0 < α < 1, the points $1,α of the numerical range ie

α[c2C2 + ω cCsS] + (1− α)[s2S2 + ω cCsS]

lie in the convex hull of D(ψ, ψ) and D(ψ̃, ψ̃), where ψ̃ is the cosine-geometric mean of
π
2
− θ and π

2
− ϕ. Thus

Theorem 4.4
V (K) =

⋃
0 ≤ θ ≤ π/2
0 ≤ ϕ ≤ π/2

D(θ, ϕ) =
⋃

0≤ψ≤π/2

D(ψ, ψ). �

The circles ∂D(θ, ϕ) and ∂D(ψ, ψ) lie as shown in Figure 2; and V (K), the union of the
discs D(ψ, ψ), is as in Figure 3.
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Figure 2: ∂D(θ, ϕ) (red) & ∂D(ψ, ψ) (blue)

1− 1
8

1
4

− 1
4

Figure 3: V (K) =
⋃

0≤θ≤π/2D(θ, θ)

The envelope and cusp

The circumference of the disc D(ψ, ψ) is [setting γ = cos2 ψ]

(x− γ2)2 + y2 = γ2(1− γ)2 = γ2 − 2γ3 + γ4.

To find the envelope of theD(ψ, ψ) solve this equation simultaneously with its γ-derivative

2(x− γ2)[−2γ] = 2γ − 6γ2 + 4γ3

to get

2x = 3γ − 1

2y = ±(1− γ){4γ − 1}
1
2

for 1
4
≤ γ ≤ 1.

1− 1
8

1
4

− 1
4

γγ2γ(2γ − 1)

(
3γ − 1

2
,

1− γ
2

√
4γ − 1

)
slope =

√
4γ − 1

2γ − 1

cusp angle = π/3

Figure 4: The cusp angle
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5 The map κm and its norm (m ∈ C)

The map κm is defined as

κm := I + (m− 1)K : L(C2)→ L(C2) :

[
a b
c d

]
7→
[
ma b
c d

]
.

As a first estimate ‖κm‖ ≥ 1 and ‖κm‖ ≥ |m|.

Figure 5: ‖κm‖ ≥ max{1, |m|}

Since κm attains its norm on the unit ball of L(C2), the convex hull of the unitaries (the
Russo-Dye theorem [BD, §38]), we next examine the values ‖κmu‖ for unitary u. It will
be more convenient to work with the expression 2 ‖κmu‖2 .
With c = cos θ, s = sin θ, and 0 ≤ θ ≤ π/2, consider a typical unitary

u := u(c) = ω0

[
c ω2 s
ω1 s −ω1 ω2 c

]
where ω1 and ω2 are arbitrary unimodular complex numbers. Calculate:

σ(κmu)2 = 2 + (|m|2 − 1)c2

ρ(κmu)4 = c2
{

4 |m− 1|2 + [(|m|2 − 1)2 − 4 |m− 1|2]c2
}

Fm(c) := 2 ‖κmu‖2

= σ(κmu)2 + ρ(κmu)2

= 2 + (|m|2 − 1)c2 + c
{

4 |m− 1|2+[(|m|2 − 1)2 −4 |m− 1|2]c2
} 1

2

The ω1 and ω2 are now seen to be irrelevant, so, without loss of generality, take ω1 =
ω2 = 1.

Put
Γ := 4 |m− 1|2 − (|m|2 − 1)2.

Then

Fm(c) = 2 + (|m|2 − 1)c2 + c
{

4 |m− 1|2 − Γ c2
} 1

2 .

Note that

Fm(0) = 2,

Fm(1) = 2 + |m|2 − 1 +
{

(|m|2 − 1)2
} 1

2 ,

= 2 max{1, |m|2} [≥ Fm(0)].
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Thus
‖κm‖ = max{1, |m|}

when Fm has no turning point in [0, 1].

The cardioid Γ = 0

The locus Γ = 0, that is, |m|2 − 1 = 2 |m− 1|, is the cardioid shown in Figure 6.

Figure 6: |m|2 − 1 = 2 |m− 1|

In plane polar coordinates (r, φ) the equation is 8r cosφ = 3 + 6r2 − r4.

Outside the cardioid Γ = 0

The function Fm(c) certainly increases on [0, 1] if Γ ≤ 0 (which forces |m| ≥ 1) so
‖κm‖ = max{1, |m|} = |m| outside the cardioid.

Inside the cardioid Γ = 0

To find turning points differentiate with respect to c:

F ′m(c) = 2(|m|2 − 1)c +
{

4 |m− 1|2 − Γ c2
} 1

2

− Γ c2
{

4 |m− 1|2 − Γ c2
}− 1

2

= 2(|m|2 − 1)c+ 2
{

2 |m− 1|2 − Γ c2
} {

4 |m− 1|2 − Γ c2
}− 1

2

Setting F ′m(c) = 0 and squaring [so possibly introducing spurious solutions] leads to the
equation

Γ c4 − 4 |m− 1|2 c2 + |m− 1|2 = 0

for c2.

Note that if |m| = 1 [leaving m = 1 aside] the equation reduces to (1 − 2c2)2 = 0, and

therefore κm attains its norm at
[
1 1
1 −1

]
, independently of argm.

Otherwise the discriminant is

∆ = (2 |m− 1|2)2 − [4 |m− 1|2 − (|m|2 − 1)2] |m− 1|2

= |m− 1|2 (|m|2 − 1)2 > 0
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and the candidate solutions are

c2± =
2 |m− 1|2 ± |m− 1| (|m|2 − 1)[

2 |m− 1| − (|m|2 − 1)
] [

2 |m− 1|+ (|m|2 − 1)
]

=
|m− 1|

2 |m− 1| ∓ (|m|2 − 1)
> 0

It is straightforward to check that

4 |m− 1|2 − Γ c2± =
|m− 1|2

c2±
,

2 |m− 1|2 − Γ c2± = ∓ |m− 1| (|m|2 − 1).

Thus

F ′m(c±) = 2(|m|2 − 1)c+ 2
{

2 |m− 1|2 − Γ c2
} {

4 |m− 1|2 − Γ c2
}− 1

2

= 2c±
{[
|m|2 − 1

]
∓
[
|m|2 − 1

]}
,

which shows that c+ alone is a possible turning point for Fm: but does c+ lie in [0, 1]?

The condition for this is that |m− 1| ≤ 2 |m− 1| − (|m|2 − 1) ie that

|m|2 − 1 ≤ |m− 1| .

The cardioidoid
∣∣|m|2 − 1

∣∣ = |m− 1|

The ‘edge locus’
∣∣|m|2 − 1

∣∣ = |m− 1|, which, for lack of another name I shall call a
cardioidoid, bounds the blue region in Figure 7.

Figure 7: The cardioidoid

In plane polar coordinates it has equation 2r cosφ = 3r2 − r4.
However, the set |m|2 − 1 ≤ |m− 1| includes the unit disc too: I refer to this set as the
filled cardioidoid.

pgs 9 26 October 2016



Figure 8: Filled cardioidoid

Inside the filled cardioidoid

Suppose that m lies inside the filled cardioidoid, so that c+ ∈ [0, 1].

Then

Fm(c+) = · · · = 2
(|m− 1|+ 1)2 − |m|2

2 |m− 1|+ 1− |m|2
.

Next

Fm(c+)− 2 =
2 |m− 1|2

2 |m− 1|+ 1− |m|2
≥ 0

and

Fm(c+)− 2|m|2 =
2 (|m|2 − 1− |m− 1|)2

2 |m− 1|+ 1− |m|2
≥ 0

so
Fm(c+) ≥ Fm(1) ≥ Fm(0).

Therefore

‖κm‖2 =
(|m− 1|+ 1)2 − |m|2

2 |m− 1|+ 1− |m|2

for m inside the filled cardioidoid. When m is real, within these limits, this expression

reduces to
4

3 +m
.

To sum up:

Theorem 5.1

‖κm‖ =



|m| outside√
(|m−1|+1)2−|m|2

2|m−1|+1−|m|2 inside

√
4

3+m
on real axis inside


the filled cardioidoid.
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Graph of ‖κm‖ for m real

For real m inside the filled cardioidoid, ie −2 ≤ m ≤ 1, we have

‖κm‖ =

√
4

3 +m
.

The graph of norm κm is shown in Figure 9.

Figure 9: ‖κm‖ is continuous for all m but is not differentiable at 1, even as a function
of a real variable

6 An inequality

The inequalities
‖κmA‖ ≤ ‖κm‖ ‖A‖

(for complex 2× 2 matrices A) are hardly transparent when written out explicitly. How-
ever, for m = 0, the simplest case, we have ‖I −K‖ = ‖κ0‖ = 2/

√
3 so, for any real

numbers a, b, c, d, we have

3
(
b2 + c2 + d2 +

√
(b2 + c2 + d2)2 − 4b2c2

)
≤ 4

(
a2 + b2 + c2 + d2 +

√
(a2 + b2 + c2 + d2)2 − 4(ad± bc)2

)
or, on rewriting,

3
(
b2 + c2 + d2 +

√
[(b− c)2 + d2][(b+ c)2 + d2]

)
≤ 4

(
a2 + b2 + c2 + d2 +

√
[(a− d)2 + (b∓ c)2][(a+ d)2 + (b± c)2]

)
.
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