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Global forage-fish landings are increasing, with potentially grave conse-

quences for marine ecosystems. Predators of forage fish may be influenced

by this harvest, but the nature of these effects is contentious. Experimental

fishery manipulations offer the best solution to quantify population-level

impacts, but are rare. We used Bayesian inference to examine changes in

chick survival, body condition and population growth rate of endangered

African penguins Spheniscus demersus in response to 8 years of alternating

time–area closures around two pairs of colonies. Our results demonstrate

that fishing closures improved chick survival and condition, after controll-

ing for changing prey availability. However, this effect was inconsistent

across sites and years, highlighting the difficultly of assessing management

interventions in marine ecosystems. Nevertheless, modelled increases in

population growth rates exceeded 1% at one colony; i.e. the threshold con-

sidered biologically meaningful by fisheries management in South Africa.

Fishing closures evidently can improve the population trend of a forage-

fish-dependent predator—we therefore recommend they continue in South

Africa and support their application elsewhere. However, detecting demo-

graphic gains for mobile marine predators from small no-take zones

requires experimental time frames and scales that will often exceed those

desired by decision makers.
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Figure 1. (a) The Western Cape of South Africa, showing Dassen Island and Robben Island in relation to Cape Town and (b) the Eastern Cape, showing St Croix
Island and Bird Island in relation to Port Elizabeth. The 20 km radius around each island that was periodically closed to purse-seine fishing is shown as a black circle
(see closure schedule in table 1). (Online version in colour.)
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1. Introduction
Quantifying the ecological consequences of fishing is one of

the greatest challenges in marine conservation because of

the pervasive threat fisheries pose to biodiversity [1]. About

one-third of all landings are forage fish (small, schooling

pelagic fish) [2], yet they are amongst the least well under-

stood stocks. The short lifespan and planktivorous diet of

forage fish causes their biomass to fluctuate more than

other commercially exploited species [3]. This has also led

to the orthodoxy that, relative to environmental variability,

fishing mortality is generally insufficient to have meaningful

impacts on dependent predators [4,5]. By contrast, some

studies reveal that these fisheries are capable of lowering

prey abundance or density to levels that affect the foraging

and breeding behaviour of predators [6–10]. However, evi-

dence for population-level impacts is rare [9], and inference

is clouded by complex interactions between predators, their

prey and fisheries [8,11,12].

There is a pressing need to determine definitively

whether competition with forage fisheries contributes to the

ongoing declines of threatened marine predators and—if

so—whether or not marine protected areas (MPAs), or no-

take zones (time–area closures), offer a useful mitigation

option [12–15]. Management experiments using time–area

closures to separate the potential effects of environmental

variability and direct fishing impacts thus have global

policy relevance [6,12–14]. However, they are rarely under-

taken on the necessary scale and key challenges remain in

assessing their impacts [9,12]. Here, we use a before–after,

control–impact (BACI) experiment and Bayesian inference to

address three of these challenges. Firstly, there is a need to

understand the uncertainty associated with measuring preda-

tors’ responses to fishery closures in light of species-specific

responses to prey availability [12]. Bayesian approaches use

probabilities to represent uncertainty, which is generally

more intuitive than frequentist statistics [16] and more illumi-

nating where complex ecological interactions occur [11].
Secondly, with threatened species, data deficiency can

hamper the determination of objectively derived, biologically

meaningful demographic responses [11]. Thirdly, such pro-

blems make it difficult to provide robust assessments in the

short time frames desirable for management [12].

In Southern Africa, there is potential for competition

between the sardine Sardinops sagax and anchovy Engraulis
encrasicolus purse-seine fisheries and rapidly declining popu-

lations of endemic seabirds [17]. This led the South African

government to initiate alternating, experimental fishing

closures around two pairs of African penguin Spheniscus
demersus breeding colonies in 2008 [8,9] (table 1). Reductions

in penguin foraging effort and improvements in chick survi-

val were noted in initial assessments of these closures [8,9].

However, these were restricted to 2 years of closure [9]

and a single colony [8], and the magnitude and nature of

these effects made it difficult to ascertain whether these

small-scale, short-term fishing closures would generate

meaningful long-term demographic benefits [9,18]. Given

the importance of the underlying environmental conditions

in driving penguin demography [4,18], it is unsurpris-

ing therefore that the conservation value of these closures

relative to the socio-economic costs of restricting fishing—

and so whether they should remain in place—is hotly

debated [19–21].

Here, we use data from two pairs of proximate island

colonies spanning 8 years (2008–2015) before and after,

with and without purse-seine fishing closures in place (a

BACI design; figure 1 and table 1). We focus on two metrics

of penguin breeding performance that vary with local prey

availability; chick body condition and chick survival to fled-

ging [22,23]. We also consider whether changes in these

metrics can be objectively linked to population change

[9,24]. This is both a requirement for their continued use as

bio-indicators in fisheries management in South Africa [25],

and a consideration for global best practice when assessing

fisheries–seabird competition [12]. Our aims were to (i) deter-

mine whether we could detect changes in the penguin

http://rspb.royalsocietypublishing.org/


Table 1. Schedule of purse-seine fishing closures around the four study sites. C ¼ 20 km radius around the island was closed to purse-seine fishing, O ¼
fishing was permitted within the 20 km radius.

Island 2008 2009 2010 2011 2012 2013 2104 2015

Dassen Island C C O O O O C C

Robben Island O O O C C C O O

St Croix Island O C C C O O O C

Bird Island O O O O C C C O
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responses in the absence of fishing (closures) and, if so quan-

tify the effect size and its associated uncertainty; (ii) assess

whether effects sufficient to increase population growth

rates (l) by more than 1% were evident. This is the threshold

considered indicative of demographic impact in a South Afri-

can management context [26]; and (iii) consider whether

additional years of simulated experimental closures (using

data resampling and Bayes rule) would provide greater

clarity for management decisions by substantially reducing

the uncertainty associated with any effects. The results are

discussed in the context of requirements for future exper-

imental fishery closures and options for adaptive

management in South Africa and globally.
2. Methods
(a) Study sites and period
We used data from two sets of paired islands: Robben Island

(338480 S, 188220 E) and Dassen Island (338250 S, 188060 E) in

South Africa’s Western Cape province and St Croix Island

(338470 S 258460 E) and Bird Island (338500 S, 268170 E) in the

Eastern Cape province (figure 1). Between 2008 and 2015, a

purse-seine fishing closure was alternated between each island

in the pair (table 1). The closures comprised a 20 km radius

around each penguin colony (figure 1), designed to encompass

the foraging range of chick-rearing penguins [8,22]. During the

study period, the penguin populations in the Western Cape

declined from approximately 5700 breeding pairs in 2008 to

approximately 2100 in 2015 at Dassen Island, and from approxi-

mately 4200 to approximately 1200 pairs at Robben Island ([17];

DEA, unpublished data). In the Eastern Cape, the penguin popu-

lations remained stable over the same period: approximately

7700 pairs at St Croix Island and approximately 2800 at Bird

Island ([17]; DEA, unpublished data).

(b) Penguin response data
We measured chick condition at all four islands between

2008 and 2015. Nests were selected at random and chicks

were measured for head length (tip of the bill to back of the

skull; +0.1 mm) using Vernier calipers, and mass (+10 g)

using electronic or spring balances. Measurements were made

approximately 5–10 days apart from January to December on

Dassen Island (which has an extended breeding season), and

between March and November at the other sites. We estimated

body condition using a species-specific index based on a cohort

of chicks with head lengths greater than 75 mm that survived

to fledging [27]; smaller chicks (generally lesser than or equal

to 20 days old) were excluded from our analysis.

Data on chick survival were collected at the Western Cape

islands from 2008 to 2015. Marked nests were checked at target

intervals of 4–7 days at Robben Island throughout the main

breeding season (March to October), and 5 days at Dassen
Island throughout the whole year. We recorded the presence

and number of chicks at each visit, calculated the number of

days exposed to potential mortality (nestling days) and recor-

ded whether mortality occurred (¼1) or not (¼0) [9,23].

Where monitoring was curtailed before the nesting attempt

had been completed, we considered the data to be right

censored at the last time a chick was seen [23] (see the electronic

supplementary material).

(c) Fish biomass data
We used hydro-acoustic survey estimates of sardine and anchovy

biomass in South Africa from 2008 to 2015 [28,29] as a predictor

to control for any temporal trends or changes in prey availability

[9]. Annual surveys in May estimate the biomass of recruit (age

0) fish, while surveys during November estimate the adult sar-

dine and anchovy biomass, excluding age 0 juveniles (see

electronic supplementary material). For the Western Cape

islands, we used the adult sardine biomass west of Cape Agulhas

estimated from the November survey of the previous year and

the anchovy recruit biomass (which predominately occurs west

of Cape Agulhas [30]) in the year in which chick condition and

survival to fledging were measured [9,23]. Based on their

location outside of the usual range of anchovy recruits [30], for

the Eastern Cape islands we used both the adult sardine and

anchovy biomass east of Cape Agulhas from the November

survey of the previous year. No catches were reported within

the closed areas, though fishing continued outside [8,9]. We

did not use data on catches taken beyond the closed areas to

account for fishing pressure near colonies here because, as

noted elsewhere, correlations between catch and biomass data

can bias model parameter estimates [11,31].

(d) Estimates of closures effect size and uncertainty
For chick condition, we implemented a linear-mixed model

structure, with random intercepts for the month in which each

chick was measured, nested within the monitoring year. Because

access to prey resources differs [17], we modelled the Western

and Eastern Cape data separately. Fixed effects were the island

(Robben and Dassen, or St Croix and Bird), closure status

(‘Open’ or ‘Closed’ to fishing, table 1), an interaction between

island and closure status, as well as additive effects of sardine

(S) and anchovy (A) biomass (to account for changing prey avail-

ability driven by factors other than fisheries effects). The full

model took the form

yi,j,k,l ¼ aþ bj þ b j,k þ b1xj þ b2zi þ b3xjzi þ b4

Sj
�S
þ b5

Aj
�A
þ 1i,j,k,l,

i ¼ 1,2, j ¼ 1, . . . ,8, k ¼ 1, . . . ,12 l ¼ 1, . . . ,ni,j,k ¼ 9436,

bj � Nð0,s2
1Þ, b j,k � Nð0,s2

2Þ, 1i,j,k,l � Nð0,s2Þ

ð2:1Þ

where yi,j,k,l is the chick condition for each individual chick (l ), in

month k of year j at island i; a is the intercept; bj denotes the year

random effect and b j,k the month random effect (nested in bj); the

http://rspb.royalsocietypublishing.org/
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b’s are the coefficients to be estimated for the fixed effects; xj is a

binary covariate for the island closure effect (‘Open’ ¼ 0,

‘Closed’ ¼ 1); zi is a binary covariate denoting to which island

a chick belongs (e.g. Dassen ¼ 0, Robben ¼ 1); Sj and Aj are sar-

dine and anchovy (respectively) biomass estimates associated to

year j (see above for details) and �S and �A the mean biomass of

each species over the years considered; 1i,j,k,l is the residual

error; and the variance terms (s) for the random effects and

residual error were estimated from the data.

For chick survival, we estimated failure rates (deaths/unit

time of exposure or hazard functions) for ‘Open’ or ‘Closed’

years using an exponential error distribution and used an expo-

nential distribution to transform these failure rates into chick

survival estimates [9,23]. We used nest identity within year to

specify a hierarchical shared frailty term (analogous to a

random effect [32]); i.e. the survival rates of chicks within the

same nest are considered non-independent. The hazard function

(L) was estimated as

ti,j,k,l � EðLi,j,k,lÞ,

logðLi,j,k,lÞ ¼ aþ b1xj þ b2zi þ b3xjzi þ b4

Sj
�S
þ b5

Aj
�A
þ v j,k,

i ¼ 1,2, j ¼ 1, . . . ,8, k ¼ 1, . . . , mi,j ¼ 239,

l ¼ 1, . . . ni,j,k ¼ 4616, v j,k � Nð0,s2Þ:
ð2:2Þ

ti,j,k,l denotes the observed time of exposure for each chick (l ), in

nest k, in year j, at island i; v j,k denotes the shared frailty term

and all other parameters are as in equation (2.1).

All models were implemented using Markov chain Monte

Carlo (MCMC) estimation in JAGS (v. 4.1.0) via the ‘jagsUI’

library (v. 1.3.7) for program R v. 3.2.1. The uninformative

priors were Nð0, 10�7Þ for estimated means (where 1027 is pre-

cision) and Uð0,100Þ for standard errors (s), with the precision

specified as s�2 [33]. For chick condition, we ran three chains

of 55 000 samples, discarded the first 5000 as burn-in and drew

inference from the rest of the chains with no thinning. To account

for the additional complexity of the chick survival model, three

chains of 3 million samples were run, discarding the first

1 million as burn-in and thinning to every 10th observation to

increase the effective MCMC sample size for the same amount

of computer memory. For both chick condition (equation (2.1))

and survival (equation (2.2)), the explanatory variables included

in the full model (electronic supplementary material, table S1)

were those considered relevant based on our prior knowledge

of the system [9,23] (but see the issue of catch-biomass correlation

noted above). However, because our focus was on estimating the

effect of fisheries closures, when the 95% credible intervals (CI)

for the island/closure interaction estimate overlapped zero, we

considered there to be no evidence for island-specific effects

and, based on parsimony, dropped this parameter from the

final model used for inference (electronic supplementary material,

table S1). All models were checked for convergence visually and

using Gelman–Rubin diagnostics (all R̂ values �1.01).

(e) Simulation of data for additional experimental years
To examine how the uncertainty associated with closure effects

might respond to additional years of experimental closures, we

simulated an extended time series of chick condition data for

the Western Cape (the largest dataset). Data were imputed

based on a future sequence of 3 years ‘Closed’, followed by 3

years ‘Open’ at each island (table 1). To produce each dataset,

the Western Cape chick condition model (equation (2.1)) was

rerun with thinning to every 50th observation to subsample

1000 iterations of each MCMC chain and generate one posterior

distribution for each of the l ¼ 9436 observed chick measure-

ments. Next, we simulated a sample size (number of chicks

measured) for each future year and island (nsy) using a random
draw from a uniform distribution bounded by the observed

sample sizes at each island (Dassen Island: U(255,947); Robben

Island: U(323,1176)). For each year, and each island, we ran-

domly drew (with replacement) nsy chick condition values from

the posterior distributions in a stratified manner according to

whether that island was scheduled to be ‘Open’ or ‘Closed’

that year. Each sample was therefore a random draw from a pos-

terior distribution (corresponding to each observation l ) with a

mean equal to the original observation and a variance specified

by the data. Each simulated estimate was then assigned to the

calendar month of the corresponding observation [16]. New

data were simulated for 4, 7 and 10 years (electronic supplemen-

tary material, figures S2 and S3) and attached to the observed

data. The model in equation (2.1) was fitted to these new datasets,

excluding the biomass predictors (uninformative in the original

analysis; electronic supplementary material, table S1 and figure

S1). To examine how these new data influenced the probability

of detecting effects, we compared the posterior means and 95%

CI of the b terms (see equation (2.1)) with those from the original

model fit. Finally, to confirm that any changes were not an

artefact of the sample used in each case, we repeated the

resampling process to generate 1000 new datasets for each of 4,

7 and 10 additional years. We then compared the parameter

estimates from the respective JAGS model to the mean effect

size and 95% quantiles from fitting 1000 frequentist models

(using ‘nlme’ v. 3.1-122) to each new dataset (see electronic

supplementary material).
( f ) Population model projections
We used a Bayesian projection model with a demographic struc-

ture and parameter values based on previous African penguin

models [9,34] (electronic supplementary material, table S2).

Adult survival (fa ¼ 0.743) was deterministic to allow for clear

comparisons between different scenarios for juvenile (fj) and

chick survival (fc). We modelled fj and fc as stochastic using

observed means and standard deviations (s.d.) (electronic

supplementary material, table S2). The baseline run was parame-

terized to represent ‘Open’ to fishing at both islands; fc was set

at the mean (+s.d.) value estimated for all ‘Open’ years at both

islands, and fj ¼ 0.194 (+0.117) based on published estimates

[35]. We modelled means +95% Bayesian CI using three

MCMC chains (225 000 samples, burn-in of 25 000, no thinning),

confirmed unambiguous model convergence (all R̂ , 1.01), and

compared the population projections (+95% CI) to census data

from Robben and Dassen islands between 2004 and 2015

(electronic supplementary material, figure S7).

To assess the effect of fishery closure, we modified the priors

assigned to fc and fj according to the measured ‘closure effect’

on chick condition and survival and examined whether the

observed effects would improve population growth rates by

more than 1% above the baseline rate (Dl � 1%). For Robben

Island, we also assessed the impact of the simulated 10

additional experiment years of chick condition data on the uncer-

tainty associated with Dl. For chick survival (fc), we used priors

with an island-specific mean and s.d. estimated for all closed

years (from equation (2.2)). In the absence of species-specific

data to link improvements in chick body condition directly to

juvenile (fj) or chick survival (fc), we used observed relation-

ships between mass at fledging and first-year survival in

macaroni penguins Eudyptes chrysolophus [24], and between

mass at fledging and chick body condition in African penguins

[34] (electronic supplementary material, figure S8). We assessed

the validity of this approach against an assumption of pro-

portional change in fj with changes in body condition. These

modified models were run as the baseline model, but we used

the individual Robben Island (1216 breeding pairs) and Dassen

Island (2140 breeding pairs) populations in 2015 as starting

http://rspb.royalsocietypublishing.org/
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populations to model the size of the breeding populations in

2025 and 2035 (+95% CI) to compare with the baseline model.

See electronic supplementary material for model details.
3. Results
(a) Estimates of closure effect size and uncertainty from

observed and simulated data
(i) Western Cape
Chick condition: Based on the observed data and the full

model (electronic supplementary material, table S1), mean

condition at Dassen Island was 0.284 (95% CI: 0.242–0.325)
during ‘Open’ years and 0.257 (0.212–0.302) during

‘Closed’ years at mean fish biomass, or 9% lower without

fishing (figure 2). However, the 95% CI for this effect

included zero, with 15% of iterations actually yielding a posi-

tive closure effect (figure 3). Adding more years of simulated

data reaffirmed this null effect, rather than confirming a weak

negative effect as the uncertainty was reduced; the mean

effect size shifted closer to zero, from 29% in the observed

data to 22% with 10 years of simulated data (figure 3;

electronic supplementary material, figure S5).

By contrast, at Robben Island chick condition significantly

and unambiguously improved by 45% without fishing, from

0.264 (0.222–0.305) during ‘Open’ years to 0.383 (0.336–

0.430) during ‘Closed’ years (figure 2) based on the observed

http://rspb.royalsocietypublishing.org/
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‘O’ ¼ purse-seine fishing was permitted around that island in that year, ‘C’ ¼ purse-seine fishing was excluded within a 20 km radius. Right panel: The posterior
means and Bayesian 95% credible intervals for the estimated effect of closure to fishing on penguin chick condition at Dassen Island and Robben Island. An effect
size above zero (dashed grey line) means higher chick condition on average when fishing was restricted with 20 km of that island, a negative effect size the
opposite. From the left, the effect sizes are for the model fit to the observed data (2008 – 2015) including sardine and anchovy biomass estimates (accounting
for prevailing environmental conditions; OB); the model refit to the observed data without sardine and anchovy biomass (ONB); the model refit to the observed data
plus a case including 4 years of simulated data (4, see left panel); a case including 7 years of simulated data (7) and a case including 10 years of simulated data
(10). Long black ticks on the cases including simulated data show the 95% quartiles from frequentist model fits to 1000 additional simulations. (Online version
in colour.)
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data. The mean effect of closure on chick condition remained

essentially unchanged as more years of simulated data were

added, varying betweenþ41% and þ45% (figure 3; electronic

supplementary material, figure S3 and S5).

In all cases, the simulated datasets produced appropriate

means and distributions relative to the observed data

(figure 3; electronic supplementary material, figure S2–S4),

and the mean effect sizes estimated in JAGS lay within the

95% quantiles from the 1000 ‘nlme’ model fits, demonstrating

that the simulated datasets were robust to sampling variation

and not just artefacts of the particular run used (figure 3;

electronic supplementary material, figure S6).

Chick survival: For chick survival, there was no support for the

island/closure interaction term (electronic supplementary

material, table S1). The simplified model estimated that

fisheries closures improved chick survival at Dassen Island

by 11.2%, from 0.738 (0.708–0.773) during ‘Open’ years to

0.816 (0.787–0.843) during ‘Closed’ years (at mean prey bio-

mass). Fishery closures also increased chick survival at

Robben Island by 10.8% from 0.733 (0.704–0.762) in ‘Open’

years to 0.812 (0.784–0.838) in ‘Closed’ years (figure 2).

There was essentially no uncertainty in the differences between

the means for either island (non-overlapping 95% CI, figure 2)

and the posterior of the fishery closure main effect did not

overlap zero (electronic supplementary material, table S1).

(ii) Eastern Cape
Chick condition: Mean condition at St Croix Island was 0.361

(0.298–0.4260) in ‘Open’ years and 0.277 (0.210–0.345) in

‘Closed’ years. At Bird Island, mean chick condition was

0.224 (0.164–0.283) and 0.308 (0.234–0.383) in ‘Open’ and

‘Closed’ years, respectively. Fishery closures appeared to

generate weak, opposing effects at these islands; i.e. condition

increased (0.084, 95% CI: 0.004–0.164) at Bird Island and

decreased (20.084, 95% CI: 20.162 to 20.007) at St Croix

Island. However, the 95% CI for both sets of scenarios over-

lapped, suggesting that overall, the closure had no impact
in this case (figure 2) and therefore further simulations

were redundant.

(b) Population model projections
The baseline population growth rate (l) at Dassen and

Robben Island, estimated with open fisheries, demographic

stochasticity and parameter uncertainty on fc and fj, was

l ¼ 0.805 (95% CI: 0.754–0.864). This was comparable to

the equivalent deterministic Leslie matrix estimate, l ¼ 0.809

and the projections reproduced the observed population tra-

jectory (electronic supplementary material, figure S7). When

fc and fj were increased by the observed effect sizes of fish-

ing closure, l improved at both Dassen Island (l ¼ 0.810,

95% CI: 0.755–0.873) and Robben Island (0.817, 0.766–

0.877); in the latter case Dl . 1% compared to the baseline

model (figure 2). However, for model runs at Robben

Island where either fc or fj were increased separately by

the observed effect sizes, Dl did not exceed this 1% threshold.

Furthermore, adding 10 years of additional simulated exper-

imental data did little to reduce the uncertainty in the

demographic impact (figure 2). The projected population in

2025 was approximately 10% larger than the baseline when

both closure effects (on fc and fj) at Robben Island and the

chick survival effect at Dassen Island were modelled, and

approximately 20% higher by 2035 (figure 2). The modelled

population, however, continued to decline under all scen-

arios, but was only two-thirds as likely to drop below 500

pairs by 2025 with the modelled closure effect (16%) than

without it (24%; figure 2).
4. Discussion
Until now it was unclear whether forage fisheries deplete

prey sufficiently to have population-level effects on marine

predators [5,12]. Our results reveal that fisheries closures

improved chick condition and survival at one African
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penguin colony sufficiently to improve their population tra-

jectory. Accordingly, we recommend that these closures be

retained. However, even with a BACI design, an 8-year

time frame, and complex analytical approaches, the effects

were subtle and inconsistent, highlighting the extremely chal-

lenging nature of quantifying forage fishery impacts.

Although we studied metrics that vary with local prey avail-

ability [22,23], we only detected fisheries effects with

certainty in three of six cases, and at two of four islands.

Those designing similar closures in future should consider

this when setting (and stating) their expectations for sites

and metrics to study [12], and that the required experimental

periods (perhaps decades) may conflict with a desire for

rapid management action.

Our results also underline the difficulty of controlling for

changes in the underlying environmental conditions in a

dynamic ecosystem, even when measures of prey availability

are available. In a scenario where fishing had no effect and

the prey availability estimates included in the models were

unable to perfectly account for changes due to a common

environmental driver, we would have expected opposing

positive and negative signs in the mean differences between

‘Open’ and ‘Closed’ years at the two islands in a pair. This

is exactly the case for the effects on chick condition, high-

lighted by the matching absolute effect size at Bird and

St Croix islands (figure 2). It may be that our measures of

prey abundance did not fully account for the local variation

in prey availability around the island pairs [23]. We also

did not control for the presence of fishing in close proximity

to the closed areas (fishing the line), which can influence

MPA efficacy for mobile fish and their predators [8,36].

Both issues increase the difficulty of detecting a closure

signal from the ecological ‘noise’ and could explain the

apparent absence of effects on chick condition at Dassen

Island or in the Eastern Cape. In addition, we cannot confirm

biomass removal, rather than disturbance (of shoaling or

foraging behaviour), as the mechanism of competition with-

out concurrent behavioural data on fish and penguins [12].

This is difficult to collect at the relevant scales [22] (but see

[37]). However, if prey availability is not accounted for

adequately, a few extreme years or temporal trends could

easily confound environmental variability and fishing

impacts when experimental periods are short [8,9], even

with a BACI design. Future experimental closures, both in

South Africa and elsewhere, would benefit from fisheries-

independent assessments of prey availability on a scale rel-

evant to the focal predator [38]. The above notwithstanding,

the magnitude of improvement in chick condition at

Robben Island, and the consistently higher chick survival

during closed years at both Western Cape islands provides

strong evidence for a fisheries effect over and above that of

a common environmental driver.

Although our aim was to quantify the uncertainty associ-

ated with detecting penguin responses to the closures, none

of the posterior distributions for the closure effect on chick

survival at the two Western Cape colonies fell below zero

(i.e. there really was no uncertainty in this instance). For

chick body condition at Robben Island, less than 1% of the

posterior distribution was negative and this small uncertainty

disappeared with an additional 3 years of simulated data

(electronic supplementary material, figure S5). At the other

islands, the effects were essentially indistinguishable from

zero, or became so with 10 years of simulated data at
Dassen Island. The mean effect sizes were also relatively

robust to the addition of simulated data (figure 3), so infer-

ence is unlikely to be altered in the short to medium term.

Crucially though, the observed closure effects at Robben

Island increased the modelled population growth rate

sufficiently to exceed the criteria for a meaningful demo-

graphic effect set by fisheries management in South Africa

(Dl . 1%). However, the uncertainty around this demo-

graphic effect was high and decreased little with 10

additional years of simulated sampling (figure 2). Moreover,

the observed impacts on chick survival alone were insuffi-

cient to exceed the 1% threshold (it also required a change

in juvenile survival). This highlights the importance of

considering whether combined, or compound, effects of

fishing are likely to operate on demographic rates on a case

by case basis [5].

Overcoming uncertainty in the potential demographic

impact of fisheries closures is likely to remain difficult, even

in systems where seabird–fisheries interactions are relatively

well understood [12]. It is often difficult or time-consuming

to acquire reliable data on important demographic processes,

such as immature or adult survival [35], and more readily

accessible behavioural data—for example, on foraging

effort—is challenging to link to demography [10,12]. Accord-

ingly, without detailed knowledge of the underlying

ecosystem, clear cut, consistent demographic responses

across focal sites and species are unlikely to arise from exper-

imental fisheries closures in desirable time frames for

management (years not decades; [6,11,12]). Although conti-

nuing the closures will affect the South African purse-seine

industry, estimates vary widely from less than 1% to approxi-

mately 9% of total annual catches for closures at both Western

Cape colonies [39]. Any costs also need to be weighed against

the high socio-economic value of penguin-based ecotourism

[40] (our study colonies hold approximately 60% of South

Africa’s breeding penguins) and the likelihood that spatial

protection around these islands would benefit wider marine

biodiversity, including other threatened marine predators

[38]. Conservation actions are sometimes deferred because

of doubt or fear of failure, but delay can increase the risk of

extirpation or extinction [41,42]. In short, although uncer-

tainty is likely to remain, it can be quantified, understood

and formally incorporated into management decision

making [42]. In light of this, we strongly recommend a pre-

cautionary approach when impacts on components of the

demographic process can be measured; management

should then proceed in an adaptive framework [13,42],

with spatial protection the default, particularly for

populations in severe decline.

Finally, our results highlight the need to carefully con-

sider the value of small-scale protected areas for long-lived,

motile marine species where benefits to adult survival may

be subtle [9,34]. In our projections, the population continued

to decline markedly under all scenarios. If low first-year and

adult survival persists, which may depend more on wide-

scale rather than local processes [34,35], the benefits of

small-scale protected areas may be limited [18]. This will

not be the case in all situations and while broad-scale conser-

vation actions (e.g. catch quotas, bycatch reduction) will be

needed in concert [10,34], they are often more difficult,

time-consuming or costly to implement than spatial protec-

tion. Without prompt action, the penguin population off

South Africa’s west coast could be functionally extinct by
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2035 (less than 50 pairs; figure 2). Despite the ecological

‘noise’, our models indicate that small-scale fishing closures

will improve that outlook; combining this approach with

broad-scale, ecosystem-based fisheries management would

ensure an even brighter future for African penguins and

many other threatened marine predators.
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