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Introduction

I introduce a new class of projections on Banach spaces and analyse some of their prop-
erties. I also present improvements on known results for hermitian projections (in The-
orem 2.6) and on their order properties (see Theorem 3.3). This leads to results on the
compression and patching of hermitian operators: see Theorem 3.1 & Theorem 4.6 and
its corollaries.

1 Background & Terminology

I follow the standard notation and sketch only a few salient details, referring the reader
to [5], [3], [4], for example, for a full exposition and other references.

I shall write A1 for the unit ball of a subset A of a normed space, and 〈x, x′〉 for the value
of the functional x′ in X ′ at x in X.

Throughout A will denote a complex unital Banach algebra (with identity 1).

For x ∈ A, ‖x‖ = 1, define the support set at x

D(A, x) = {ϕ ∈ A′ : 〈x, ϕ〉 = 1 = ‖ϕ‖}.

Then for a ∈ A define the sets

V (A, a, x) = {〈ax, ϕ〉 : ϕ ∈ D(A, x)}

and their union, the algebra numerical range

V (A, a) =
⋃

x∈A, ‖x‖=1

V (A, a, x) .

For any a ∈ A the spectrum of a

σ(a) ⊂ V (A, a) .

The fundamental link between the numerical range of a and the growth of the group
{era : r ∈ R} is

Theorem 1.1 For each a ∈ A

max{<λ : λ ∈ V (A, a)} = sup
{
r−1 log ‖era‖ : r > 0

}
= lim

r→0+
r−1{‖1 + ra‖ − 1} .
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Definition 1.2 An element h ∈ A is hermitian if its algebra numerical range is real:
equivalently, if ‖eirh‖ = 1 (r ∈ R): equivalently, if ‖1 + irh‖ ≤ 1 + o(r) (R 3 r → 0).

Remark 1.3 If h is hermitian then the convex hull of the spectrum satisfies

coσ(h) = V (A, h) .

Theorem 1.4 (Sinclair’s Theorem) ‖h‖ = ρ(h) (the spectral radius of h) for any her-
mitian h ∈ A.

The now classical numerical range characterisation of C∗-algebras is

Theorem 1.5 (Vidav-Palmer Theorem) Let H be the set of hermitian elements of a
complex unital Banach algebra A. If A = H + iH then A is a C∗-algebra [under the
given norm and the natural involution].

When X is a complex Banach space and x ∈ X we define the set of support functionals
at x as

D(x) = {φ ∈ X ′ : ‖φ‖ = 1, 〈x, φ〉 = ‖x‖}

and define
ΠX = {(x, φ) ∈ X ×X ′ : ‖x‖ = 1, φ ∈ D(x)}

ie
ΠX = {(x, φ) ∈ X ×X ′ : 〈x, φ〉 = ‖x‖ = ‖φ‖ = 1}.

The spatial numerical range V (T ) [one may write VX(T ) to indicate the underlying space
explicitly] of the operator T is defined as

V (T ) =
{
〈Tx, φ〉 : (x, φ) ∈ ΠX

}
.

Definition 1.6 An operator H on X is hermitian if its spatial numerical range is real:
equivalently, if ‖eirH‖ = 1 (r ∈ R): equivalently, if ‖IX+irH‖ ≤ 1+o(r) (R 3 r → 0):
equivalently, if H is hermitian in the Banach algebra L(X).

HX is the set of hermitian operators on X.

Remark 1.7 An operator on Hilbert space is hermitian (in the numerical range sense)
if and only if it is selfadjoint.

2 Projections

A projection [ie an idempotent] p is nontrivial if p and p, the complement of p in the
identity, are both nonzero.

An elementary observation to be used repeatedly: if p is an idempotent in a unital Banach
algebra then, for z ∈ C,

eizp = p+ eizp .
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Remark 2.1 If p is a nonzero hermitian projection in a unital Banach algebra then
‖p‖ = 1. This is usually presented as a corollary to Sinclair’s Theorem. However it lies
nearer the surface: for ‖1− 2p‖ = ‖eiπp‖ ≤ 1 and therefore 2‖p‖ ≤ ‖1− (1− 2p)‖ ≤ 2.

From now on the setting is spatial, on a Banach space X.

Remark 2.2 If E is any projection on a Banach (even on a normed) space X, and if
φ ∈ X ′, then for z ∈ EX we have 〈z, φ〉 = 〈Ez, φ〉 = 〈z, E ′φ〉 and so

E ′φ|EX = φ|EX .

Thus
‖E ′φ‖ ≥ ‖E ′φ‖EX = ‖φ‖EX .

2.1 Hermitian compressions — contractive projections

Given (x, φ) ∈ ΠX and a projection E on X it is natural to wonder in what circumstances
Ex and E ′φ are mutually supportive (ie, whether 〈Ex, E ′φ〉 = ‖Ex‖‖E ′φ‖). In this
direction we have

Lemma 2.3 Let E be a projection on X. Suppose that z ∈ EX and (z, θ) ∈ ΠEX . Let
φ be any extension of norm 1 of θ from EX to X. Then (z, φ) ∈ ΠX .

Conversely, if z ∈ EX and (z, φ) ∈ ΠX then (z, φ|EX) ∈ ΠEX .

Suppose further that E is contractive. Then (Ez,E ′φ) ∈ ΠX for any such φ. Conse-
quently

VEX(ETE) ⊂ VX(T )

for any T ∈ L(X).

Proof. The first assertion is clear: for 1 = 〈z, θ〉 = 〈z, φ〉. The converse too is immediate.

Next , if also E is contractive, we have 1 = 〈z, E ′φ〉 ≤ ‖E ′φ‖ ≤ ‖φ‖ = 1 and therefore
(Ez,E ′φ) ∈ ΠX .

Consequently

VEX(ETE) = {〈ETEz, θ〉 : (z, θ) ∈ ΠEX}
= {〈ETEz, φ〉 : (z, φ) ∈ ΠX}
⊂ {〈Tz, E ′φ〉 : (z, E ′φ) ∈ ΠX}
⊂ VX(T ). �

As an immediate corollary:

Theorem 2.4 If E is a contractive projection and H is hermitian on X then EHE is
hermitian on EX. If H is positive on X then EHE is positive on EX. �

Remark 2.5 Not all contractive projections are hermitian. Even the stronger hypothesis
‖E‖ = ‖E‖ = 1 does not compel E to be hermitian — see example cited in [1].
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2.2 Hermitian projections

It has long been known, see [1], that hermitian projections can be characterised as follows:

‖x‖ = sup{|〈Ex, φ〉|+
∣∣〈Ex, φ〉∣∣ : ‖φ‖ ≤ 1}

for any x ∈ X: and that, when E is a hermitian projection,

‖λEx+ µEy‖ = ‖Ex+ Ey‖

for any x, y ∈ X (equivalently, λE + µE is an isometry) for any λ, µ ∈ T.

The next result is stronger. It seems to be new — I have not seen it recorded. My proof
depends on the Vidav-Palmer Theorem.

Theorem 2.6 If E is a nontrivial hermitian projection on X then, for any λ, µ ∈ C,

‖λE + µE‖ = max{|λ| , |µ|} .

Proof. The linear span of E and E is a (commutative) C∗-algebra on X and therefore

‖λE+µE‖2 = ‖(λE+µE)∗(λE+µE)‖ = ‖ |λ|2E+|µ|2E‖ = max{|λ|2 , |µ|2} . �

Two subspaces Y and Z of X are Birkhoff (also James) orthogonal , written Y ⊥ Z, or
Y ⊥B Z, when ‖y‖ ≤ ‖y + z‖ (y ∈ Y, z ∈ Z).

The next result is a special case of the fact that if H is a positive hermitian in a C∗-
algebra on X then kerH ⊥B HX which may be proved along the lines of the proof that
follows, using the fact that (I + ε−1H)−1 is a contraction, relying on the Vidav-Palmer
Theorem. It is also a corollary of an even more general result of Crabb & Sinclair [6]: if
0 ∈ σp(T ) ∩ ∂V (T ) for some T ∈ L(X) then kerT ⊥B TX. For projections I can offer a
particularly elementary proof.

Theorem 2.7 If E is a hermitian projection on X then EX ⊥B EX: that is

‖Ex‖ ≤ ‖Ex+ Ey‖

for any x, y ∈ X.

Proof. Assume, without loss of generality, that E is nontrivial. Note that, for ε > 0,

(I + ε−1E)−1 = E +
ε

1 + ε
E

is hermitian and has spectrum

{
ε

1 + ε
, 1

}
so must be a contraction. Thus

‖Ex+ εy‖ ≤ ‖(I + ε−1E)(Ex+ εy)‖ = ‖Ex+ Ey + εy‖

and the result follows on letting ε→ 0+. �
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Theorem 2.8 If E is a hermitian projection on X and φ ∈ X ′ then

‖E ′φ‖ = ‖φ‖EX .

Proof. By Remark 2.2
‖φ‖EX = ‖E ′φ‖EX ≤ ‖E ′φ‖ .

Next, for E hermitian and any x ∈ X,

|〈x, E ′φ〉|
‖x‖

=
|〈Ex, φ〉|
‖Ex+ Ex‖

≤ |〈Ex, φ〉|
‖Ex‖

which shows that ‖E ′φ‖ ≤ ‖φ‖EX . �

3 Order & the EHE & HPP Problems

An order relation on the set of hermitians is defined naturally in terms of numerical
range: H ≥ 0 if and only if V (H) ⊂ R+: equivalently, σ(H) ⊂ R+.

Referring to Theorem 1.1 we see that

H is positive if and only if
‖e(−s+ir)H‖ ≤ 1 for r ∈ R, s ≥ 0
‖1− sH‖ ≤ 1 + o(s) as s→ 0+

If H is positive then H ≤ I if and only if ‖H‖ ≤ 1.

Also, 0 ≤ E ≤ I for any hermitian projection. This is clear from Remark 1.3: and can
also be seen immediately from the fact that

‖I − sE‖ = ‖(1− s)E + E‖ ≤ 1

for 0 ≤ s ≤ 1.

The natural ordering on projections is that E ≤ F if and only if EF = FE = E. If so,
σ(F − E) ⊂ R+ (commutative spectral theory), and then E ≤ F in the numerical range
sense (cf Remark 1.3).

3.1 Hermitian compressions

Theorem 3.1 Let E be a hermitian projection and H a hermitian operator on X. Then

1 EHE is hermitian on EX.
2 If, moreover, H is positive on X then EHE is positive on EX.

Proof. Either cite Theorem 2.4 (remembering that hermitian projections are contractive)

or apply the inequality ‖E+ irEHE‖ ≤ ‖I + irH‖ ≤ 1 + o(r) when H is hermitian, and
the inequality ‖E− sEHE‖ ≤ ‖I − sH‖ ≤ 1 + o(s) (s→ 0+) when H is also positive. �

Corollary 3.2 Let E be a hermitian projection on X and H a positive hermitian on X
with ‖H‖ ≤ 1. If E ≤ H then E = EHE.

Proof. For then, since E ≤ H ≤ I, we have E(E)E ≤ EHE ≤ E(I)E (the theorem
asserts this just on EX: but E and EHE are both 0 on EX). �
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3.2 Order on the projections

The next result strengthens [1, Theorem 2.17].

Theorem 3.3 Suppose that E and F are hermitian projections on X and that E ≤ F
in the numerical range sense. Then EF = FE = E.

Proof. By the corollary E = EFE. A quick calculation shows that (EF − FE)3 = 0,
and since i(EF − FE) is hermitian we have EF = FE by Sinclair’s Theorem (so both
equal E). �

3.3 The EHE & HPP Problems

Theorem 3.1 does not answer the question of whether EHE is hermitian on all of X, and
not just on EX. I call this the EHE Problem.

The EHE Problem is an instance of a more general one, the Hermitian Patching Problem
or HPP : namely, if H is hermitian in L(EX), and if K is hermitian in L(EX), does it
follow that H ⊕K is hermitian on X?

4 Ultrahermitian projections

Consider the following two properties that may hold for a projection E. Note that they
are symmetrical in E and its complement E. First,

(U1) ‖Ex‖‖E ′φ‖+ ‖Ex‖‖E ′φ‖ ≤ ‖x‖‖φ‖

for x ∈ X, φ ∈ X ′: and, second,

(U2) ‖EAE + EBE‖ ≤ 1

for any contractions A,B ∈ L(X).

Hermitian projections on Hilbert spaces have both these properties, as is easy to check.

Lemma 4.1 If E is a projection and satisfies either (U1) or (U2) then E and E are
contractions.

Proof. Suppose (U1). Given x choose a φ to support Ex: ie 〈Ex, φ〉 = ‖Ex‖ = ‖φ‖ = 1.
Then ‖E ′φ‖ ≥ ‖φ‖EX = 1, by Remark 2.2, so ‖Ex‖ ≤ ‖Ex‖‖E ′φ‖ ≤ ‖x‖‖φ‖ = ‖x‖, by
(U2).

Suppose (U2). Choose A = I and B = 0. �

Theorem 4.2 (U1) and (U2) are equivalent.
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Proof. Suppose that E has (U1) and that A and B are contractions. Then, for any
x ∈ X and φ ∈ X ′∣∣〈(EAE + EBE)x, φ〉

∣∣ ≤ ‖EAEx‖‖E ′φ‖+ ‖EBEx‖‖E ′φ‖
≤ ‖Ex‖‖E ′φ‖+ ‖Ex‖‖E ′φ‖
≤ ‖x‖‖φ‖

which establishes (U2).

Conversely, assuming (U2), choose y, z in X1 and ψ, χ in X ′1. Define contractions

A : x 7→ 〈x, ψ〉y, B : x 7→ 〈x, χ〉z .

Then given x ∈ X and φ ∈ X ′ we have∣∣〈(EAE + EBE)x, φ〉
∣∣ ≤ ‖x‖‖φ‖

ie ∣∣∣〈Ex, ψ〉〈y, E ′φ〉+ 〈Ex, χ〉〈z, E ′φ〉
∣∣∣ ≤ ‖x‖‖φ‖ .

On choosing y, z, ψ, χ suitably [ψ to support Ex, χ to support Ex, y to support E ′φ

approximately, z to support E
′
φ approximately] we find that

‖Ex‖‖E ′φ‖+ ‖Ex‖‖E ′φ‖ ≤ ‖x‖‖φ‖ . �

Theorem 4.3 If E is a projection satisfying either of the equivalent conditions (U1) or
(U2) then E is hermitian.

Proof. For then

‖I + irE‖ = ‖(1 + ir)E + E‖ ≤ |1 + ir| = 1 + o(r)

as r → 0+, by (U2). �

Definition 4.4 An ultrahermitian projection on a Banach space X is an idempotent in
L(X) that satisfies either of the equivalent conditions (U1) or (U2).

For ultrahermitian projections there is a result stronger than Lemma 2.3.

Theorem 4.5 Let E be an ultrahermitian projection on X. If (x, φ) ∈ ΠX , and also

Ex 6= 0 and E ′φ 6= 0, then

(
Ex

‖Ex‖
,
E ′φ

‖E ′φ‖

)
∈ ΠX .

Proof. Work from (U1). For (x, φ) ∈ ΠX we have

1 = 〈x, φ〉 = 〈Ex, E ′φ〉+ 〈Ex, E ′φ〉
≤ ‖Ex‖‖E ′φ‖+ ‖Ex‖‖E ′φ‖ ≤ 1

from which it follows that 〈Ex, E ′φ〉 = ‖Ex‖‖E ′φ‖ and thus

(
Ex

‖Ex‖
,
E ′φ

‖E ′φ‖

)
∈ ΠX . �
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4.1 The Hermitian Patching Problem

This has a positive resolution for ultrahermitian E.

Theorem 4.6 Suppose that E is an ultrahermitian projection on X, that H is hermitian
in L(EX) and that K is hermitian in L(EX). Then H⊕K is hermitian on X. Moreover,
if H and K are both positive then so is H ⊕K.

Proof. For r ∈ R we have

‖IX + ir[H ⊕K]‖ = ‖E(E + irH)E + E(E + irK)E‖ = 1 + o(r)

by (U2).

If, moreover, both H and K are positive, then, as above,

‖IX − s[H ⊕K]‖ = ‖E(E − sH)E + E(E − sK)E‖ = 1 + o(s)

as s→ 0+, again by (U2). �

Corollary 4.7 Suppose that E is an ultrahermitian projection on X, and that H and K
are hermitian on X. Then EHE ⊕EKE is hermitian on X. Moreover, if H and K are
both positive then so is EHE ⊕ EKE.

Theorem 3.1 can be strengthened for ultrahermitian projections, so resolving the EHE
Problem. One need only note, in pedantic style, that EHE = EHE|EX ⊕ 0|EX .

Corollary 4.8 Let E be an ultrahermitian projection and H a hermitian operator on X.
Then

1 EHE is hermitian on X. Hence
2 EH is hermitian if E and H commute.
3 If, moreover, H is positive on X then EHE is positive on X.

4.2 Ultrahermitian decompositions

As remarked above, the condition for ultrahermiticity is symmetric in E and E. This
symmetry is, perhaps, better to be understood in greater generality.

Consider a finite family E = (Ej) of mutually orthogonal projections whose sum is IX :

⊕Ej = I .

As before, there are two properties E may have:

(UD1)
∑
‖Ejx‖‖E ′jφ‖ ≤ ‖x‖‖φ‖

for x ∈ X, φ ∈ X ′: and, second,

(UD2) ‖
∑

EjAjEj‖ ≤ 1
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for any contractions Aj ∈ L(X).

It is straightforward, as before, to show that all the Ej are hermitian projections, subject
to either (UD1) or (UD2); and that these two properties are equivalent.

One might call such a family E an ultrahermitian decomposition of the identity.

If F = (Fk) is another such family, compatible with E (in the sense that each Ej com-
mutes with each Fk) then their common refinement G = (Gjk) is again an ultrahermitian
decomposition of the identity, where Gjk = EjFk.

Induced projections

Each such E defines a linear projection

PE : L(X)→ L(X) : A 7→
∑

EjAEj

under which HX is invariant. (PE is not hermitian.) The restriction of PE to HX is
monotone on HX .

If E and F are compatible ultrahermitian decompositions and G is their common refine-
ment as above, then

PG = PEPF = PFPE .

4.3 Examples of ultrahermitian projections

The hermitian operators on most common spaces have been catalogued: see, for exam-
ple, [2]. There are not many, apart from patchings of ‘real diagonal operators’ (except of
course on Hilbert spaces), and the projections among them are all ultrahermitian.

It would be interesting to find a hermitian projection that is not ultrahermitian in a
nontrivial way.

4.3.1 lp type decompositions/patchings

If E is a projection on X and if (cf [4, §15])

‖x‖p = ‖Ex‖p + ‖Ex‖p

for all x ∈ X (for some p in the range [1,∞]) then E is hermitian, and even ultrahermitian.
For, given contractions A and B,

‖(EAE + EBE)x‖p = ‖EAEx‖p + ‖EBEx‖p

≤ ‖Ex‖p + ‖Ex‖p

= ‖x‖p .
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