. a\ ™
How faris (1+—) from e*?
n

Vito Lampret € Philip G Spain

Abstract

a n
We present effective upper and lower bounds for the distance from (1 + —> to e for an

n
element a of a complex unital Banach algebra and positive integer n. Specifically:

e’ — (1—1—9)”
n

where o(a) is the spectrum of a. The symbol <, means “less than or equal to, up to a
term of order n™P” as discussed below.

% sup {|R(=")] " 2 € o(a)} S

2
< M ellall
- 2n

1 Introduction — technical preliminaries

The purpose of this paper is to establish asymptotic estimates for the quantity

e’ — (1 + ﬂ)
n

where a is an element of a Banach algebra A and n is a (large) positive integer. We tackle
this problem in three stages: (i) for R [§2], (ii) for C [§3], and (iii) for general A [§4].

d(a,n) = (1.1)

The following notation will be useful in presenting our results.

Notation 1. For a fized positive integer p and functions a and b defined on N the ex-
pression a(n) 2 b(n) is shorthand for a(n) > b(n) + O (n™P): that is,

aln) ~b(n) > (n>N)

where M and N are constants (N positive) independent of n. The symbols Sy and >~
are defined analogously. These three relations are all transitive.

We shall later extend the use of this notation to instances where the argument n may run
through the set of half-integers.

Our treatment depends on the estimates of [2, Corollaries 1.1 & 1.2].
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Proposition 1 (Essential Estimates). Consider real numbers x andt. If v >0 andt > x

then
z? 1 T\t x?
exp(x—%> < ( —i-?) < exp(:(;—2<t+x)),

while if v < 0 and t > |z| we have

x? 1 T\? x?
exp(x—z(t_’_x)) < ( —1—?) < exp(x—§>

Lemma 1. The lengths of the ‘indeterminacy intervals’ of Proposition 1 satisfy

( ) ( 22 ) 22
x>0 exp | x — —exp(m——)

72 72 4 t?
(x <0) explz— | —exp|z—
2t 2(t + z)

when t > 2 max{|z|,z*} > 0.

Proof. When x > 0 the interval in question has length

e z* e 2

xp | — —exp | ——

P t-l—x P 2t
T

=6Xp(§){ (3 [r-2)) )
B

3
||

where r = 7 Similarly, when x < 0 the interval has length

2(t + )
() ool x)
o el [ 1)
P

which again, for the same r,

< exp(r) — L.

2
Now, under our hypotheses, 2(t 4+ ) =t + (t +2z) > ¢ and therefore 0 < r < |f—|x7 <

5 5|z
H 1 < 2 < Ip < S
ence e T+ 47" 12

I Nk.l»—
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Corollary 1. For any real x we have
— ~oy) explr——].
m @) P 2m

2

'<1+%>m—exp (x—;—m)‘ < Zx—f exp(x) (1.2)

m

Specifically:

when x # 0 and m > 2 max{|z|,z*} is a (half-)integer.

n
2 Real case — distance from <1 + f) to e’
n

€T n

When z is real we have (1 + —> < e” for any positive integer n and therefore (1.1)
n

simplifies to

d(z,n) = €* — (1—1—%)”.

Lemma 2. For any real x we have

x? x?
e r——| =~ et — — €”.
P < Qn) @ 2n

2 2
Proof. 1t is straightforward to establish that 1 — r + TZ <exp(—r) <1—r+ % for

2
0 <r < 1. Thus, if given z # 0 and n > 2?/2 we define r = ;C_’ then 0 <7 <1 and
n

exp (x— %) - (éﬂ - %e) - exp(m)[exp(—r) 1 +r} e (;;) exp().

That is
4

T z? . T - zt (2.1)
e ex xr— — — e — — € — € .
1612 p on o 8n?

for x # 0. m

Theorem 1. For any real x we have

2
2
5(1’,”) 2(2) %6.

Specifically, for x real, # 0, and n > 2 max{|z|,2*} we have

2

3
o) - 2 < 10

o2 e. (2.2)

vl € pgs 3 May 29, 2017



Proof. Combining Corollary 1 and Lemma 2 gives

(1 N :v)n - .
=) ~pg explz——] ~pg " ——e¢
n @ ©xP 2n @ 2n
(recall that ~(,) is transitive) and therefore
d(z,n) = €*— (1 + f) ™~ (9 T e
n

More precisely, using (1.2) and (2.1), for  # 0,

512l . T\ v 512l .
———e" < <1+—) —explr——) < ——¢€
n

4 n?

e explz—— | —|e"——e¢ — e
16n2 P 2n 2n 8n?2 '

so, adding, we get

and

o Sl sl el (el 10)
e ——-T—e ] ) — e = —————e¢
16n2 4 n? 2n ’ 8n? 4 n? 8n? ’
from which (2.2) follows. O

Remark 1. This result is more precise than the restriction of Theorem 2 or Theorem &
to real z.

z n
3 Complex case — distance from (1 + —) to e°
n

Notation 2. For z =z + iy € C (that is, x = R(z) and y = J(z)) and for n € N define
m = g (so, from now on, m will be a positive (half-)integer). Write

2
|| 2

f—r+i€R & (=|1+2 (3.1)
4m n
so that
SRR PP (3.2)
m  4m? m’ '
By the triangle inequality
z n
8(zm) =le"=¢m| = |l = 1+ 2[]
= le* =M. (3.3)
Further, let
2 _ .2
y'—x
= 3.4
wim) =+ — (3.4)
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Then

- & P 1 AN S (3.5)
-=— =z — - = w(m) —n(m :
om im Am?  32m3 s
where
(m) x|z|2 |Z|4 = |Z‘2 <8m:c+|zf2) (3.6)
g Am? T 32md T 32m3 '

has the same sign as x for large m (when x # 0).

Standing assumption

For the rest of this section z will be a nonzero complex number and m a (half-)integer
such that
m > max{1, 4|z|, 4|z|*}. (3.7)

Remark 2. Given z = x + iy € C and a positive half-integer m > max{1, 4|z|, 4 |z]2}
we have
el < <€ e+l < Ty
- T~ 4m — 16
Thus

1 1
w < at—, € <z+— & 2max{|¢], ¢} <m.
16 16
We establish the main result of this section, Theorem 2, by demonstrating the chain of
asymptotic equalities

2 2 .2
(" >~ exp <€—2§—m> ~@ exp(w(m)) ~q € <1+y a )

4m

Lemma 3.
62
(™ ~@) exp (f — _Zm) .

Proof. Apply (1.2) (with £ in place of x). Then, bearing in mind Remark 2, and also the

arithmetical fact that % (}—2)3 ets < 1.6, we have

m SR
oo (€= 5| < FEG e
5 (17\° |2° 1 Elk
<1 <1_6) 3 OXP (m + 1_6) < 2_m2 exp (). O

Lemma 4.

exp (§ - %) >~ exp(w(m)).
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Proof. According to (3.6), we have

| < M R i <1+|—Z|>

dm?2  32m3  4m?2 m

< 2" 1+1 —3|Z|3< 3 <1
— 4m? 2/  8m2 — 128 '

(3.8)

from which |e™" — 1| < 2|n|. Thus, using (3.5), (3.4), and (3.8), together with Remark 2,

(6= £) oo

312

< exp (w) ‘ e T— 1‘ < |e— 1) exp (15) exp (2)

< 2nexp (55) exp (x) < 2 (8 mQ) exp (15) exp(x)

Lemma 5.

2 2
Yy —x
~ ] .
exp(w(m)) ~p) e { + y }

Proof. Recall that [e" —1—7r| < r? (=1 <r < 1). With r = Y
2 _ d theref
— < —, an erefore
dm — 16’
2 _ g2 y2 — p2? |z|4
ex —
P 4 4m 16m?2’
from which

Z\" |%(=?)
5 ’ _ z (1 _) > R(z)
(z,n) = e to) ] Re
Specifically:
RG] gy 1202 KRS

5(2,”)276()—7 1+E 6()
forn >2max{1,4|z|, 4|2} .
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Proof. Since m > 2 max{|¢|, |¢|*}, see Remark 2, we can apply Lemmas 3, 4 and 5 to

get
2 _ .2
4m
£2
+ |exp ( — 2—)
i X y? — 2
e’ |ex —1-
P dm
< 2\Z|3 ()+|z!3 ()+\Z|4 (2)
—exp(x) + — exp(x exp(x
- m2 P m2 P 16m2 P
M
T om?
where M = 3|z|* (1 + %) e” depends only on z. Now
v — ) g | _ M
m x | <« m T x el
< e’ dm < | ¢ 4m “1= m2
and therefore o) 1 2
3.3 _ M
y: —
(m) 2 e 2 T
Remark 3. The upper bound
5(z.m) (1+2)] < Lo
zZ,n) = - - —
’ n - 2n

valid for z € C and n > |z|, is the scalar variant of Theorem 5 below. Note
of the term e?l in contrast to the e* of Theorem 1.
When z lies on an (anti)diagonal

Theorem 2 tells us little when $(2%) = 0, that is, when z lies on X, the
diagonal and antidiagonal in C:

X={2eC:2°=y*} ={2€C:R(*) =0}.
We can, however, then derive a higher order estimate for the lower bound.

Theorem 3. Let z = z + iy (# 0) € C with 2* = y2. Then

the presence

union of the

May 29, 2017

R(z
Specifically,
[o” . lx]2®(1+a)
F— 1 ) — =" 4x|).
R (R I T )
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Proof. Write | = h Then, by (3.7) and (3.2), we have
m

§ r

<1 & (=1+>=1+1+—.
m

2

Let I be the interval with end-points ¢! and . Then

d(z,n) = |(e')™ = ¢
d
> J =l i (5 0)
-1
= m‘el—d min{exp <m x), Cm_l}.
m
Now
l o) | 1P e AL
el —¢| = stata o Tl e

o LB

3! 4 5! 6 — 4 3

(3.9)

Further, recalling the definitions (3.1) and (3.2), we see that & > x. Moreover, 0 <

§

1+ T + = = ( for m > |z|. Thus, by Proposition 1,
m m

Cm_l > (1 + £> m

> exp

2m
while
s m—1 7
exp|——— [+ — ——
P\™m 2(m + x)
2
> exp x—ﬁ—x—) if m>-—2z>0.
m m
Hence

=)
=
—N
@
]
o
TN
3
SRl
—_
8
~_
e
3
L
—
V
@
¥4
o
TN
8
|
| =
|

and therefore

r oz
5(z,n)>wexp(as—m—%) (m > 2|x|
j* z(l+ )
> -
8m? m
vl € pgs 8
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Supremum of {0(z,n): z € K}
Note that

m Z2
d(z,n) < |ez|+(1+£> < e‘”—l—ef:e“’”<1+e%> §e$<1+e‘zl>,
m

showing that the following is a good definition:

Definition 1. Given a bounded subset K of C define
A(K,n) =sup{d(z,n): z € K}

for each n € N.

Combining the results of Theorems 2 and 3 yields

Theorem 4. Let K be a bounded subset of C. Then, asymptotically, to within a term of
the order n=2, and uniformly over K,

1 2 R(z
A(K,n) 29 %sup{m(z )| e @ ze K},
If K C X then, asymptotically, to within a term of order n=3, and uniformly over K,

1 .
A(K,n) Z@3) 32 SUP {IR()]? ™ . 2 € K} .

n
4 How far is (1 + ﬁ) from ¢” in a Banach algebra?
n

Upper bound for d(a,n)

Theorem 5. Let (A, || -||) be a real or complex norm-unital Banach algebra and a € A
with a # 0. Then, for every integer n > ||al|,
5<a7n) = ||le® — (1 + E) < ellall _ (]_ + M)
n n

2
< el el

Proof. Following [1, §8], for every n € N we define the partial sums and powers

Zn a* Zn lall* a\” lal\"
k=0 k=0

Then

lim s, = exp(a) = limb, & limo, = exp(|la]]) = lim G,. (4.2)
n—00 n—o00 n—00 n—o0
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Using the binomial expansions for b, and (,,, and introducing the notation

) = (1~ #!_@!)

for every integer k such that 0 < k < n, we have

n

1 n! 1 e .
S"_b"_ZH(l_EM)G —g)\k(n)a (4.3)

k=0 — k=0
=Ak(n)>0
and .
k=0

with obviously all Ax(n) > 0, where
1
M) =Mn)=0 (n>1) and Ag(n) = o (n>2).
n
Using the triangle inequality we estimate

Hea - bn” = ”(ea — 8p) + (80 — bn)” < Hea - SnH + Hsn — bnl .

Now, considering (4.1)—(4.2),

0 k © k
a all
le® —sall = > [ < Y S =e—0
| |
k=n+1 k! k=n+1 k!

and, referring to (4.3) and (4.4),

[0 — bnll =

n
E )\k (lk
k=0

n
< Mellall* =00 = B
k=0

Consequently
le® = ball < (eI = 0,) + (00 — Bn) = €I — 3,

Therefore, from (4.1), we obtain the estimate

e = (1+2)] < el - L Nall
n B n

which, see Proposition 1,

and this

since 1 —e " <r (r €R). O
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Asymptotic lower bound for §(a,n)

We write, as usual, o(a) for the spectrum and |al|, for the spectral radius of an element a
of a complex norm-unital Banach algebra.

Theorem 6. Let A be a norm-unital complexr Banach algebra. Then

san) = |lee=(1+2)" ] = |- (1+2)
> A(o(a),n)
22 % sup {‘?R(zz)‘ ) L, e a(a)}

for any a € A and positive integer n.

Thus, if a is not quasinilpotent, ||e* — (1 + %)nH tends to 0 no faster than O(n™') unless
o(a) is contained in X in which case the rate of convergence is no faster than O(n™?).

Proof. Without loss of generality we may assume that A is commutative. Then

o(a) = {¢(a) : o € ©(A)}

where ®(A) is the set of characters (nontrivial multiplicative functionals) on A.

Now, for any ¢ € ®(A) and any n (recall that the norm dominates the spectral radius),

€¢(a) _ (1 4 M) = |0 (ea . <1 + 2>n>
n n

< |e* — <1 + g>n
n o
a n

< let — =

- € (1 * n)

The rest follows from Theorem 4. O

Remark 4. The first inequality in Theorem & is sharp: we have equality if a is a positive
real in C.

Theorem 6 too is sharp: if a # 0 but a> = 0 then e* = (1 + %)n forn >1.
Hermitian elements of a Banach algebra

We refer to [1, §10] for the background on numerical range in Banach algebras. Recall
that an element h of a complex norm-unital Banach algebra is hermitian if its algebra
numerical range is real: equivalently, if ||e””|| =1 (r € R): equivalently, if |1 + irh| <
1+o0(r) (R>r—0). In analogy to Theorem 1, combining Theorems 5 & 6:

Theorem 7. Let h be a hermitian element of a complex unital Banach algebra. Then

h n
eh—<l+—)
n
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When ||h|| € o(h), then, more precisely,

h n
eh—<1+—>
n

Proof. For such an h we have o(h) C R and ||h|| = |h|,: so then at least one of ||h|| and
— ||| belongs to o(h). Thus, referring to Theorem 6,

[

2
< M ellhll
2n -

h
M < "y

sup {|R(z?)| R e o(a)} > |h))* eIk if —||h] €o(h)
and
sup {|R(z?)| M) € o(a)} > A el if |||l € a(h). O

Remark 5. Our upper estimate (Theorem 5) for the size of e — (1 + g>n holds for
n

an element of a real or complex norm-unital Banach algebra, while for the lower bound
(Theorem 6) we require the algebra to be complex. Qualitatively speaking, this is no
essential restriction because: (i) if a Banach algebra A has a unit 1 whose norm is # 1
we can construct an equivalent Banach algebra norm on A for which ||1|| = 1; and (ii) if
A has no unit we can adjoin a unit and renorm so that this unit has norm 1; and (iii)
if A is a Banach algebra over the real field we can embed it isometrically in a complex

Banach algebra (see [1, §83, 4 € 13]). Note that the expression e* — (1 + g>n can be
n

N k k
a n\ a

interpreted as the limit of the sequence E {E — (k)_k} as N — oo in any Banach
! n

k=1

algebra (even if it is neither unital nor complex).

References

[1] F. F. Bonsall & J. Duncan, Complete Normed Algebras, Springer (1973).

[2] V. Lampret, Approzimating the powers with large exponents and bases close to unit,
and the associated sequence of nested limits, Int. J. Contemp. Math. Sci. 6 (2011)
2135-2145.

Vito Lampret, University of Ljubljana, Ljubljana, Slovenia 386 EU

vito.lampret@quest.arnes.si
&

Philip G Spain, Department of Mathematics and Statistics, University of Glasgow, Glas-
gow G12 8QW

Philip.Spain@glasgow. ac.uk

vl € pgs 12 May 29, 2017



