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a
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Abstract

We present effective upper and lower bounds for the distance from
(
1 +

a

n

)n
to ea for an

element a of a complex unital Banach algebra and positive integer n. Specifically:

1

2n
sup

{∣∣ℜ(z2)∣∣ eℜ(z) : z ∈ σ(a)
}

.(2)

∥∥∥ea − (1 + a

n

)n∥∥∥ ≤ ∥a∥2

2n
e∥a∥

where σ(a) is the spectrum of a. The symbol .(p) means “less than or equal to, up to a
term of order n−p” as discussed below.

1 Introduction — technical preliminaries

The purpose of this paper is to establish asymptotic estimates for the quantity

δ(a, n) =
∥∥∥ea − (1 + a

n

)n∥∥∥ (1.1)

where a is an element of a Banach algebra A and n is a (large) positive integer. We tackle
this problem in three stages: (i) for R [§2], (ii) for C [§3], and (iii) for general A [§4].

The following notation will be useful in presenting our results.

Notation 1. For a fixed positive integer p and functions a and b defined on N the ex-
pression a(n) &(p) b(n) is shorthand for a(n) ≥ b(n) +O (n−p): that is,

a(n)− b(n) ≥ M

np
(n ≥ N)

where M and N are constants (N positive) independent of n. The symbols .(p) and ≃(p)

are defined analogously. These three relations are all transitive.

We shall later extend the use of this notation to instances where the argument n may run
through the set of half-integers.

Our treatment depends on the estimates of [2, Corollaries 1.1 & 1.2].
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Proposition 1 (Essential Estimates). Consider real numbers x and t. If x > 0 and t > x
then

exp

(
x− x2

2t

)
<
(
1 +

x

t

)t
< exp

(
x− x2

2(t+ x)

)
,

while if x < 0 and t > |x| we have

exp

(
x− x2

2(t+ x)

)
<
(
1 +

x

t

)t
< exp

(
x− x2

2t

)
.

Lemma 1. The lengths of the ‘indeterminacy intervals’ of Proposition 1 satisfy

(x > 0) exp

(
x− x2

2(t+ x)

)
− exp

(
x− x2

2t

)

(x < 0) exp

(
x− x2

2t

)
− exp

(
x− x2

2(t+ x)

)
 <

5

4

|x|3

t2

when t > 2 max{|x| , x2} > 0.

Proof. When x > 0 the interval in question has length

exp

(
− x2

2(t+ x)

)
− exp

(
−x2

2t

)
= exp

(
−x2

2t

){
exp

(
x2

2

[
1

t
− 1

t+ x

])
− 1

}
= exp

(
−x2

2t

){
exp

(
x2

2t

x

t+ x

)
− 1

}
< exp(r)− 1,

where r =
|x|3

2t(t+ x)
. Similarly, when x < 0 the interval has length

exp

(
−x2

2t

)
− exp

(
− x2

2(t+ x)

)
= exp

(
− x2

2(t+ x)

){
exp

(
x2

2

[
1

t+ x
− 1

t

])
− 1

}
= exp

(
− x2

2(t+ x)

){
exp

(
x2

2(t+ x)

−x

t

)
− 1

}
which again, for the same r,

< exp(r)− 1.

Now, under our hypotheses, 2(t+ x) = t+(t+2x) ≥ t and therefore 0 < r <
|x|
t

x2

t
<

1

4
.

Hence er − 1 < r + r2 <
5

4
r <

5

4

|x|3

t2
.
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Corollary 1. For any real x we have(
1 +

x

m

)m
≃(2) exp

(
x− x2

2m

)
.

Specifically: ∣∣∣∣(1 + x

m

)m
− exp

(
x− x2

2m

)∣∣∣∣ <
5

4

|x|3

m2
exp(x) (1.2)

when x ̸= 0 and m > 2 max{|x| , x2} is a (half-)integer.

2 Real case — distance from
(
1 +

x

n

)n
to ex

When x is real we have
(
1 +

x

n

)n
< ex for any positive integer n and therefore (1.1)

simplifies to

δ(x, n) = ex −
(
1 +

x

n

)n
.

Lemma 2. For any real x we have

exp

(
x− x2

2n

)
≃(2) ex − x2

2n
ex.

Proof. It is straightforward to establish that 1 − r +
r2

4
< exp(−r) < 1 − r +

r2

2
for

0 < r < 1. Thus, if given x ̸= 0 and n > x2/2 we define r =
x2

2n
, then 0 < r < 1 and

exp

(
x− x2

2n

)
−
(
ex − x2

2n
ex
)

= exp(x)
[
exp(−r)− 1 + r

]
∈
(
r2

4
,
r2

2

)
exp(x).

That is
x4

16n2
ex < exp

(
x− x2

2n

)
−
(
ex − x2

2n
ex
)

<
x4

8n2
ex (2.1)

for x ̸= 0.

Theorem 1. For any real x we have

δ(x, n) ≃(2)
x2

2n
ex.

Specifically, for x real, ̸= 0, and n ≥ 2 max{|x| , x2} we have∣∣∣∣δ(x, n)− x2

2n
ex
∣∣∣∣ <

|x|3 (|x|+ 10)

8n2
ex. (2.2)
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Proof. Combining Corollary 1 and Lemma 2 gives(
1 +

x

n

)n
≃(2) exp

(
x− x2

2n

)
≃(2) ex − x2

2n
ex

(recall that ≃(2) is transitive) and therefore

δ(x, n) = ex −
(
1 +

x

n

)n
≃(2)

x2

2n
ex.

More precisely, using (1.2) and (2.1), for x ̸= 0,

−5

4

|x|3

n2
ex <

(
1 +

x

n

)n
− exp

(
x− x2

2n

)
<

5

4

|x|3

n2
ex

and
x4

16n2
ex < exp

(
x− x2

2n

)
−
(
ex − x2

2n
ex
)

<
x4

8n2
ex,

so, adding, we get

x4

16n2
ex − 5

4

|x|3

n2
ex <

x2

2n
ex − δ(x, n) <

x4

8n2
ex +

5

4

|x|3

n2
ex =

|x|3 (|x|+ 10)

8n2
ex,

from which (2.2) follows.

Remark 1. This result is more precise than the restriction of Theorem 2 or Theorem 5
to real z.

3 Complex case – distance from
(
1 +

z

n

)n
to ez

Notation 2. For z = x+ iy ∈ C (that is, x = ℜ(z) and y = ℑ(z)) and for n ∈ N define

m =
n

2
(so, from now on, m will be a positive (half-)integer). Write

ξ = x+
|z|2

4m
∈ R & ζ =

∣∣∣1 + z

n

∣∣∣2 (3.1)

so that

ζ = 1 +
x

m
+

|z|2

4m2
= 1 +

ξ

m
. (3.2)

By the triangle inequality

δ(z, n) = |ez − ζm| ≥
∣∣∣|ez| − ∣∣∣1 + z

n

∣∣∣n∣∣∣
= |ex − ζm| . (3.3)

Further, let

ω(m) = x+
y2 − x2

4m
. (3.4)
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Then

ξ − ξ2

2m
= x+

y2 − x2

4m
− x |z|2

4m2
− |z|4

32m3
= ω(m)− η(m), (3.5)

where

η(m) =
x |z|2

4m2
+

|z|4

32m3
=

|z|2

32m3

(
8mx+ |z|2

)
(3.6)

has the same sign as x for large m (when x ̸= 0).

Standing assumption

For the rest of this section z will be a nonzero complex number and m a (half-)integer
such that

m ≥ max{1, 4 |z| , 4 |z|2}. (3.7)

Remark 2. Given z = x + iy ∈ C and a positive half-integer m ≥ max{1, 4 |z| , 4 |z|2}
we have

− |z| ≤ x ≤ ξ ≤ |z|+ |z| |z|
4m

≤ 17

16
|z| .

Thus

ω ≤ x+
1

16
, ξ ≤ x+

1

16
& 2 max{|ξ| , |ξ|2} < m.

We establish the main result of this section, Theorem 2, by demonstrating the chain of
asymptotic equalities

ζm ≃(2) exp

(
ξ − ξ2

2m

)
≃(2) exp(ω(m)) ≃(2) ex

(
1 +

y2 − x2

4m

)
.

Lemma 3.

ζm ≃(2) exp

(
ξ − ξ2

2m

)
.

Proof. Apply (1.2) (with ξ in place of x). Then, bearing in mind Remark 2, and also the

arithmetical fact that 5
4

(
17
16

)3
e

1
16 < 1.6, we have∣∣∣∣ζm − exp

(
ξ − ξ2

2m

)∣∣∣∣ < 5

4

|ξ|3

m2
exp(ξ)

<
5

4

(
17

16

)3 |z|3

m2
exp

(
x+

1

16

)
< 2

|z|3

m2
exp (x) .

Lemma 4.

exp

(
ξ − ξ2

2m

)
≃(2) exp(ω(m)).
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Proof. According to (3.6), we have

|η| ≤ |z|3

4m2
+

|z|4

32m3
=

|z|3

4m2

(
1 +

|z|
8m

)
≤ |z|3

4m2

(
1 +

1

2

)
=

3

8

|z|3

m2
≤ 3

128
< 1, (3.8)

from which |e−η − 1| < 2 |η|. Thus, using (3.5), (3.4), and (3.8), together with Remark 2,∣∣∣∣exp(ξ − ξ2

2m

)
− exp (ω)

∣∣∣∣ (3.5)≤ exp (ω)
∣∣∣ e−η − 1

∣∣∣ (3.4)≤
∣∣∣ e−η − 1

∣∣∣ exp ( 1
16

)
exp (x)

≤ 2 |η| exp
(

1
16

)
exp (x)

(3.8)

≤ 2

(
3

8

|z|3

m2

)
exp

(
1
16

)
exp(x)

≤ |z|3

m2
exp(x).

Lemma 5.

exp(ω(m)) ≃(2) ex
{
1 +

y2 − x2

4m

}
.

Proof. Recall that |er − 1− r| ≤ r2 (−1 < r < 1). With r =
y2 − x2

4m
we have |r| ≤

|z|2

4m
≤ 1

16
, and therefore

∣∣∣∣exp(y2 − x2

4m

)
− 1− y2 − x2

4m

∣∣∣∣ ≤ |z|4

16m2
,

from which ∣∣∣∣exp(x+
y2 − x2

4m

)
− ex

(
1 +

y2 − x2

4m

)∣∣∣∣ ≤ |z|4

16m2
ex.

Theorem 2. Given z = x+ iy ∈ C we have

δ(z, n) =
∣∣∣ez − (1 + z

n

)n∣∣∣ &(2)
|ℜ(z2)|
2n

eℜ(z).

Specifically:

δ(z, n) ≥ |ℜ(z2)|
2n

eℜ(z) − 12 |z|3

n2

(
1 +

|z|
48

)
eℜ(z)

for n ≥ 2 max{1, 4 |z| , 4 |z|2} .
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Proof. Since m > 2 max{|ξ| , |ξ|2}, see Remark 2, we can apply Lemmas 3, 4 and 5 to
get ∣∣∣∣ζm − ex − y2 − x2

4m
ex
∣∣∣∣ ≤

∣∣∣∣ζm − exp

(
ξ − ξ2

2m

)∣∣∣∣
+

∣∣∣∣exp(ξ − ξ2

2m

)
− exp (ω)

∣∣∣∣
+

∣∣∣∣ex [exp(y2 − x2

4m

)
− 1− y2 − x2

4m

]∣∣∣∣
≤ 2

|z|3

m2
exp(x) +

|z|3

m2
exp(x) +

|z|4

16m2
exp(x)

=
M

m2

where M = 3 |z|3
(
1 +

|z|
48

)
ex depends only on z. Now

∣∣∣∣|ζm − ex| − |y2 − x2|
4m

ex
∣∣∣∣ ≤

∣∣∣∣ζm − ex − y2 − x2

4m
ex
∣∣∣∣ ≤ M

m2

and therefore

δ(z, n)
(3.3)

≥ |ζm − ex| ≥ |y2 − x2|
4m

ex − M

m2
.

Remark 3. The upper bound

δ(z, n) =
∣∣∣ez − (1 + z

n

)n∣∣∣ ≤ |z|2

2n
e|z|,

valid for z ∈ C and n > |z|, is the scalar variant of Theorem 5 below. Note the presence
of the term e|z| in contrast to the ex of Theorem 1.

When z lies on an (anti)diagonal

Theorem 2 tells us little when ℜ(z2) = 0, that is, when z lies on X , the union of the
diagonal and antidiagonal in C:

X = {z ∈ C : x2 = y2} = {z ∈ C : ℜ(z2) = 0}.

We can, however, then derive a higher order estimate for the lower bound.

Theorem 3. Let z = x+ iy (̸= 0) ∈ C with x2 = y2. Then

δ(z, n) &(3)
|ℜ(z)|3

2n2
eℜ(z).

Specifically, ∣∣∣ez − (1 + z

n

)n∣∣∣ >
|x|3

2n2
ex − |x|x3(1 + x)

n3
ex (n > 4 |x|).
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Proof. Write l =
x

m
. Then, by (3.7) and (3.2), we have

| l| < 1 & ζ = 1 +
ξ

m
= 1 + l +

l2

2
. (3.9)

Let I be the interval with end-points el and ζ. Then

δ(z, n) ≥
∣∣(el)m − ζm

∣∣
≥

∣∣el − ζ
∣∣ min

r∈I

(
d

dr
(rm)

)
= m

∣∣el − ζ
∣∣ min

{
exp

(
m− 1

m
x

)
, ζm−1

}
.

Now ∣∣el − ζ
∣∣ (3.9)

=

∣∣∣∣ l33! + l4

4!
+

l5

5!
+ . . .

∣∣∣∣ = ∣∣∣∣ l33!
(
1 +

l

4

)
+

l5

5!

(
1 +

l

6

)
+ . . .

∣∣∣∣
(3.9)
=

| l|3

3!

(
1 +

l

4

)
+

| l|5

5!

(
1 +

l

6

)
+ . . . ≥ 3

4

| l|3

3!
=

| l|3

8
=

| x|3

8m3
.

Further, recalling the definitions (3.1) and (3.2), we see that ξ > x. Moreover, 0 <

1 +
x

m
< 1 +

ξ

m
= ζ for m > |x|. Thus, by Proposition 1,

ζm−1 >
(
1 +

x

m

)m−1
m

> exp

(
m− 1

m

(
x− x2

2m

))
> exp

(
x− x

m
− x2

2m

)
if m > x > 0,

while

ζm−1 > exp

(
m− 1

m

(
x− x2

2(m+ x)

))
> exp

(
x− x

m
− x2

m

)
if m > −2x > 0.

Hence

min

{
exp

(
m− 1

m
x

)
, ζm−1

}
> exp

(
x− x

m
− x2

m

)
and therefore

δ(z, n) >
|x|3

8m2
exp

(
x− x

m
− x2

m

)
(m > 2 |x|)

≥ |x|3

8m2
ex
(
1− x(1 + x)

m

)
.
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Supremum of {δ(z, n) : z ∈ K}

Note that

δ(z, n) ≤ |ez|+
(
1 +

ξ

m

)m

≤ ex + eξ = ex
(
1 + e

|z|2
4m

)
≤ ex

(
1 + e|z|

)
,

showing that the following is a good definition:

Definition 1. Given a bounded subset K of C define

∆(K,n) = sup{δ(z, n) : z ∈ K}

for each n ∈ N.

Combining the results of Theorems 2 and 3 yields

Theorem 4. Let K be a bounded subset of C. Then, asymptotically, to within a term of
the order n−2, and uniformly over K,

∆(K,n) &(2)
1

2n
sup

{∣∣ℜ(z2)∣∣ eℜ(z) : z ∈ K
}
.

If K ⊂ X then, asymptotically, to within a term of order n−3, and uniformly over K,

∆(K,n) &(3)
1

2n2
sup

{
|ℜ(z)|3 eℜ(x) : z ∈ K

}
.

4 How far is
(
1 +

a

n

)n
from ea in a Banach algebra?

Upper bound for δ(a, n)

Theorem 5. Let (A, ∥ · ∥) be a real or complex norm-unital Banach algebra and a ∈ A
with a ̸= 0. Then, for every integer n > ∥a∥,

δ(a, n) =
∥∥∥ea − (1 + a

n

)n∥∥∥ ≤ e∥a∥ −
(
1 +

∥a∥
n

)n

< e∥a∥

[
1− exp

(
−∥a∥2

2n

)]

<
∥a∥2

2n
e∥a∥.

Proof. Following [1, §8], for every n ∈ N we define the partial sums and powers

sn =
n∑

k=0

ak

k!
, σn =

n∑
k=0

∥a∥k

k!
, bn =

(
1 +

a

n

)n
, βn =

(
1 +

∥a∥
n

)n

. (4.1)

Then
lim
n→∞

sn = exp(a) = lim
n→∞

bn & lim
n→∞

σn = exp(∥a∥) = lim
n→∞

βn. (4.2)
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Using the binomial expansions for bn and βn, and introducing the notation

λk(n) =
1

k !

(
1− n!

nk(n− k)!

)
for every integer k such that 0 ≤ k ≤ n, we have

sn − bn =
n∑

k=0

1

k!

(
1− n!

nk

1

(n− k)!

)
︸ ︷︷ ︸

=λk(n)≥ 0

ak =
n∑

k=0

λk(n) a
k (4.3)

and

σn − βn =
n∑

k=0

λk(n)∥a∥k (4.4)

with obviously all λk(n) ≥ 0, where

λ0(n) ≡ λ1(n) ≡ 0 (n ≥ 1) and λ2(n) ≡
1

2n
(n ≥ 2) .

Using the triangle inequality we estimate

∥ea − bn∥ = ∥(ea − sn) + (sn − bn)∥ ≤ ∥ea − sn∥+ ∥sn − bn∥ .

Now, considering (4.1)–(4.2),

∥ea − sn∥ =

∥∥∥∥∥
∞∑

k=n+1

ak

k!

∥∥∥∥∥ ≤
∞∑

k=n+1

∥a∥k

k!
= e∥a∥ − σn,

and, referring to (4.3) and (4.4),

∥sn − bn∥ =

∥∥∥∥∥
n∑

k=0

λk a
k

∥∥∥∥∥ ≤
n∑

k=0

λk ∥a∥k = σn − βn .

Consequently
∥ea − bn∥ ≤

(
e∥a∥ − σn

)
+ (σn − βn) = e∥a∥ − βn .

Therefore, from (4.1), we obtain the estimate∥∥∥ea − (1 + a

n

)n∥∥∥ ≤ e∥a∥ −
(
1 +

∥a∥
n

)n

which, see Proposition 1,

< e∥a∥ − e∥a∥ exp

(
−∥a∥2

2n

)
and this

<
∥a∥2

2n
e∥a∥

since 1− e−r < r (r ∈ R).
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Asymptotic lower bound for δ(a, n)

We write, as usual, σ(a) for the spectrum and |a|σ for the spectral radius of an element a
of a complex norm-unital Banach algebra.

Theorem 6. Let A be a norm-unital complex Banach algebra. Then

δ(a, n) =
∥∥∥ea − (1 + a

n

)n∥∥∥ ≥
∣∣∣ea − (1 + a

n

)n∣∣∣
σ

≥ ∆(σ(a), n)

&(2)
1

2n
sup

{∣∣ℜ(z2)∣∣ eℜ(z) : z ∈ σ(a)
}

for any a ∈ A and positive integer n.

Thus, if a is not quasinilpotent,
∥∥ea − (1 + a

n

)n∥∥ tends to 0 no faster than O(n−1) unless
σ(a) is contained in X in which case the rate of convergence is no faster than O(n−2).

Proof. Without loss of generality we may assume that A is commutative. Then

σ(a) = {ϕ(a) : ϕ ∈ Φ(A)}

where Φ(A) is the set of characters (nontrivial multiplicative functionals) on A.

Now, for any ϕ ∈ Φ(A) and any n (recall that the norm dominates the spectral radius),∣∣∣∣eϕ(a) − (1 + ϕ(a)

n

)n∣∣∣∣ =
∣∣∣ϕ(ea − (1 + a

n

)n)∣∣∣
≤

∣∣∣ea − (1 + a

n

)n∣∣∣
σ

≤
∥∥∥ea − (1 + a

n

)n∥∥∥ .
The rest follows from Theorem 4.

Remark 4. The first inequality in Theorem 5 is sharp: we have equality if a is a positive
real in C.
Theorem 6 too is sharp: if a ̸= 0 but a2 = 0 then ea =

(
1 + a

n

)n
for n ≥ 1.

Hermitian elements of a Banach algebra

We refer to [1, §10] for the background on numerical range in Banach algebras. Recall
that an element h of a complex norm-unital Banach algebra is hermitian if its algebra
numerical range is real: equivalently, if

∥∥eirh∥∥ = 1 (r ∈ R): equivalently, if ∥1 + irh∥ ≤
1 + o(r) (R ∋ r → 0). In analogy to Theorem 1, combining Theorems 5 & 6:

Theorem 7. Let h be a hermitian element of a complex unital Banach algebra. Then

∥h∥2

2n
e−∥h∥ .(2)

∥∥∥∥eh − (1 + h

n

)n∥∥∥∥ ≤ ∥h∥2

2n
e∥h∥.
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When ∥h∥ ∈ σ(h), then, more precisely,

∥h∥2

2n
e∥h∥ .(2)

∥∥∥∥eh − (1 + h

n

)n∥∥∥∥ ≤ ∥h∥2

2n
e∥h∥.

Proof. For such an h we have σ(h) ⊂ R and ∥h∥ = |h|σ: so then at least one of ∥h∥ and
−∥h∥ belongs to σ(h). Thus, referring to Theorem 6,

sup
{∣∣ℜ(z2)∣∣ eℜ(z) : z ∈ σ(a)

}
≥ ∥h∥2 e−∥h∥ if − ∥h∥ ∈ σ(h)

and

sup
{∣∣ℜ(z2)∣∣ eℜ(z) : z ∈ σ(a)

}
≥ ∥h∥2 e∥h∥ if ∥h∥ ∈ σ(h).

Remark 5. Our upper estimate (Theorem 5) for the size of ea −
(
1 +

a

n

)n
holds for

an element of a real or complex norm-unital Banach algebra, while for the lower bound
(Theorem 6) we require the algebra to be complex. Qualitatively speaking, this is no
essential restriction because: (i) if a Banach algebra A has a unit 1 whose norm is ̸= 1
we can construct an equivalent Banach algebra norm on A for which ∥1∥ = 1; and (ii) if
A has no unit we can adjoin a unit and renorm so that this unit has norm 1; and (iii)
if A is a Banach algebra over the real field we can embed it isometrically in a complex

Banach algebra (see [1, §§3, 4 & 13]). Note that the expression ea −
(
1 +

a

n

)n
can be

interpreted as the limit of the sequence
N∑
k=1

{
ak

k!
−
(
n

k

)
ak

nk

}
as N → ∞ in any Banach

algebra (even if it is neither unital nor complex).
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