Ultrahermitian Projections on Banach Spaces

Philip G Spain

Introduction

I introduce a new class of projections on Banach spaces and analyse some of their properties. I also present improvements on known results for hermitian projections (in Theorem 2.6) and on their order properties (see Theorem 3.3). This leads to results on the compression and patching of hermitian operators: see Theorem $3.1 \&$ Theorem 4.6 and its corollaries.

1 Background \& Terminology

I follow the standard notation and sketch only a few salient details, referring the reader to [5], [3], [4], for example, for a full exposition and other references.
I shall write A_{1} for the unit ball of a subset A of a normed space, and $\left\langle x, x^{\prime}\right\rangle$ for the value of the functional x^{\prime} in X^{\prime} at x in X.
Throughout \mathcal{A} will denote a complex unital Banach algebra (with identity 1).
For $x \in \mathcal{A},\|x\|=1$, define the support set at x

$$
D(\mathcal{A}, x)=\left\{\varphi \in \mathcal{A}^{\prime}:\langle x, \varphi\rangle=1=\|\varphi\|\right\} .
$$

Then for $a \in \mathcal{A}$ define the sets

$$
V(\mathcal{A}, a, x)=\{\langle a x, \varphi\rangle: \varphi \in D(\mathcal{A}, x)\}
$$

and their union, the algebra numerical range

$$
V(\mathcal{A}, a)=\bigcup_{x \in \mathcal{A},\|x\|=1} V(\mathcal{A}, a, x) .
$$

For any $a \in \mathcal{A}$ the spectrum of a

$$
\sigma(a) \subset V(\mathcal{A}, a) .
$$

The fundamental link between the numerical range of a and the growth of the group $\left\{e^{r a}: r \in \mathbb{R}\right\}$ is

Theorem 1.1 For each $a \in A$

$$
\begin{aligned}
\max \{\Re \lambda: \lambda \in V(A, a)\} & =\sup _{\{ }\left\{r^{-1} \log \left\|e^{r a}\right\|: r>0\right\} \\
& =\lim _{r \rightarrow 0+} r^{-1}\{\|1+r a\|-1\}
\end{aligned}
$$

Definition 1.2 An element $h \in \mathcal{A}$ is hermitian if its algebra numerical range is real: equivalently, if $\left\|e^{i r h}\right\|=1 \quad(r \in \mathbb{R})$: equivalently, if $\|1+i r h\| \leq 1+o(r) \quad(\mathbb{R} \ni r \rightarrow 0)$.

Remark 1.3 If h is hermitian then the convex hull of the spectrum satisfies

$$
\operatorname{co} \sigma(h)=V(\mathcal{A}, h) .
$$

Theorem 1.4 (Sinclair's Theorem) $\|h\|=\rho(h)$ (the spectral radius of h) for any hermitian $h \in \mathcal{A}$.

The now classical numerical range characterisation of C^{*}-algebras is
Theorem 1.5 (Vidav-Palmer Theorem) Let \mathcal{H} be the set of hermitian elements of a complex unital Banach algebra \mathcal{A}. If $\mathcal{A}=\mathcal{H}+i \mathcal{H}$ then \mathcal{A} is a C^{*}-algebra [under the given norm and the natural involution].

When X is a complex Banach space and $x \in X$ we define the set of support functionals at x as

$$
D(x)=\left\{\phi \in X^{\prime}:\|\phi\|=1,\langle x, \phi\rangle=\|x\|\right\}
$$

and define

$$
\Pi_{X}=\left\{(x, \phi) \in X \times X^{\prime}:\|x\|=1, \phi \in D(x)\right\}
$$

ie

$$
\Pi_{X}=\left\{(x, \phi) \in X \times X^{\prime}:\langle x, \phi\rangle=\|x\|=\|\phi\|=1\right\} .
$$

The spatial numerical range $V(T)$ [one may write $V_{X}(T)$ to indicate the underlying space explicitly] of the operator T is defined as

$$
V(T)=\left\{\langle T x, \phi\rangle:(x, \phi) \in \Pi_{X}\right\} .
$$

Definition 1.6 An operator H on X is hermitian if its spatial numerical range is real: equivalently, if $\left\|e^{i r H}\right\|=1 \quad(r \in \mathbb{R}):$ equivalently, if $\left\|I_{X}+i r H\right\| \leq 1+o(r) \quad(\mathbb{R} \ni r \rightarrow 0)$: equivalently, if H is hermitian in the Banach algebra $L(X)$.
\mathcal{H}_{X} is the set of hermitian operators on X.
Remark 1.7 An operator on Hilbert space is hermitian (in the numerical range sense) if and only if it is selfadjoint.

2 Projections

A projection [ie an idempotent] p is nontrivial if p and \bar{p}, the complement of p in the identity, are both nonzero.
An elementary observation to be used repeatedly: if p is an idempotent in a unital Banach algebra then, for $z \in \mathbb{C}$,

$$
e^{i z p}=\bar{p}+e^{i z} p
$$

Remark 2.1 If p is a nonzero hermitian projection in a unital Banach algebra then $\|p\|=1$. This is usually presented as a corollary to Sinclair's Theorem. However it lies nearer the surface: for $\|1-2 p\|=\left\|e^{i \pi p}\right\| \leq 1$ and therefore $2\|p\| \leq\|1-(1-2 p)\| \leq 2$.

From now on the setting is spatial, on a Banach space X.
Remark 2.2 If E is any projection on a Banach (even on a normed) space X, and if $\phi \in X^{\prime}$, then for $z \in E X$ we have $\langle z, \phi\rangle=\langle E z, \phi\rangle=\left\langle z, E^{\prime} \phi\right\rangle$ and so

$$
\left.E^{\prime} \phi\right|_{E X}=\left.\phi\right|_{E X}
$$

Thus

$$
\left\|E^{\prime} \phi\right\| \geq\left\|E^{\prime} \phi\right\|_{E X}=\|\phi\|_{E X}
$$

2.1 Hermitian compressions - contractive projections

Given $(x, \phi) \in \Pi_{X}$ and a projection E on X it is natural to wonder in what circumstances $E x$ and $E^{\prime} \phi$ are mutually supportive (ie, whether $\left\langle E x, E^{\prime} \phi\right\rangle=\|E x\|\left\|E^{\prime} \phi\right\|$). In this direction we have

Lemma 2.3 Let E be a projection on X. Suppose that $z \in E X$ and $(z, \theta) \in \Pi_{E X}$. Let ϕ be any extension of norm 1 of θ from $E X$ to X. Then $(z, \phi) \in \Pi_{X}$.
Conversely, if $z \in E X$ and $(z, \phi) \in \Pi_{X}$ then $\left(z,\left.\phi\right|_{E X}\right) \in \Pi_{E X}$.
Suppose further that E is contractive. Then $\left(E z, E^{\prime} \phi\right) \in \Pi_{X}$ for any such ϕ. Consequently

$$
V_{E X}(E T E) \subset V_{X}(T)
$$

for any $T \in L(X)$.
Proof. The first assertion is clear: for $1=\langle z, \theta\rangle=\langle z, \phi\rangle$. The converse too is immediate. Next, if also E is contractive, we have $1=\left\langle z, E^{\prime} \phi\right\rangle \leq\left\|E^{\prime} \phi\right\| \leq\|\phi\|=1$ and therefore $\left(E z, E^{\prime} \phi\right) \in \Pi_{X}$.
Consequently

$$
\begin{aligned}
V_{E X}(E T E) & =\left\{\langle E T E z, \theta\rangle:(z, \theta) \in \Pi_{E X}\right\} \\
& =\left\{\langle E T E z, \phi\rangle:(z, \phi) \in \Pi_{X}\right\} \\
& \subset\left\{\left\langle T z, E^{\prime} \phi\right\rangle:\left(z, E^{\prime} \phi\right) \in \Pi_{X}\right\} \\
& \subset V_{X}(T) .
\end{aligned}
$$

As an immediate corollary:
Theorem 2.4 If E is a contractive projection and H is hermitian on X then $E H E$ is hermitian on $E X$. If H is positive on X then $E H E$ is positive on $E X$.

Remark 2.5 Not all contractive projections are hermitian. Even the stronger hypothesis $\|E\|=\|\bar{E}\|=1$ does not compel E to be hermitian - see example cited in [1].

2.2 Hermitian projections

It has long been known, see [1], that hermitian projections can be characterised as follows:

$$
\|x\|=\sup \{|\langle E x, \phi\rangle|+|\langle\bar{E} x, \phi\rangle|:\|\phi\| \leq 1\}
$$

for any $x \in X$: and that, when E is a hermitian projection,

$$
\|\lambda E x+\mu \bar{E} y\|=\|E x+\bar{E} y\|
$$

for any $x, y \in X$ (equivalently, $\lambda E+\mu \bar{E}$ is an isometry) for any $\lambda, \mu \in \mathbb{T}$.
The next result is stronger. It seems to be new - I have not seen it recorded. My proof depends on the Vidav-Palmer Theorem.

Theorem 2.6 If E is a nontrivial hermitian projection on X then, for any $\lambda, \mu \in \mathbb{C}$,

$$
\|\lambda E+\mu \bar{E}\|=\max \{|\lambda|,|\mu|\} .
$$

Proof. The linear span of E and \bar{E} is a (commutative) C^{*}-algebra on X and therefore $\|\lambda E+\mu \bar{E}\|^{2}=\left\|(\lambda E+\mu \bar{E})^{*}(\lambda E+\mu \bar{E})\right\|=\left\||\lambda|^{2} E+|\mu|^{2} \bar{E}\right\|=\max \left\{|\lambda|^{2},|\mu|^{2}\right\}$.

Two subspaces Y and Z of X are Birkhoff (also James) orthogonal, written $Y \perp Z$, or $Y \perp_{\mathrm{B}} Z$, when $\|y\| \leq\|y+z\|(y \in Y, z \in Z)$.

The next result is a special case of the fact that if H is a positive hermitian in a C^{*} algebra on X then $\operatorname{ker} H \perp_{B} H X$ which may be proved along the lines of the proof that follows, using the fact that $\left(I+\varepsilon^{-1} H\right)^{-1}$ is a contraction, relying on the Vidav-Palmer Theorem. It is also a corollary of an even more general result of Crabb \& Sinclair [6]: if $0 \in \sigma_{p}(T) \cap \partial V(T)$ for some $T \in L(X)$ then $\operatorname{ker} T \perp_{B} T X$. For projections I can offer a particularly elementary proof.

Theorem 2.7 If E is a hermitian projection on X then $E X \perp_{B} \bar{E} X$: that is

$$
\|E x\| \leq\|E x+\bar{E} y\|
$$

for any $x, y \in X$.
Proof. Assume, without loss of generality, that E is nontrivial. Note that, for $\varepsilon>0$,

$$
\left(I+\varepsilon^{-1} \bar{E}\right)^{-1}=E+\frac{\varepsilon}{1+\varepsilon} \bar{E}
$$

is hermitian and has spectrum $\left\{\frac{\varepsilon}{1+\varepsilon}, 1\right\}$ so must be a contraction. Thus

$$
\|E x+\varepsilon y\| \leq\left\|\left(I+\varepsilon^{-1} \bar{E}\right)(E x+\varepsilon y)\right\|=\|E x+\bar{E} y+\varepsilon y\|
$$

and the result follows on letting $\varepsilon \rightarrow 0+$.

Theorem 2.8 If E is a hermitian projection on X and $\phi \in X^{\prime}$ then

$$
\left\|E^{\prime} \phi\right\|=\|\phi\|_{E X}
$$

Proof. By Remark 2.2

$$
\|\phi\|_{E X}=\left\|E^{\prime} \phi\right\|_{E X} \leq\left\|E^{\prime} \phi\right\| .
$$

Next, for E hermitian and any $x \in X$,

$$
\frac{\left|\left\langle x, E^{\prime} \phi\right\rangle\right|}{\|x\|}=\frac{|\langle E x, \phi\rangle|}{\|E x+\overline{E x}\|} \leq \frac{|\langle E x, \phi\rangle|}{\|E x\|}
$$

which shows that $\left\|E^{\prime} \phi\right\| \leq\|\phi\|_{E X}$.

3 Order \& the $E H E$ \& $H P P$ Problems

An order relation on the set of hermitians is defined naturally in terms of numerical range: $H \geq 0$ if and only if $V(H) \subset \mathbb{R}^{+}$: equivalently, $\sigma(H) \subset \mathbb{R}^{+}$.
Referring to Theorem 1.1 we see that

$$
\begin{array}{ll}
H \text { is positive if and only if } & \left\|e^{(-s+i r) H}\right\| \leq 1 \\
& \|1-s H\| \leq 1+o(s) \quad \text { for } r \in \mathbb{R}, s \geq 0 \\
\text { as } s \rightarrow 0+
\end{array}
$$

If H is positive then $H \leq I$ if and only if $\|H\| \leq 1$.
Also, $0 \leq E \leq I$ for any hermitian projection. This is clear from Remark 1.3: and can also be seen immediately from the fact that

$$
\|I-s E\|=\|(1-s) E+\bar{E}\| \leq 1
$$

for $0 \leq s \leq 1$.
The natural ordering on projections is that $E \leq F$ if and only if $E F=F E=E$. If so, $\sigma(F-E) \subset \mathbb{R}^{+}$(commutative spectral theory), and then $E \leq F$ in the numerical range sense (cf Remark 1.3).

3.1 Hermitian compressions

Theorem 3.1 Let E be a hermitian projection and H a hermitian operator on X. Then 1 EHE is hermitian on EX.
2 If, moreover, H is positive on X then $E H E$ is positive on $E X$.
Proof. Either cite Theorem 2.4 (remembering that hermitian projections are contractive) or apply the inequality $\|E+\operatorname{ir} E H E\| \leq\|I+i r H\| \leq 1+o(r)$ when H is hermitian, and the inequality $\|E-s E H E\| \leq\|I-s H\| \leq 1+o(s)(s \rightarrow 0+)$ when H is also positive.

Corollary 3.2 Let E be a hermitian projection on X and H a positive hermitian on X with $\|H\| \leq 1$. If $E \leq H$ then $E=E H E$.

Proof. For then, since $E \leq H \leq I$, we have $E(E) E \leq E H E \leq E(I) E$ (the theorem asserts this just on $E X$: but E and $E H E$ are both 0 on $\bar{E} X$).

3.2 Order on the projections

The next result strengthens [1, Theorem 2.17].
Theorem 3.3 Suppose that E and F are hermitian projections on X and that $E \leq F$ in the numerical range sense. Then $E F=F E=E$.

Proof. By the corollary $E=E F E$. A quick calculation shows that $(E F-F E)^{3}=0$, and since $i(E F-F E)$ is hermitian we have $E F=F E$ by Sinclair's Theorem (so both equal E).

3.3 The EHE \& HPP Problems

Theorem 3.1 does not answer the question of whether $E H E$ is hermitian on all of X, and not just on EX. I call this the EHE Problem.
The EHE Problem is an instance of a more general one, the Hermitian Patching Problem or $H P P$: namely, if H is hermitian in $L(E X)$, and if K is hermitian in $L(\bar{E} X)$, does it follow that $H \oplus K$ is hermitian on X ?

4 Ultrahermitian projections

Consider the following two properties that may hold for a projection E. Note that they are symmetrical in E and its complement \bar{E}. First,

$$
\begin{equation*}
\|E x\|\left\|E^{\prime} \phi\right\|+\|\bar{E} x\|\left\|\bar{E}^{\prime} \phi\right\| \leq\|x\|\|\phi\| \tag{U1}
\end{equation*}
$$

for $x \in X, \phi \in X^{\prime}$: and, second,

$$
\begin{equation*}
\|E A E+\bar{E} B \bar{E}\| \leq 1 \tag{U2}
\end{equation*}
$$

for any contractions $A, B \in L(X)$.
Hermitian projections on Hilbert spaces have both these properties, as is easy to check.

Lemma 4.1 If E is a projection and satisfies either (U1) or (U2) then E and \bar{E} are contractions.

Proof. Suppose (U1). Given x choose a ϕ to support Ex: ie $\langle E x, \phi\rangle=\|E x\|=\|\phi\|=1$. Then $\left\|E^{\prime} \phi\right\| \geq\|\phi\|_{E X}=1$, by Remark 2.2, so $\|E x\| \leq\|E x\|\left\|E^{\prime} \phi\right\| \leq\|x\|\|\phi\|=\|x\|$, by (U2).
Suppose (U2). Choose $A=I$ and $B=0$.
Theorem 4.2 (U1) and (U2) are equivalent.

Proof. Suppose that E has (U1) and that A and B are contractions. Then, for any $x \in X$ and $\phi \in X^{\prime}$

$$
\begin{aligned}
|\langle(E A E+\bar{E} B \bar{E}) x, \phi\rangle| & \leq\|E A E x\|\left\|E^{\prime} \phi\right\|+\|\bar{E} B \bar{E} x\|\left\|\bar{E}^{\prime} \phi\right\| \\
& \leq\|E x\|\left\|E^{\prime} \phi\right\|+\|\bar{E} x\|\left\|\bar{E}^{\prime} \phi\right\| \\
& \leq\|x\|\|\phi\|
\end{aligned}
$$

which establishes (U2).
Conversely, assuming (U2), choose y, z in X_{1} and ψ, χ in X_{1}^{\prime}. Define contractions

$$
A: x \mapsto\langle x, \psi\rangle y, \quad B: x \mapsto\langle x, \chi\rangle z
$$

Then given $x \in X$ and $\phi \in X^{\prime}$ we have

$$
|\langle(E A E+\bar{E} B \bar{E}) x, \phi\rangle| \leq\|x\|\|\phi\|
$$

ie

$$
\left|\langle E x, \psi\rangle\left\langle y, E^{\prime} \phi\right\rangle+\langle\bar{E} x, \chi\rangle\left\langle z, \bar{E}^{\prime} \phi\right\rangle\right| \leq\|x\|\|\phi\|
$$

On choosing y, z, ψ, χ suitably $\left[\psi\right.$ to support $E x, \chi$ to support $\bar{E} x, y$ to support $E^{\prime} \phi$ approximately, z to support $\bar{E}^{\prime} \phi$ approximately] we find that

$$
\|E x\|\left\|E^{\prime} \phi\right\|+\|\bar{E} x\|\left\|\bar{E}^{\prime} \phi\right\| \leq\|x\|\|\phi\|
$$

Theorem 4.3 If E is a projection satisfying either of the equivalent conditions (U1) or (U2) then E is hermitian.

Proof. For then

$$
\|I+i r E\|=\|(1+i r) E+\bar{E}\| \leq|1+i r|=1+o(r)
$$

as $r \rightarrow 0+$, by (U2).
Definition 4.4 An ultrahermitian projection on a Banach space X is an idempotent in $L(X)$ that satisfies either of the equivalent conditions (U1) or (U2).

For ultrahermitian projections there is a result stronger than Lemma 2.3.
Theorem 4.5 Let E be an ultrahermitian projection on X. If $(x, \phi) \in \Pi_{X}$, and also $E x \neq 0$ and $E^{\prime} \phi \neq 0$, then $\left(\frac{E x}{\|E x\|}, \frac{E^{\prime} \phi}{\left\|E^{\prime} \phi\right\|}\right) \in \Pi_{X}$.

Proof. Work from (U1). For $(x, \phi) \in \Pi_{X}$ we have

$$
\begin{aligned}
1 & =\langle x, \phi\rangle=\left\langle E x, E^{\prime} \phi\right\rangle+\left\langle\bar{E} x, \bar{E}^{\prime} \phi\right\rangle \\
& \leq\|E x\|\left\|E^{\prime} \phi\right\|+\|\bar{E} x\|\left\|\bar{E}^{\prime} \phi\right\| \leq 1
\end{aligned}
$$

from which it follows that $\left\langle E x, E^{\prime} \phi\right\rangle=\|E x\|\left\|E^{\prime} \phi\right\|$ and thus $\left(\frac{E x}{\|E x\|}, \frac{E^{\prime} \phi}{\left\|E^{\prime} \phi\right\|}\right) \in \Pi_{X}$.

4.1 The Hermitian Patching Problem

This has a positive resolution for ultrahermitian E.
Theorem 4.6 Suppose that E is an ultrahermitian projection on X, that H is hermitian in $L(E X)$ and that K is hermitian in $L(E X)$. Then $H \oplus K$ is hermitian on X. Moreover, if H and K are both positive then so is $H \oplus K$.

Proof. For $r \in \mathbb{R}$ we have

$$
\left\|I_{X}+i r[H \oplus K]\right\|=\|E(E+i r H) E+\bar{E}(\bar{E}+i r K) \bar{E}\|=1+o(r)
$$

by (U2).
If, moreover, both H and K are positive, then, as above,

$$
\left\|I_{X}-s[H \oplus K]\right\|=\|E(E-s H) E+\bar{E}(\bar{E}-s K) \bar{E}\|=1+o(s)
$$

as $s \rightarrow 0+$, again by (U2).
Corollary 4.7 Suppose that E is an ultrahermitian projection on X, and that H and K are hermitian on X. Then $E H E \oplus \bar{E} K \bar{E}$ is hermitian on X. Moreover, if H and K are both positive then so is $E H E \oplus \bar{E} K \bar{E}$.

Theorem 3.1 can be strengthened for ultrahermitian projections, so resolving the EHE Problem. One need only note, in pedantic style, that $E H E=\left.\left.E H E\right|_{E X} \oplus 0\right|_{\bar{E} X}$.

Corollary 4.8 Let E be an ultrahermitian projection and H a hermitian operator on X. Then
$1 E H E$ is hermitian on X. Hence
$2 E H$ is hermitian if E and H commute.
3 If, moreover, H is positive on X then $E H E$ is positive on X.

4.2 Ultrahermitian decompositions

As remarked above, the condition for ultrahermiticity is symmetric in E and \bar{E}. This symmetry is, perhaps, better to be understood in greater generality.
Consider a finite family $\mathcal{E}=\left(E_{j}\right)$ of mutually orthogonal projections whose sum is I_{X} :

$$
\oplus E_{j}=I
$$

As before, there are two properties \mathcal{E} may have:

$$
\begin{equation*}
\sum\left\|E_{j} x\right\|\left\|E_{j}^{\prime} \phi\right\| \leq\|x\|\|\phi\| \tag{UD1}
\end{equation*}
$$

for $x \in X, \phi \in X^{\prime}$: and, second,

$$
\begin{equation*}
\left\|\sum E_{j} A_{j} E_{j}\right\| \leq 1 \tag{UD2}
\end{equation*}
$$

for any contractions $A_{j} \in L(X)$.
It is straightforward, as before, to show that all the E_{j} are hermitian projections, subject to either (UD1) or (UD2); and that these two properties are equivalent.
One might call such a family \mathcal{E} an ultrahermitian decomposition of the identity.
If $\mathcal{F}=\left(F_{k}\right)$ is another such family, compatible with \mathcal{E} (in the sense that each E_{j} commutes with each $\left.F_{k}\right)$ then their common refinement $\mathcal{G}=\left(G_{j k}\right)$ is again an ultrahermitian decomposition of the identity, where $G_{j k}=E_{j} F_{k}$.

Induced projections

Each such \mathcal{E} defines a linear projection

$$
P_{\mathcal{E}}: L(X) \rightarrow L(X): A \mapsto \sum E_{j} A E_{j}
$$

under which \mathcal{H}_{X} is invariant. ($P_{\mathcal{E}}$ is not hermitian.) The restriction of $P_{\mathcal{E}}$ to \mathcal{H}_{X} is monotone on \mathcal{H}_{X}.
If \mathcal{E} and \mathcal{F} are compatible ultrahermitian decompositions and \mathcal{G} is their common refinement as above, then

$$
P_{\mathcal{G}}=P_{\mathcal{E}} P_{\mathcal{F}}=P_{\mathcal{F}} P_{\mathcal{E}}
$$

4.3 Examples of ultrahermitian projections

The hermitian operators on most common spaces have been catalogued: see, for example, [2]. There are not many, apart from patchings of 'real diagonal operators' (except of course on Hilbert spaces), and the projections among them are all ultrahermitian.
It would be interesting to find a hermitian projection that is not ultrahermitian in a nontrivial way.

4.3.1 l^{p} type decompositions/patchings

If E is a projection on X and if ($c f[4, \S 15])$

$$
\|x\|^{p}=\|E x\|^{p}+\|\bar{E} x\|^{p}
$$

for all $x \in X$ (for some p in the range $[1, \infty]$) then E is hermitian, and even ultrahermitian. For, given contractions A and B,

$$
\begin{aligned}
\|(E A E+\bar{E} B \bar{E}) x\|^{p} & =\|E A E x\|^{p}+\|\bar{E} B \bar{E} x\|^{p} \\
& \leq\|E x\|^{p}+\|\bar{E} x\|^{p} \\
& =\|x\|^{p} .
\end{aligned}
$$

5 Acknowledgments

I thank M.J. Crabb, J. Duncan and C.M. McGregor for their advice.

References

[1] E. Berkson, Hermitian projections and orthogonality in Banach spaces, Proc London Math Soc (3) 24 (1972) 101-118.
[2] E. Berkson \& A. Sorour, The Hermitian operators on some Banach spaces, Studia Math 52 (1974) 33-41.
[3] F. F. Bonsall \& J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Cambridge University Press (1971).
[4] F. F. Bonsall \& J. Duncan, Numerical Ranges II, Cambridge University Press (1973).
[5] F. F. Bonsall \& J. Duncan, Complete Normed Algebras, Springer (1973).
[6] M. J. Crabb \& A. M. Sinclair, On the boundary of the spatial numerical range, Bull London Math Soc, 4 (1972) 17-19.

Department of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW Philip.Spain@glasgow.ac.uk

