$$
\text { How far is }\left(1+\frac{a}{n}\right)^{n} \text { from } e^{a} ?
$$

Vito Lampret 8 Philip G Spain

Abstract

We present effective upper and lower bounds for the distance from $\left(1+\frac{a}{n}\right)^{n}$ to e^{a} for an element a of a complex unital Banach algebra and positive integer n. Specifically: $$
\frac{1}{2 n} \sup \left\{\left|\Re\left(z^{2}\right)\right| e^{\Re(z)}: z \in \sigma(a)\right\} \lesssim(2)\left\|e^{a}-\left(1+\frac{a}{n}\right)^{n}\right\| \leq \frac{\|a\|^{2}}{2 n} e^{\|a\|}
$$

where $\sigma(a)$ is the spectrum of a. The symbol $\lesssim(p)$ means "less than or equal to, up to a term of order n^{-p} " as discussed below.

1 Introduction - technical preliminaries

The purpose of this paper is to establish asymptotic estimates for the quantity

$$
\begin{equation*}
\delta(a, n)=\left\|e^{a}-\left(1+\frac{a}{n}\right)^{n}\right\| \tag{1.1}
\end{equation*}
$$

where a is an element of a Banach algebra \mathcal{A} and n is a (large) positive integer. We tackle this problem in three stages: (i) for $\mathbb{R}[\S 2]$, (ii) for $\mathbb{C}[\S 3]$, and (iii) for general $\mathcal{A}[\S 4]$.

The following notation will be useful in presenting our results.
Notation 1. For a fixed positive integer p and functions a and b defined on \mathbb{N} the expression $a(n) \gtrsim(p) b(n)$ is shorthand for $a(n) \geq b(n)+O\left(n^{-p}\right)$: that is,

$$
a(n)-b(n) \geq \frac{M}{n^{p}}
$$

where M and N are constants (N positive) independent of n. The symbols $\lesssim(p)$ and $\simeq_{(p)}$ are defined analogously. These three relations are all transitive.
We shall later extend the use of this notation to instances where the argument n may run through the set of half-integers.

Our treatment depends on the estimates of [2, Corollaries $1.1 \& 1.2]$.

[^0]Proposition 1 (Essential Estimates). Consider real numbers x and t. If $x>0$ and $t>x$ then

$$
\exp \left(x-\frac{x^{2}}{2 t}\right)<\left(1+\frac{x}{t}\right)^{t}<\exp \left(x-\frac{x^{2}}{2(t+x)}\right)
$$

while if $x<0$ and $t>|x|$ we have

$$
\exp \left(x-\frac{x^{2}}{2(t+x)}\right)<\left(1+\frac{x}{t}\right)^{t}<\exp \left(x-\frac{x^{2}}{2 t}\right)
$$

Lemma 1. The lengths of the 'indeterminacy intervals' of Proposition 1 satisfy

$$
\left.\begin{array}{ll}
(x>0) & \exp \left(x-\frac{x^{2}}{2(t+x)}\right)-\exp \left(x-\frac{x^{2}}{2 t}\right) \\
(x<0) & \exp \left(x-\frac{x^{2}}{2 t}\right)-\exp \left(x-\frac{x^{2}}{2(t+x)}\right)
\end{array}\right\}<\frac{5|x|^{3}}{4} \frac{t^{2}}{}
$$

when $t>2 \max \left\{|x|, x^{2}\right\}>0$.
Proof. When $x>0$ the interval in question has length

$$
\begin{aligned}
& \exp \left(-\frac{x^{2}}{2(t+x)}\right)-\exp \left(-\frac{x^{2}}{2 t}\right) \\
& =\exp \left(-\frac{x^{2}}{2 t}\right)\left\{\exp \left(\frac{x^{2}}{2}\left[\frac{1}{t}-\frac{1}{t+x}\right]\right)-1\right\} \\
& =\exp \left(-\frac{x^{2}}{2 t}\right)\left\{\exp \left(\frac{x^{2}}{2 t} \frac{x}{t+x}\right)-1\right\} \\
& <\exp (r)-1
\end{aligned}
$$

where $r=\frac{|x|^{3}}{2 t(t+x)}$. Similarly, when $x<0$ the interval has length

$$
\begin{aligned}
& \exp \left(-\frac{x^{2}}{2 t}\right)-\exp \left(-\frac{x^{2}}{2(t+x)}\right) \\
& =\exp \left(-\frac{x^{2}}{2(t+x)}\right)\left\{\exp \left(\frac{x^{2}}{2}\left[\frac{1}{t+x}-\frac{1}{t}\right]\right)-1\right\} \\
& =\exp \left(-\frac{x^{2}}{2(t+x)}\right)\left\{\exp \left(\frac{x^{2}}{2(t+x)} \frac{-x}{t}\right)-1\right\}
\end{aligned}
$$

which again, for the same r,

$$
<\exp (r)-1
$$

Now, under our hypotheses, $2(t+x)=t+(t+2 x) \geq t$ and therefore $0<r<\frac{|x|}{t} \frac{x^{2}}{t}<\frac{1}{4}$. Hence $e^{r}-1<r+r^{2}<\frac{5}{4} r<\frac{5}{4} \frac{|x|^{3}}{t^{2}}$.

Corollary 1. For any real x we have

$$
\left(1+\frac{x}{m}\right)^{m} \simeq_{(2)} \exp \left(x-\frac{x^{2}}{2 m}\right)
$$

Specifically:

$$
\begin{equation*}
\left|\left(1+\frac{x}{m}\right)^{m}-\exp \left(x-\frac{x^{2}}{2 m}\right)\right|<\frac{5}{4} \frac{|x|^{3}}{m^{2}} \exp (x) \tag{1.2}
\end{equation*}
$$

when $x \neq 0$ and $m>2 \max \left\{|x|, x^{2}\right\}$ is a (half-)integer.

2 Real case - distance from $\left(1+\frac{x}{n}\right)^{n}$ to e^{x}

When x is real we have $\left(1+\frac{x}{n}\right)^{n}<e^{x}$ for any positive integer n and therefore (1.1) simplifies to

$$
\delta(x, n)=e^{x}-\left(1+\frac{x}{n}\right)^{n} .
$$

Lemma 2. For any real x we have

$$
\exp \left(x-\frac{x^{2}}{2 n}\right) \simeq_{(2)} e^{x}-\frac{x^{2}}{2 n} e^{x} .
$$

Proof. It is straightforward to establish that $1-r+\frac{r^{2}}{4}<\exp (-r)<1-r+\frac{r^{2}}{2}$ for $0<r<1$. Thus, if given $x \neq 0$ and $n>x^{2} / 2$ we define $r=\frac{x^{2}}{2 n}$, then $0<r<1$ and

$$
\exp \left(x-\frac{x^{2}}{2 n}\right)-\left(e^{x}-\frac{x^{2}}{2 n} e^{x}\right)=\exp (x)[\exp (-r)-1+r] \in\left(\frac{r^{2}}{4}, \frac{r^{2}}{2}\right) \exp (x)
$$

That is

$$
\begin{equation*}
\frac{x^{4}}{16 n^{2}} e^{x}<\exp \left(x-\frac{x^{2}}{2 n}\right)-\left(e^{x}-\frac{x^{2}}{2 n} e^{x}\right)<\frac{x^{4}}{8 n^{2}} e^{x} \tag{2.1}
\end{equation*}
$$

for $x \neq 0$.
Theorem 1. For any real x we have

$$
\delta(x, n) \simeq_{(2)} \frac{x^{2}}{2 n} e^{x}
$$

Specifically, for x real, $\neq 0$, and $n \geq 2 \max \left\{|x|, x^{2}\right\}$ we have

$$
\begin{equation*}
\left|\delta(x, n)-\frac{x^{2}}{2 n} e^{x}\right|<\frac{|x|^{3}(|x|+10)}{8 n^{2}} e^{x} . \tag{2.2}
\end{equation*}
$$

Proof. Combining Corollary 1 and Lemma 2 gives

$$
\left(1+\frac{x}{n}\right)^{n} \simeq_{(2)} \exp \left(x-\frac{x^{2}}{2 n}\right) \simeq_{(2)} e^{x}-\frac{x^{2}}{2 n} e^{x}
$$

(recall that $\simeq_{(2)}$ is transitive) and therefore

$$
\delta(x, n)=e^{x}-\left(1+\frac{x}{n}\right)^{n} \simeq_{(2)} \frac{x^{2}}{2 n} e^{x} .
$$

More precisely, using (1.2) and (2.1), for $x \neq 0$,

$$
-\frac{5}{4} \frac{|x|^{3}}{n^{2}} e^{x}<\left(1+\frac{x}{n}\right)^{n}-\exp \left(x-\frac{x^{2}}{2 n}\right)<\frac{5}{4} \frac{|x|^{3}}{n^{2}} e^{x}
$$

and

$$
\frac{x^{4}}{16 n^{2}} e^{x}<\exp \left(x-\frac{x^{2}}{2 n}\right)-\left(e^{x}-\frac{x^{2}}{2 n} e^{x}\right)<\frac{x^{4}}{8 n^{2}} e^{x}
$$

so, adding, we get

$$
\frac{x^{4}}{16 n^{2}} e^{x}-\frac{5}{4} \frac{|x|^{3}}{n^{2}} e^{x} \quad<\frac{x^{2}}{2 n} e^{x}-\delta(x, n)<\frac{x^{4}}{8 n^{2}} e^{x}+\frac{5}{4} \frac{|x|^{3}}{n^{2}} e^{x}=\frac{|x|^{3}(|x|+10)}{8 n^{2}} e^{x},
$$

from which (2.2) follows.
Remark 1. This result is more precise than the restriction of Theorem 2 or Theorem 5 to real z.

3 Complex case - distance from $\left(1+\frac{z}{n}\right)^{n}$ to e^{z}

Notation 2. For $z=x+i y \in \mathbb{C}$ (that is, $x=\Re(z)$ and $y=\Im(z)$) and for $n \in \mathbb{N}$ define $m=\frac{n}{2}$ (so, from now on, m will be a positive (half-)integer). Write

$$
\begin{equation*}
\xi=x+\frac{|z|^{2}}{4 m} \in \mathbb{R} \quad \& \quad \zeta=\left|1+\frac{z}{n}\right|^{2} \tag{3.1}
\end{equation*}
$$

so that

$$
\begin{equation*}
\zeta=1+\frac{x}{m}+\frac{|z|^{2}}{4 m^{2}}=1+\frac{\xi}{m} \tag{3.2}
\end{equation*}
$$

By the triangle inequality

Further, let

$$
\begin{equation*}
\omega(m)=x+\frac{y^{2}-x^{2}}{4 m} \tag{3.4}
\end{equation*}
$$

vl \mathcal{E} pgs

Then

$$
\begin{equation*}
\xi-\frac{\xi^{2}}{2 m}=x+\frac{y^{2}-x^{2}}{4 m}-\frac{x|z|^{2}}{4 m^{2}}-\frac{|z|^{4}}{32 m^{3}}=\omega(m)-\eta(m) \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta(m)=\frac{x|z|^{2}}{4 m^{2}}+\frac{|z|^{4}}{32 m^{3}}=\frac{|z|^{2}}{32 m^{3}}\left(8 m x+|z|^{2}\right) \tag{3.6}
\end{equation*}
$$

has the same sign as x for large m (when $x \neq 0$).

Standing assumption

For the rest of this section z will be a nonzero complex number and m a (half-)integer such that

$$
\begin{equation*}
m \geq \max \left\{1,4|z|, 4|z|^{2}\right\} \tag{3.7}
\end{equation*}
$$

Remark 2. Given $z=x+i y \in \mathbb{C}$ and a positive half-integer $m \geq \max \left\{1,4|z|, 4|z|^{2}\right\}$ we have

$$
-|z| \leq x \leq \xi \leq|z|+|z| \frac{|z|}{4 m} \leq \frac{17}{16}|z|
$$

Thus

$$
\omega \leq x+\frac{1}{16}, \quad \xi \leq x+\frac{1}{16} \quad \& \quad 2 \max \left\{|\xi|,|\xi|^{2}\right\}<m
$$

We establish the main result of this section, Theorem 2, by demonstrating the chain of asymptotic equalities

$$
\zeta^{m} \simeq_{(2)} \exp \left(\xi-\frac{\xi^{2}}{2 m}\right) \simeq_{(2)} \exp (\omega(m)) \simeq_{(2)} e^{x}\left(1+\frac{y^{2}-x^{2}}{4 m}\right)
$$

Lemma 3.

$$
\zeta^{m} \simeq_{(2)} \exp \left(\xi-\frac{\xi^{2}}{2 m}\right)
$$

Proof. Apply (1.2) (with ξ in place of x). Then, bearing in mind Remark 2, and also the arithmetical fact that $\frac{5}{4}\left(\frac{17}{16}\right)^{3} e^{\frac{1}{16}}<1.6$, we have

$$
\begin{aligned}
\left|\zeta^{m}-\exp \left(\xi-\frac{\xi^{2}}{2 m}\right)\right| & <\frac{5}{4} \frac{|\xi|^{3}}{m^{2}} \exp (\xi) \\
& <\frac{5}{4}\left(\frac{17}{16}\right)^{3} \frac{|z|^{3}}{m^{2}} \exp \left(x+\frac{1}{16}\right)<2 \frac{|z|^{3}}{m^{2}} \exp (x)
\end{aligned}
$$

Lemma 4.

$$
\exp \left(\xi-\frac{\xi^{2}}{2 m}\right) \simeq_{(2)} \exp (\omega(m))
$$

Proof. According to (3.6), we have

$$
\begin{align*}
|\eta| & \leq \frac{|z|^{3}}{4 m^{2}}+\frac{|z|^{4}}{32 m^{3}}=\frac{|z|^{3}}{4 m^{2}}\left(1+\frac{|z|}{8 m}\right) \\
& \leq \frac{|z|^{3}}{4 m^{2}}\left(1+\frac{1}{2}\right)=\frac{3}{8} \frac{|z|^{3}}{m^{2}} \leq \frac{3}{128}<1 \tag{3.8}
\end{align*}
$$

from which $\left|e^{-\eta}-1\right|<2|\eta|$. Thus, using (3.5), (3.4), and (3.8), together with Remark 2,

$$
\begin{aligned}
\left|\exp \left(\xi-\frac{\xi^{2}}{2 m}\right)-\exp (\omega)\right| & \stackrel{(3.5)}{\leq} \exp (\omega)\left|e^{-\eta}-1\right| \stackrel{(3.4)}{\leq}\left|e^{-\eta}-1\right| \exp \left(\frac{1}{16}\right) \exp (x) \\
& \leq 2|\eta| \exp \left(\frac{1}{16}\right) \exp (x) \stackrel{(3.8)}{\leq} 2\left(\frac{3}{8} \frac{|z|^{3}}{m^{2}}\right) \exp \left(\frac{1}{16}\right) \exp (x) \\
& \leq \frac{|z|^{3}}{m^{2}} \exp (x)
\end{aligned}
$$

Lemma 5.

$$
\exp (\omega(m)) \simeq_{(2)} e^{x}\left\{1+\frac{y^{2}-x^{2}}{4 m}\right\}
$$

Proof. Recall that $\left|e^{r}-1-r\right| \leq r^{2} \quad(-1<r<1)$. With $r=\frac{y^{2}-x^{2}}{4 m}$ we have $|r| \leq$ $\frac{|z|^{2}}{4 m} \leq \frac{1}{16}$, and therefore

$$
\left|\exp \left(\frac{y^{2}-x^{2}}{4 m}\right)-1-\frac{y^{2}-x^{2}}{4 m}\right| \leq \frac{|z|^{4}}{16 m^{2}},
$$

from which

$$
\left|\exp \left(x+\frac{y^{2}-x^{2}}{4 m}\right)-e^{x}\left(1+\frac{y^{2}-x^{2}}{4 m}\right)\right| \leq \frac{|z|^{4}}{16 m^{2}} e^{x} .
$$

Theorem 2. Given $z=x+i y \in \mathbb{C}$ we have

$$
\delta(z, n)=\left|e^{z}-\left(1+\frac{z}{n}\right)^{n}\right| \gtrsim(2) \frac{\left|\Re\left(z^{2}\right)\right|}{2 n} e^{\Re(z)} .
$$

Specifically:

$$
\delta(z, n) \geq \frac{\left|\Re\left(z^{2}\right)\right|}{2 n} e^{\Re(z)}-\frac{12|z|^{3}}{n^{2}}\left(1+\frac{|z|}{48}\right) e^{\Re(z)}
$$

for $n \geq 2 \max \left\{1,4|z|, 4|z|^{2}\right\}$.

Proof. Since $m>2 \max \left\{|\xi|,|\xi|^{2}\right\}$, see Remark 2, we can apply Lemmas 3, 4 and 5 to get

$$
\begin{aligned}
\left|\zeta^{m}-e^{x}-\frac{y^{2}-x^{2}}{4 m} e^{x}\right| \leq & \left|\zeta^{m}-\exp \left(\xi-\frac{\xi^{2}}{2 m}\right)\right| \\
& +\left|\exp \left(\xi-\frac{\xi^{2}}{2 m}\right)-\exp (\omega)\right| \\
& \quad+\left|e^{x}\left[\exp \left(\frac{y^{2}-x^{2}}{4 m}\right)-1-\frac{y^{2}-x^{2}}{4 m}\right]\right| \\
\leq & 2 \frac{|z|^{3}}{m^{2}} \exp (x)+\frac{|z|^{3}}{m^{2}} \exp (x)+\frac{|z|^{4}}{16 m^{2}} \exp (x) \\
= & \frac{M}{m^{2}}
\end{aligned}
$$

where $M=3|z|^{3}\left(1+\frac{|z|}{48}\right) e^{x}$ depends only on z. Now

$$
\left|\left|\zeta^{m}-e^{x}\right|-\frac{\left|y^{2}-x^{2}\right|}{4 m} e^{x}\right| \leq\left|\zeta^{m}-e^{x}-\frac{y^{2}-x^{2}}{4 m} e^{x}\right| \leq \frac{M}{m^{2}}
$$

and therefore

$$
\delta(z, n) \stackrel{(3.3)}{\geq}\left|\zeta^{m}-e^{x}\right| \geq \frac{\left|y^{2}-x^{2}\right|}{4 m} e^{x}-\frac{M}{m^{2}}
$$

Remark 3. The upper bound

$$
\delta(z, n)=\left|e^{z}-\left(1+\frac{z}{n}\right)^{n}\right| \leq \frac{|z|^{2}}{2 n} e^{|z|}
$$

valid for $z \in \mathbb{C}$ and $n>|z|$, is the scalar variant of Theorem 5 below. Note the presence of the term $e^{|z|}$ in contrast to the e^{x} of Theorem 1.

When z lies on an (anti)diagonal

Theorem 2 tells us little when $\Re\left(z^{2}\right)=0$, that is, when z lies on \mathcal{X}, the union of the diagonal and antidiagonal in \mathbb{C} :

$$
\mathcal{X}=\left\{z \in \mathbb{C}: x^{2}=y^{2}\right\}=\left\{z \in \mathbb{C}: \Re\left(z^{2}\right)=0\right\} .
$$

We can, however, then derive a higher order estimate for the lower bound.
Theorem 3. Let $z=x+i y(\neq 0) \in \mathbb{C}$ with $x^{2}=y^{2}$. Then

$$
\delta(z, n) \gtrsim_{(3)} \frac{|\Re(z)|^{3}}{2 n^{2}} e^{\Re(z)} .
$$

Specifically,

$$
\left|e^{z}-\left(1+\frac{z}{n}\right)^{n}\right|>\frac{|x|^{3}}{2 n^{2}} e^{x}-\frac{|x| x^{3}(1+x)}{n^{3}} e^{x} \quad(n>4|x|)
$$

Proof. Write $l=\frac{x}{m}$. Then, by (3.7) and (3.2), we have

$$
\begin{equation*}
|l|<1 \quad \& \quad \zeta=1+\frac{\xi}{m}=1+l+\frac{l^{2}}{2} \tag{3.9}
\end{equation*}
$$

Let I be the interval with end-points e^{l} and ζ. Then

$$
\begin{aligned}
\delta(z, n) & \geq\left|\left(e^{l}\right)^{m}-\zeta^{m}\right| \\
& \geq\left|e^{l}-\zeta\right| \min _{r \in I}\left(\frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{m}\right)\right) \\
& =m\left|e^{l}-\zeta\right| \min \left\{\exp \left(\frac{m-1}{m} x\right), \zeta^{m-1}\right\}
\end{aligned}
$$

Now

$$
\begin{aligned}
\left|e^{l}-\zeta\right| & \stackrel{(3.9)}{=}\left|\frac{l^{3}}{3!}+\frac{l^{4}}{4!}+\frac{l^{5}}{5!}+\ldots\right|=\left|\frac{l^{3}}{3!}\left(1+\frac{l}{4}\right)+\frac{l^{5}}{5!}\left(1+\frac{l}{6}\right)+\ldots\right| \\
& \stackrel{(3.9)}{=} \frac{|l|^{3}}{3!}\left(1+\frac{l}{4}\right)+\frac{|l|^{5}}{5!}\left(1+\frac{l}{6}\right)+\ldots \geq \frac{3}{4} \frac{|l|^{3}}{3!}=\frac{|l|^{3}}{8}=\frac{|x|^{3}}{8 m^{3}}
\end{aligned}
$$

Further, recalling the definitions (3.1) and (3.2), we see that $\xi>x$. Moreover, $0<$ $1+\frac{x}{m}<1+\frac{\xi}{m}=\zeta$ for $m>|x|$. Thus, by Proposition 1,

$$
\begin{aligned}
\zeta^{m-1} & >\left(1+\frac{x}{m}\right)^{\frac{m-1}{m}} \\
& >\exp \left(\frac{m-1}{m}\left(x-\frac{x^{2}}{2 m}\right)\right) \\
& >\exp \left(x-\frac{x}{m}-\frac{x^{2}}{2 m}\right) \quad \text { if } m>x>0
\end{aligned}
$$

while

$$
\begin{array}{rlr}
\zeta^{m-1} & >\exp \left(\frac{m-1}{m}\left(x-\frac{x^{2}}{2(m+x)}\right)\right) \\
& >\exp \left(x-\frac{x}{m}-\frac{x^{2}}{m}\right) \quad \text { if } m>-2 x>0
\end{array}
$$

Hence

$$
\min \left\{\exp \left(\frac{m-1}{m} x\right), \zeta^{m-1}\right\}>\exp \left(x-\frac{x}{m}-\frac{x^{2}}{m}\right)
$$

and therefore

$$
\begin{aligned}
\delta(z, n) & >\frac{|x|^{3}}{8 m^{2}} \exp \left(x-\frac{x}{m}-\frac{x^{2}}{m}\right) \quad(m>2|x|) \\
& \geq \frac{|x|^{3}}{8 m^{2}} e^{x}\left(1-\frac{x(1+x)}{m}\right) .
\end{aligned}
$$

Supremum of $\{\delta(z, n): z \in K\}$
Note that

$$
\delta(z, n) \leq\left|e^{z}\right|+\left(1+\frac{\xi}{m}\right)^{m} \leq e^{x}+e^{\xi}=e^{x}\left(1+e^{\frac{|z|^{2}}{4 m}}\right) \leq e^{x}\left(1+e^{|z|}\right)
$$

showing that the following is a good definition:
Definition 1. Given a bounded subset K of \mathbb{C} define

$$
\Delta(K, n)=\sup \{\delta(z, n): z \in K\}
$$

for each $n \in \mathbb{N}$.
Combining the results of Theorems 2 and 3 yields
Theorem 4. Let K be a bounded subset of \mathbb{C}. Then, asymptotically, to within a term of the order n^{-2}, and uniformly over K,

$$
\Delta(K, n) \gtrsim(2) \frac{1}{2 n} \sup \left\{\left|\Re\left(z^{2}\right)\right| e^{\Re(z)}: z \in K\right\} .
$$

If $K \subset \mathcal{X}$ then, asymptotically, to within a term of order n^{-3}, and uniformly over K,

$$
\Delta(K, n) \gtrsim(3) \frac{1}{2 n^{2}} \sup \left\{|\Re(z)|^{3} e^{\Re(x)}: z \in K\right\} .
$$

4 How far is $\left(1+\frac{a}{n}\right)^{n}$ from e^{a} in a Banach algebra?

Upper bound for $\delta(a, n)$

Theorem 5. Let $(\mathcal{A},\|\cdot\|)$ be a real or complex norm-unital Banach algebra and $a \in \mathcal{A}$ with $a \neq 0$. Then, for every integer $n>\|a\|$,

$$
\begin{aligned}
\delta(a, n)=\left\|e^{a}-\left(1+\frac{a}{n}\right)^{n}\right\| & \leq e^{\|a\|}-\left(1+\frac{\|a\|}{n}\right)^{n} \\
& <e^{\|a\|}\left[1-\exp \left(-\frac{\|a\|^{2}}{2 n}\right)\right] \\
& <\frac{\|a\|^{2}}{2 n} e^{\|a\|} .
\end{aligned}
$$

Proof. Following $[1, \S 8]$, for every $n \in \mathbb{N}$ we define the partial sums and powers

$$
\begin{equation*}
s_{n}=\sum_{k=0}^{n} \frac{a^{k}}{k!}, \quad \sigma_{n}=\sum_{k=0}^{n} \frac{\|a\|^{k}}{k!}, \quad b_{n}=\left(1+\frac{a}{n}\right)^{n}, \quad \beta_{n}=\left(1+\frac{\|a\|}{n}\right)^{n} . \tag{4.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} s_{n}=\exp (a)=\lim _{n \rightarrow \infty} b_{n} \quad \& \quad \lim _{n \rightarrow \infty} \sigma_{n}=\exp (\|a\|)=\lim _{n \rightarrow \infty} \beta_{n} . \tag{4.2}
\end{equation*}
$$

Using the binomial expansions for b_{n} and β_{n}, and introducing the notation

$$
\lambda_{k}(n)=\frac{1}{k!}\left(1-\frac{n!}{n^{k}(n-k)!}\right)
$$

for every integer k such that $0 \leq k \leq n$, we have

$$
\begin{equation*}
s_{n}-b_{n}=\sum_{k=0}^{n} \underbrace{\frac{1}{k!}\left(1-\frac{n!}{n^{k}} \frac{1}{(n-k)!}\right)}_{=\lambda_{k}(n) \geq 0} a^{k}=\sum_{k=0}^{n} \lambda_{k}(n) a^{k} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{n}-\beta_{n}=\sum_{k=0}^{n} \lambda_{k}(n)\|a\|^{k} \tag{4.4}
\end{equation*}
$$

with obviously all $\lambda_{k}(n) \geq 0$, where

$$
\lambda_{0}(n) \equiv \lambda_{1}(n) \equiv 0 \quad(n \geq 1) \quad \text { and } \quad \lambda_{2}(n) \equiv \frac{1}{2 n} \quad(n \geq 2)
$$

Using the triangle inequality we estimate

$$
\left\|e^{a}-b_{n}\right\|=\left\|\left(e^{a}-s_{n}\right)+\left(s_{n}-b_{n}\right)\right\| \leq\left\|e^{a}-s_{n}\right\|+\left\|s_{n}-b_{n}\right\| .
$$

Now, considering (4.1)-(4.2),

$$
\left\|e^{a}-s_{n}\right\|=\left\|\sum_{k=n+1}^{\infty} \frac{a^{k}}{k!}\right\| \leq \sum_{k=n+1}^{\infty} \frac{\|a\|^{k}}{k!}=e^{\|a\|}-\sigma_{n},
$$

and, referring to (4.3) and (4.4),

$$
\left\|s_{n}-b_{n}\right\|=\left\|\sum_{k=0}^{n} \lambda_{k} a^{k}\right\| \leq \sum_{k=0}^{n} \lambda_{k}\|a\|^{k}=\sigma_{n}-\beta_{n}
$$

Consequently

$$
\left\|e^{a}-b_{n}\right\| \leq\left(e^{\|a\|}-\sigma_{n}\right)+\left(\sigma_{n}-\beta_{n}\right)=e^{\|a\|}-\beta_{n} .
$$

Therefore, from (4.1), we obtain the estimate

$$
\left\|e^{a}-\left(1+\frac{a}{n}\right)^{n}\right\| \leq e^{\|a\|}-\left(1+\frac{\|a\|}{n}\right)^{n}
$$

which, see Proposition 1,

$$
<e^{\|a\|}-e^{\|a\|} \exp \left(-\frac{\|a\|^{2}}{2 n}\right)
$$

and this

$$
<\frac{\|a\|^{2}}{2 n} e^{\|a\|}
$$

since $1-e^{-r}<r(r \in \mathbb{R})$.

Asymptotic lower bound for $\delta(a, n)$

We write, as usual, $\sigma(a)$ for the spectrum and $|a|_{\sigma}$ for the spectral radius of an element a of a complex norm-unital Banach algebra.

Theorem 6. Let \mathcal{A} be a norm-unital complex Banach algebra. Then

$$
\begin{aligned}
\delta(a, n)=\left\|e^{a}-\left(1+\frac{a}{n}\right)^{n}\right\| & \geq\left|e^{a}-\left(1+\frac{a}{n}\right)^{n}\right|_{\sigma} \\
& \geq \Delta(\sigma(a), n) \\
& \gtrsim(2) \frac{1}{2 n} \sup \left\{\left|\Re\left(z^{2}\right)\right| e^{\Re(z)}: z \in \sigma(a)\right\}
\end{aligned}
$$

for any $a \in \mathcal{A}$ and positive integer n.
Thus, if a is not quasinilpotent, $\left\|e^{a}-\left(1+\frac{a}{n}\right)^{n}\right\|$ tends to 0 no faster than $O\left(n^{-1}\right)$ unless $\sigma(a)$ is contained in \mathcal{X} in which case the rate of convergence is no faster than $O\left(n^{-2}\right)$.

Proof. Without loss of generality we may assume that \mathcal{A} is commutative. Then

$$
\sigma(a)=\{\phi(a): \phi \in \Phi(\mathcal{A})\}
$$

where $\Phi(\mathcal{A})$ is the set of characters (nontrivial multiplicative functionals) on \mathcal{A}.
Now, for any $\phi \in \Phi(\mathcal{A})$ and any n (recall that the norm dominates the spectral radius),

$$
\begin{aligned}
\left|e^{\phi(a)}-\left(1+\frac{\phi(a)}{n}\right)^{n}\right| & =\left|\phi\left(e^{a}-\left(1+\frac{a}{n}\right)^{n}\right)\right| \\
& \leq\left|e^{a}-\left(1+\frac{a}{n}\right)^{n}\right|_{\sigma} \\
& \leq\left\|e^{a}-\left(1+\frac{a}{n}\right)^{n}\right\|
\end{aligned}
$$

The rest follows from Theorem 4.
Remark 4. The first inequality in Theorem 5 is sharp: we have equality if a is a positive real in \mathbb{C}.
Theorem 6 too is sharp: if $a \neq 0$ but $a^{2}=0$ then $e^{a}=\left(1+\frac{a}{n}\right)^{n}$ for $n \geq 1$.

Hermitian elements of a Banach algebra

We refer to $[1, \S 10]$ for the background on numerical range in Banach algebras. Recall that an element h of a complex norm-unital Banach algebra is hermitian if its algebra numerical range is real: equivalently, if $\left\|e^{i r h}\right\|=1(r \in \mathbb{R})$: equivalently, if $\|1+i r h\| \leq$ $1+o(r)(\mathbb{R} \ni r \rightarrow 0)$. In analogy to Theorem 1, combining Theorems $5 \& 6$:

Theorem 7. Let h be a hermitian element of a complex unital Banach algebra. Then

$$
\frac{\|h\|^{2}}{2 n} e^{-\|h\|} \lesssim{ }_{(2)}\left\|e^{h}-\left(1+\frac{h}{n}\right)^{n}\right\| \leq \frac{\|h\|^{2}}{2 n} e^{\|h\|}
$$

When $\|h\| \in \sigma(h)$, then, more precisely,

$$
\frac{\|h\|^{2}}{2 n} e^{\|h\|} \lesssim(2)\left\|e^{h}-\left(1+\frac{h}{n}\right)^{n}\right\| \leq \frac{\|h\|^{2}}{2 n} e^{\|h\|} .
$$

Proof. For such an h we have $\sigma(h) \subset \mathbb{R}$ and $\|h\|=|h|_{\sigma}$: so then at least one of $\|h\|$ and $-\|h\|$ belongs to $\sigma(h)$. Thus, referring to Theorem 6,

$$
\sup \left\{\left|\Re\left(z^{2}\right)\right| e^{\Re(z)}: z \in \sigma(a)\right\} \geq\|h\|^{2} e^{-\|h\|} \quad \text { if }-\|h\| \in \sigma(h)
$$

and

$$
\sup \left\{\left|\Re\left(z^{2}\right)\right| e^{\Re(z)}: z \in \sigma(a)\right\} \geq\|h\|^{2} e^{\|h\|} \quad \text { if }\|h\| \in \sigma(h) .
$$

Remark 5. Our upper estimate (Theorem 5) for the size of $e^{a}-\left(1+\frac{a}{n}\right)^{n}$ holds for an element of a real or complex norm-unital Banach algebra, while for the lower bound (Theorem 6) we require the algebra to be complex. Qualitatively speaking, this is no essential restriction because: (i) if a Banach algebra \mathcal{A} has a unit 1 whose norm is $\neq 1$ we can construct an equivalent Banach algebra norm on \mathcal{A} for which $\|1\|=1$; and (ii) if \mathcal{A} has no unit we can adjoin a unit and renorm so that this unit has norm 1; and (iii) if \mathcal{A} is a Banach algebra over the real field we can embed it isometrically in a complex Banach algebra (see [1, §§3, $4 \xi 13]$). Note that the expression $e^{a}-\left(1+\frac{a}{n}\right)^{n}$ can be interpreted as the limit of the sequence $\sum_{k=1}^{N}\left\{\frac{a^{k}}{k!}-\binom{n}{k} \frac{a^{k}}{n^{k}}\right\}$ as $N \rightarrow \infty$ in any Banach algebra (even if it is neither unital nor complex).

References

[1] F. F. Bonsall \& J. Duncan, Complete Normed Algebras, Springer (1973).
[2] V. Lampret, Approximating the powers with large exponents and bases close to unit, and the associated sequence of nested limits, Int. J. Contemp. Math. Sci. 6 (2011) 2135-2145.

Vito Lampret, University of Ljubljana, Ljubljana, Slovenia 386 EU
vito.lampret@guest.arnes.si
\&
Philip G Spain, Department of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW
Philip.Spain@glasgow.ac.uk

[^0]: ${ }^{0}$ AMS Mathematics Subject Classification: 40A25, 41A99, 46H99, 65D20.
 Keywords: Exponential function; Banach algebra; approximation; asymptotic approximation; distanceestimate; inequalities; hermitian element.

