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Abstract 

Axenic culture of Leishmania is generally performed in rich, serum-supplemented media 
which sustain robust growth over multiple passages. The use of such undefined media, 
however, obscures proteomic analyses and confounds the study of metabolism. We have 
established a simple, defined culture medium that supports the sustained growth of 
promastigotes over multiple passages and which yields parasites that have similar infectivity 
to macrophages to parasites grown in a conventional semi-defined medium. We have 
exploited this medium to investigate the amino acid requirements of promastigotes in culture 
and have found that phenylalanine and tryptophan are essential for viability in culture, while 
the absence of arginine, leucine, lysine, and valine results in significantly impaired, almost 
negligible growth. Most of the 20 proteogenic amino acids promote growth of Leishmania 
promastigotes, with the exception of alanine, asparagine, and glycine. This defined medium 
will be useful for further studies of promastigote substrate requirements, and will facilitate 
future proteomic and metabolomic analyses. 

Introduction 

Leishmania parasites cause a spectrum of important diseases in animals, including humans, 
which are collectively termed leishmaniasis. Leishmania have a digenetic life-cycle that 
involves an alternation between two distinct forms, promastigotes and amastigotes, and a 
transmission between two hosts, an invertebrate and a vertebrate host. While it is possible to 
study Leishmania biology in insect and mammalian host models, there are significant 
advantages to studying parasites in axenic culture, in particular the possibility to generate 
large quantities of uncontaminated parasite material under controlled conditions. However, 
the nutrient media that are routinely employed for axenic cell culture contain a variety of 
carbon sources and are typically supplemented with undefined animal sera. Such rich, serum-
supplemented media may elicit phenotypes that differ from those which prevail in the 
nutritionally-sparse environments that the parasites encounter in the sand fly gut and the 
macrophage phagolysosome. Furthermore, the presence of undefined components in the 
culture media complicates the interpretation of biochemical data, and is a particular problem 
for proteomic and metabolomic studies, since heterologous proteins may obscure the 
characterisation of the parasite proteins of interest and the provenance of metabolites is 
unknown. The addition of undefined sera to culture media has specific safety implications for 
the production of tools such as vaccines.  



A variety of media for growing Leishmania promastigotes have previously been reported 
(Table 1) [1 - 32], but the addition of either serum or protein has been necessary to support 
continuous growth over multiple passages. Many of the earlier media, such as the Novy-
MacNeal-Nicolle (NNN) [9] and LIT-R9 [18], contain complex, undefined additions such as 
blood components or infusion from brain or liver [11, 12]. Such components can be 
substituted with peptone and yeast extracts, in media such as PY A-FBS 10 [17], Y-P [21], 
AJM-1 [22], and CML [27] (Table 1), or by the addition of animal serum. Work by Trager 
[10], Steiger and Steiger [13, 14], and Berens [15] established that animal serum could be 
replaced by bovine albumin for in vitro culture of Leishmania, resulting in the development 
of simplified yet still incompletely defined culture media.  

Alternative medium formulations have also included components such as urine [19, 23], 
casein hydrolysate [22], and lemon extract [29]. These additions are less costly than animal 
sera but, like serum, are undefined and potentially variable. Trager [10] and Steiger and 
Black [33] were the first to report chemically defined, serum- and protein-free media that 
were able to support growth of Leishmania species (Table 1). Subsequent publications have 
expanded the number of media with a more completely defined composition (Table 1) [34 - 
37], including the more recent work of Fritsche et al. [28] and Merlen et al. [38]. SFP 
medium [28] is supplemented with protein and RNA and CDM/LP medium [38] has an 
elaborate composition, including cholesterol.  

We thus set out to develop a completely defined, synthetic medium able to support 
continuous growth of Leishmania promastigotes in axenic culture. As a foundation, we used 
the most simplified medium developed by Steiger and Black [33], then omitted components 
that were not chemically defined and systematically modified the composition to determine 
the relative importance of amino acids, co-factors, vitamins, and metals. This led to the 
development of a defined medium, termed Nayak Medium (NM) which supports continuous 
growth of L. mexicana promastigotes. We observed that the kinetics of L. mexicana 
promastigote growth in NM medium approach those seen in a conventional rich, serum-
supplemented medium, and that the promastigote morphology and infectivity to macrophages 
are similar to cells grown in a conventional media.  

 

 

 

 

 

 

 

 



Table 1. Media proposed for culture of Leishmania. 
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Media Composition Reference

M199 Supplemented with 5% serum Morgan et al., 1950

DMEM Supplemented with  10% serum Dulbecco and Freeman,1959

RPMI 1640 Supplemented with  10% serum Moore et al.,  1967

Grace’s insect tissue-

culture medium

Supplemented with  20% serum Grace, 1962; Childs et al., 1978

Mitsuhashi-Maramorsch

medium

Supplemented with  20% serum Mitsuhashi and Maramorsch, 1964; 
Childs et al., 1978

HOMEM Supplemented with  20% serum Berens et al., 1976

Schneider’s Drosophila

medium

Supplemented with (30%) serum Schneider, 1972

NNN Contains blood agar and 0.6% NaCl Nicolle, 1908

Medium S Supplemented with bovine plasma fraction V Trager, 1957

GLSH Contains glucose, lactalbumin, heamoglobin, 
supplemented with  10% serum

Jardin and Le Ray, 1969

-- Contains rabbit blood lysate, beef and liver 
infusion, salts, and glucose

Dwyer, 1972

RE I Contains minimal number of components,
including bovine albumin

Steiger and Steiger, 1976

RE III Simplified RE I Steiger and Steiger, 1977

HOSMEM-II MEM-based, supplemented with bovine 
albumin fraction IV

Berens and Marr, 1978; 
Schuster and Sullivan, 2002

PY A-FBS 10 Contains peptone, yeast autolysate, salts, 
supplemented with  10% serum

Palomino, 1982

LIT-R9 Contains liver infusion and tryptose Sadigursky and Brodskyn, 1986

-- M199 supplemented with urine Armstrong and Patterson, 1994

-- Contains bovine hemoglobin powder Agarwal and Jain, 1996

P-Y Contains peptone, yeast extract, salts, 
supplemented with  10% serum

Limoncu et al.,  1997

AJM-1 Contains peptone, casein hydrolysate, beef 
and yeast extracts

Ali et al., 1998

-- M199 supplemented with 10% human urine Singh et al., 2000

-- Contains Brain Heart Infusion (BHI),
supplemented with hemin

Meehan et al., 2000

cRPMI RPMI 1640 supplemented with filtered and 
dialyzed, protein- and low molecular weight
component-free serum fractions

Santarem et al., 2003

-- M199 supplemented with cow, buffalo, or 
goat milk

Muniaraj et al., 2007

CML Supplemented with peptone and yeast extract Sharief et al., 2008

SFP Supplemented with  BSA (SFP(I), BSA and 
hemin (SFP(II)), PEG-hemin (SFP(III))

Fritsche et al., 2008

GALF-1 Contains minimal number of components, 
lemon extract, 2% urine, and 20% serum 

Tasew et al., 2009

PBHIL Contains glucose, salts, peptone, BHI, liver 
infusion broth, and hemin

Rodrigues et al., 2010

SNB-9 Contains blood agar, neopeptone, and 0.6% 
NaCl

Grekov et al., 2011

-- Contains nutrient agar, nutrient broth, and 
10% serum

Aksoy Gokmen et al., 2015
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Medium C Contains minimal number of components Trager, 1957

RE IX 

RE X

Simplified RE III, lacks bovine albumin
RE IX without glucose

Steiger and Black, 1980

MD29 Contains a variety of purines and 
pyrimidines

Melo et al., 1985

-- Rich in nutrients O’Daly and Rodriguez, 1988 

S-α-MEM

S-RPMI

α-MEM and RPMI 1640 supplemented with 
hemin,  HEPES, glutamine, glucose, folic 
acid, biotin, and adenine

Kar et al., 1990

-- M199 supplemented with HEPES, co-
factors, and vitamins

McCarthy-Burke et al., 1991 

CDM/LP Contains complex fatty acids and amino acid 
intermediates

Merlen et al., 1999
 



Experimental procedures 

Cell culture 

Leishmania mexicana MNYC/BZ/62/M379, L. donovani MHOM/SD/63/Khartoum, and L. 

major MHOM/IL/80/Friedlin were passaged at an initial density of 5.0 x 105 cells/mL in 
hemoflagellate-modified minimum essential medium (HOMEM) [7] (Invitrogen, Thermo 
Fisher Scientific) supplemented with 10% (v/v) heat-inactivated fetal calf serum (FCS) 
(Biosera), and cultured at 27oC. Viability and integrity of the cells was assessed using the 
trypan blue dye (Sigma-Aldrich, Merck) exclusion test [39]. Parasite growth was followed by 
diluting a 0.01 mL aliquot of the cell culture with 2% (w/v) formaldehyde-phosphate buffered 
saline (PBS) (Sigma-Aldrich, Merck) and counting the cells on an improved Neubauer 
haemocytometer.  

Medium preparation 

Based on Steiger and Black’s RE IX medium [33] and the nutrient requirements of 
Leishmania promastigotes determined in this study, a base medium (BM) and an optimised 
defined medium (NM) were developed. Compound stock solutions were prepared by 
dissolving individual components (Sigma-Aldrich, Merck) in Milli-Q water, except 
adenosine, biopterin, folic acid, hemin, and lipoic acid which were dissolved in 1N NaOH. 
The stock solutions were then filter sterilized through 0.22 µm Express PLUS membrane 
filters (Millipore, Merck) and stored in aliquots at -20oC. The pH of all media was adjusted to 
7.4 and the media were also filter sterilized. 

Estimation of nutrient requirements 

To assess amino acid requirements, 1.0 x 106 cells/mL log phase promastigotes grown in 
HOMEM were harvested by centrifugation at 1000 x g for 10 min at room temperature (RT), 
then the pellets were washed with NM lacking amino acids (NM-AA) and re-suspended in 
Nayak single amino acid “knock out” media, containing all amino acids bar one. 
 
To assess metal and cofactor requirements, 1.0 x 106 cells/mL log-phase promastigotes grown 
in HOMEM were harvested by centrifugation at 1000 x g for 10 min at RT, then the pellets 
were washed twice with BM and re-suspended in BM supplemented with cocktails of co-
factors and metals (Sigma-Aldrich, Merck). The co-factor cocktail contained 10µM of 
biopterin, lipoic acid, and the vitamins biotin, folic acid, and riboflavin. Hemin was not 
included in the tested cocktail. The metal cocktail included magnesium, calcium, zinc, iron, 
cobalt, copper, and manganese.  
 
The growth data presented comprise representative information from 5 independent assays, 
each carried out in triplicate (n=15). All data were analysed using one-way Analysis of 
Variance (ANOVA) with Dunnett’s multiple comparison test and a significance threshold of 
p<0.0001 (Graph-pad Prism software). Images of cells cultured in the single amino acid 
“knock out” medium were prepared by smearing 200µL of culture medium from each 
condition onto glass slides (Marienfeld). The slides were then air-dried and the cells fixed by 



dipping the slides into ice cold methanol for 2 min. The slides were air-dried again and 
stained with Giemsa (Sigma-Aldrich, Merck) (diluted in 10mM phosphate buffer, pH 7.2) for 
20 min. Dried slides were visualised using light microscopy (Axiovision, ) and the images 
analysed by Fiji-Image J software, with a standard scale bar of 10µm assigned for a constant 
number of pixels. 50 cells from each slide were measured and cell body length plotted as 
their frequency distribution. For statistical significance, one-way ANOVA was performed 
with Dunnett’s multiple comparison test. 

Estimation of protein concentration  

1.0 x 107cells in total, grown in single amino acid “knock out” media, were harvested by 
centrifugation at 1000 x g for 10 min at RT, re-suspended in PBS containing 0.05% Triton 
X100, 5% glycerol, 2mM 1,10-phenanthrolin, 10µM leupeptin, 7µM pepstatin, and 10µM 
E64 (Sigma-Aldrich, Merck) and lysed by sonication. Protein concentration was determined 
by Bradford assay (Bio-Rad). Data were derived from three independent experiments, each 
performed in triplicate (n=9). 

Estimation of infectivity  

THP1 cells were cultured in RPMI 1640 medium (Gibco, Thermo Fisher Scientific) 
supplemented with 10% FCS at 37oC and 5% CO2. Cultures were initiated at a density of 5.0 
x 105 cells/mL and sub-passaged every five days. THP1 cells were differentiated using 
100nM phorbol 12-myristate 13-acetate (PMA) (Sigma-Aldrich, Merck) and plated on Nunc 
Lab-Tek Chamber slides (Sigma-Aldrich, Merck) 24 h prior to infection. After a four-hour 
incubation, L. mexicana promastigotes, cultured in either HOMEM or NM to stationary 
phase, and heat-killed parasites were collected by centrifugation at 1000 x g for 10 min at RT, 
then resuspended in RPMI 1640 medium, and added to THP1 cells at a 1:10 ratio. The 
chamber slides were incubated for 4 h at 32oC and 5% CO2, then the medium replaced to 
removed extracellular promastigotes. At intervals of 4, 24, 48, 96 and 144 h post-infection, 
THP1 cells were washed three times with PBS, fixed by immersion in ice cold methanol and 
stained with Giemsa for 20 min as described above. Dried slides were visualised using light 
microscopy (AxioVision, Zeiss) and the percentage of infectivity and number of amastigotes 
per macrophage calculated. 

Estimation of drug sensitivity 

Alamar blue assay was used to assess the IC50s of three leishmanicidal compounds as 
described by Raz et al. [40]. Briefly, 1.0 x 106 cells/mL were diluted in either HOMEM or 
NM media and 5.0 x 105 cells/mL were inoculated into 96-well flat-bottomed microtiter 
plates (Sigma-Aldrich, Merck) and incubated for 72 h at 27oC with amphotericin B, 
pentamidine, and methotrexate (Sigma-Aldrich, Merck). The latter were diluted in either 
HOMEM or NM media, in a 8-fold dilution series that covered a range from 200μM to 
0.2μM. Then 0.49mM of the fluorescent dye resazurin (Sigma-Aldrich, Merck) was added to 
each cell suspension and the incubation was continued for further 48 h. Fluorescence was 
measured on a PHERAstar FS spectrometer (BMG Labtech) at excitation and emission 
wavelength of 544 nm and 590 nm, respectively. Regression analysis was used to determine 



the IC50 of the compounds. The data were log transformed and sigmoidal dose-inhibition 
curves plotted using GraphPad Prism. Data were derived from three independent 
experiments, each performed in duplicate (n=6). 

 
Results 
 

Development of defined media for axenic culture of Leishmania promastigotes 
 

We have developed a serum- and protein-free medium with a simple, defined composition. 
As a reference point, we supplemented a previously reported growth medium, RE IX [33], to 
produce an amino acid-rich basal medium (BM) (Table 2), in which we performed nutrient 
requirement analyses. These experiments led to the development of Nayak medium (NM) 
(Table 2), which is able to support continuous culture of L. mexicana promastigotes at a 
growth rate comparable to that of cells grown in conventional rich, serum-supplemented 
media such as HOMEM [7]. By systematically modifying NM, we investigated the 
importance of individual amino acids for sustaining L. mexicana promastigote growth. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Composition of base medium (BM) and Nayak medium (NM) for axenic culture of 
Leishmania promastigotes. *, present in the media but not in the co-factor cocktail. 

Components
BM           

(concentration, mM)

NM      

(concentration, mM)

Salts

KCl 5.36 5.36
NaCl 136.8 136.8
NaH2PO4 0.33 0.33
NaHCO3 3.57 3.57
Vitamins

Biotin - 0.01
D-Calcium pantothenate 0.002 0.002
Folic acid 0.002 0.012
Nicotinamide 0.008 0.008
Pyridoxal HCl 0.004 0.004
Riboflavin 0.002 0.012
Thiamine HCl 0.002 0.002
Co-factors

p-Aminobenzoic acid - 0.01
Biopterin - 0.01
Hemin* 0.0077 0.0077
Lipoic acid - 0.01
Metals

CaCl2 - 0.72
CoCl2 - 0.000032
CuSO4 - 0.00003
Fe(NO3)3 9H2O - 0.009
MnCl2 - 0.000045
MgSO4 7H2O - 0.81
ZnCl2 - 0.03
Amino Acids

L-Arginine HCl 0.5 0.5
L-Leucine 0.5 0.5
L-Lysine HCl 0.5 0.5
L-Phenylalanine 0.5 0.5
L-Tryptophan 0.5 0.5
L-Valine 0.5 0.5
L-Alanine 0.5 0.5
L-Asparagine 0.5 0.5
L-Aspartic acid 0.5 0.5
L-Cysteine 0.5 0.5
L-Glutamic acid 0.5 0.5
L-Glutamine 0.5 0.5
Glycine 0.5 0.5
L-Histidine HCl H2O 0.5 0.5
L-Isoleucine 0.5 0.5
L-Methionine 0.5 0.5
L-Proline 0.5 0.5
L-Serine 0.5 0.5
L-Threonine 0.5 0.5
L-Tyrosine 0.5 0.5
Other

Adenosine 0.074 0.074
Choline chloride 0.007 0.007
D-Glucose 16.6 16.6
HEPES 25.01 25.01
myo-Inositol 0.01 0.01
Sodium pyruvate 0.99 0.99  



Assessment of amino acid requirements 

 

RE IX medium included the 12 amino acids histidine, isoleucine, leucine, lysine, methionine, 
phenylalanine, proline, threonine, tryptophan, tyrosine, valine, and glutamine. Arginine, for 
which Leishmania appear to be auxotrophic [13, 14, 41, 42], was not included. To investigate 
the influence of a complex amino acid content over promastigote growth, we modified the 
composition of RE IX to include equimolar concentrations (0.5 mM) of all 20 proteogenic 
amino acids and found that this medium, henceforth referred to as basal medium (BM) (Table 
2), significantly enhanced growth of L. mexicana promastigotes compared with RE IX 
(Figure 1A).  
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Figure 1. Comparison of growth of L. mexicana promastigotes in semi-defined serum-
supplemented and defined media. A. Growth of L. mexicana promastigotes in RE IX medium (black circles), 
basal medium (BM) (squares), and HOMEM medium (white circles) shown over a 9 day period. B. Growth of L. mexicana 
promastigotes sub-passaged on day 4 in fresh RE IX, BM, and HOMEM media shown over a 9 day period. Abbreviations: 
BM, basal medium; HOMEM, hemoflagellate-modified minimum essential medium. Error bars = mean ± standard deviation 
(SD); n=15. 

 

Assessment of metals and cofactor requirements 

 
As shown by the growth analysis, the BM medium supported robust growth of L. mexicana 
promastigotes (Figure 1A). Nevertheless, there was a pronounced lag phase in the replication 
rate of freshly passaged cultures, and growth was reduced when cultures were sub-passaged 
in BM (Figure 1B). We therefore tested the importance of a range of co-factors, vitamins, and 
metals for promastigote growth. Initial growth analyses (data not included) defined which 
compounds supported L. mexicana promastigote growth and the optimal concentration, and 
those were consequently used in the requirement analyses. The latter revealed that addition of 
10µM of biopterin alone or 10µM of biopterin, folic acid, lipoic acid, and riboflavin to BM 
led to a decrease in the time needed by the promastigotes to double in number (Figure 2A). 
Supplementing BM with magnesium, calcium, zinc, iron, cobalt, copper, and manganese also 
promoted a significant reduction in the doubling time (Figure 2B). Addition altogether of co-
factors, vitamins, and metals to BM further reduced the doubling time of the promastigotes 
(Figure 2B). Higher concentrations of the seven metals, however, inhibited promastigote 
growth (data not included). 
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Figure 2. Effect of co-factors, vitamins, and metals on growth of L. mexicana promastigotes. 
Abbreviations: BM, base medium; HOMEM, hemoflagellate-modified minimum essential medium. Error bars = mean ± SD; 
n=15; ****, p<0.0001; ***, p<0.0005, *, p<0.05. 

 

Assessment of promastigote growth in defined Nayak medium 

 
Addition of metals and cofactors to BM resulted in a decrease in the doubling time of L. 

mexicana promastigotes from 30 to 16 h, compared with a doubling time of 12 h in HOMEM. 
We then tested the ability of the supplemented BM, henceforth referred to as Nayak medium 
(NM), to support continuous growth of L. mexicana promastigotes in sequential passages. We 
established stable cultures which we were able to maintain for more than 15 sub-passages 
(Figure 3A). We followed the growth of the promastigotes cultured in NM and HOMEM and 
observed comparable rates (Figure 3A), although the density of stationary phase 
promastigotes grown in NM was somewhat lower (data not included). Growth comparison 
between L. mexicana, L. donovani, and L. major promastigotes additionally revealed that all 
three species had analogous growth patterns (Figure 3B). Phenotypic comparison between L. 

mexicana promastigotes cultured in NM and HOMEM furthermore showed that log-phase 
promastigotes grown in NM had shorter body length (Figure 3, C and D) but higher cell 
volume (data not included) compared with log-phase promastigotes grown in HOMEM, 
while the opposite, longer body length (Figure 3, C and D) and lower cell volume (data not 
included), was observed for stationary phase promastigotes grown in NM compared with log-
phase promastigotes grown in HOMEM.  
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Figure 3. Growth and morphometric properties of Leishmania promastigotes grown in 
defined Nayak medium. A. Growth kinetics of L. mexicana promastigotes cultured in NM and HOMEM. B. Growth 
kinetics of L. donovani (white squares), L. mexicana (black squares), and L. major (diamonds) promastigotes cultured in 
NM. C. Representative images of log phase (day 3) and stationary phase (day 6) L. mexicana promastigotes grown in NM 
and HOMEM. The standard scale bar is 10µm. D. Morphometric comparison of body length of L. mexicana promastigotes 
grown in NM and HOMEM. Abbreviations: NM, Nayak medium; HOMEM, hemoflagellate-modified minimum essential 
medium; P1, first passage; P2, second passage. Error bars = mean ± SD; n=15. 
 

Assessment of relative importance of specific amino acids 

 
All amino acids in the NM medium were supplemented in free form, allowing to study the 
importance of each amino acid by individually omitting them from the medium. To assess the 
relative contribution of each amino acid to the growth of L. mexicana promastigotes, we 
created 20 single amino acid “knock out” media. Our growth assessment showed that 
omission of phenylalanine and tryptophan halted cell division within 4 h while the absence of 
arginine, lysine, and leucine resulted in considerably impaired, almost negligible, 
promastigote growth (Figure 4A). For each of these conditions, no viable cells were observed 
after 6 days in the respective cultures (data not included). Omission of valine led to very slow 
growth; absence of aspartate, cysteine, glutamate, glutamine, histidine, isoleucine, 
methionine, serine, threonine, and tyrosine resulted in an increase in the doubling time; and 
finally, absence of alanine, asparagine, glycine, and proline imposed no effect over 
promastigote growth when compared to promastigote growth in NM (Figure 4A). 
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Figure 4. Single amino acid “knock out” media analysis. A. Growth of L. mexicana promastigotes in NM 
single amino acid “knock out” media, expressed as doubling time. B. Protein content of L. mexicana promastigotes grown in 
single amino acid “knock out” media. C. Comparison of cell size of L. mexicana promastigotes grown in single amino acid 
“knock out” media. Abbreviations: HOMEM, hemoflagellate-modified minimum essential medium; NM, Nayak medium; 
Gly, glycine; Ala, alanine; Asn, asparagine; Pro, proline; Tyr, tyrosine; Cys, cysteine; Gln, glutamine; Met, methionine; Glu, 
glutamate; Thr, threonine; Ile, isoleucine; His, histidine; Ser, serine; Asp, aspartate; Val, valine; Leu, leucine; Arg, arginine; 
Lys, lysine; Phe, phenylalanine; Trp, tryptophan; NM-Trp, Nayak medium without tryptophan; NM-AA, Nayak medium 
without amino acids. Error bars = mean ± SD; n=9; ****, p<0.0001; ***, p<0.0005, **, p<0.001, *, p<0.05. 

 



Absence of several amino acids is associated with reduced protein synthesis in Leishmania 
[43, 44]. To evaluate the importance of each amino acid for protein synthesis, we maintained 
L. mexicana promastigotes for 6 days in NM single amino acid “knock out” media. As 
expected, the protein content of promastigotes grown in the same media that did not support 
cell growth, namely the media without arginine, leucine, lysine, phenylalanine, and 
tryptophan (Figure 4A), was also dramatically decreased (Figure 4B). More surprising, 
however, was the observation that the omission of histidine, isoleucine, methionine, and 
threonine, which only moderately reduced promastigote growth, led to an equally pronounced 
decrease in protein content (Figure 4B). Reduced protein content suggested that cell size 
might also be decreased, so we undertook a morphometric analysis of the cells grown in the 
amino acid “knock out” media. We found a direct correlation between protein content and 
cell size, namely, that the cells that had lower protein content (Figure 4B) had also 
dramatically reduced cell size (Figure 4C). 
 

Assessment of promastigote infective competence in defined Nayak medium 

 

The infectivity of L. mexicana promastigotes grown in HOMEM and NM was compared in 

vitro by infecting differentiated THP1 macrophages. Intensity and prevalence of infection 
was similar for both (Figure 5).  
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Figure 5. Evaluation of infectivity of L. mexicana promastigotes in defined Nayak medium. 
A. Number of amastigotes per 100 macrophages infected with L. mexicana promastigotes grown in HOMEM (circles), NM 
(squares), and heat-killed parasites (triangles). The latter was used as a negative control. B. Percentage of infected 
macrophages with L. mexicana promastigotes grown in HOMEM (white bars) and NM (grey bars), and heat-killed parasites 
(thick-lined white bars). Abbreviations: NM, Nayak medium; HOMEM, hemoflagellate-modified minimum essential 
medium. Error bars = mean ± SD; n=9. 

 
Assessment of promastigote sensitivity to anti-leishmanial drugs 
 
Drug sensitivity of promastigotes grown in HOMEM and NM was compared using the 
Alamar blue assay [40]. The IC50 measured for methotrexate and pentamidine were 
significantly lower when cells were grown in NM compared with HOMEM, while the IC50 

for amphotericin B was similar under both conditions (Figure 6). 
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Figure 6. Drug sensitivity of L. mexicana promastigotes grown in defined Nayak medium. 
Toxicity of amphotericin B, pentamidine, and methotrexate on promastigotes grown in HOMEM (white bars) and NM (grey 
bars) was tested by an Alamar blue assay. Abbreviations: NM, Nayak medium; HOMEM, hemoflagellate-modified 
minimum essential medium. Error bars = mean ± SD; n=6; ***, p<0.001. 

 
 

Discussion 

Genomic analysis of Leishmania has yielded extensive information about their evolution, 
distribution, life-cycle, metabolism, and pathogenesis, and has suggested that different 
species have distinct strategies to cope with the environmental challenges they encounter 
during development [42, 45 - 49]. However, a recent genomic comparison of several species 
of Leishmania revealed minimal variation in the genome of these organisms [50 - 55]. That 
suggested that species-specific features are the result of post-transcriptional regulatory 
mechanisms. The transcriptome, and particularly the proteome and metabolome of 
Leishmania, are highly dynamic and detection of subtle differences in the abundance of 
components of these systems requires the use of tightly controlled experimental conditions 
and cutting-edge instrumentation. The use of undefined culture media can confound the 
interpretation of proteomic and metabolomics datasets, because the proteome or metabolome 
that is analysed is of mixed origin. The development of defined media could remedy this 
issue, as well as potentially reduce the cost and the risk of contamination with infectious 
agents. To facilitate proteomics and metabolomics analysis of Leishmania, we have 
developed a simple, chemically defined growth medium, termed Nayak medium (NM), that 
supports continuous parasite growth, allows determination of nutrient requirements, and 
enables proteomics and metabolomics analysis of Leishmania to be performed on samples 
that comprise proteins and metabolites of solely parasite origin.  

Leishmania growth in Nayak medium 

Comparative growth analyses in NM revealed that L. mexicana promastigotes grow at a 
marginally slower rate and to a lower stationary-phase density but show similar morphology 
and macrophage infectivity to cells grown in our standard rich, serum-supplemented culture 



media (HOMEM). Interestingly, we found that the IC50 for pentamidine and methotrexate 
was significantly lower in promastigotes grown in NM, compared with HOMEM. We 
hypothesize that this may be result from interactions between these compounds and serum 
proteins that are present in HOMEM, and we are currently testing this possibility. 
Importantly, promastigote growth can be maintained indefinitely in this defined medium, 
confirming that the latter includes all nutrients required by the organisms, and will permit the 
generation of large quantities of biological material. Among the medium components in NM, 
we chose to further investigate amino acid, co-factor, vitamin, and metal requirements. 

Amino acids essential for Leishmania viability  

Arginine, leucine, lysine, phenylalanine, tryptophan, and valine 

Amino acids are primary nutrients and as such are acquired or synthesized by organisms. 
Bioinformatic analysis of Leishmania genome sequence datasets suggests they are able to 
synthesize alanine, aspartate, asparagine, cysteine, glutamate, glutamine, proline, serine, 
methionine and threonine but must salvage arginine, histidine, isoleucine, leucine, lysine, 
phenylalanine, tryptophan, tyrosine, and valine from the  environment [42]. We tested the 
importance of each of these substrates for Leishmania viability in NM, a background where 
the only appreciable alternative carbon source was glucose, and were able to confirm that a 
subset of essential amino acids, namely arginine, leucine, lysine, phenylalanine, tryptophan, 
and valine (Table 3) are required by L. mexicana promastigotes to survive in culture for even 
a single passage (corresponding to fewer than 5 population doublings). Of these 6 amino 
acids, transporters only for arginine and lysine have been characterised in Leishmania and the 
respective permeases have been designated AAP3 [41] and AAP7 [56].  

Internalised arginine is directed to intermediary metabolism for the synthesis of important 
biomolecules such as proteins, polyamines, and nitric oxide (Figure 7) [41]. Additionally, a 
recent metabolomic analysis has revealed that arginine is also converted to citrulline, 
argininosuccinate (the linking intermediate in the aspartate-to-fumarate interconversion), and 
argininic acid, and excreted as such by Leishmania (Figure 7) [57]. The same study further 
showed that L. mexicana utilizes more arginine compared with L. major and L. donovani 
which suggested that the amino acid may have discrete fate and function in the different 
Leishmania sub-species.  

Lysine is involved in protein synthesis and is a key site for post-translational modifications 
(PTMs) of histone and non-histone proteins. Genomic analysis has confirmed that 
Leishmania contain genes for methyltransferases, demethylases, acetyltransferases, and 
deacetylases [50] and following characterisation of a number of histone acetyltransferase 
(HAT) genes has suggested that PTMs of lysine play a role in Leishmania survival [58 - 61]. 
No further metabolic function of lysine, however, has been described in Leishmania.  

Leucine, through 4-methyl-2-oxopentanoate (4mop) and hydroxymethylglutaryl-CoA (HMG-
CoA), and valine, through propionyl-CoA and succinyl-CoA, can be converted to acetyl-CoA 
and then metabolised through the tricarboxylic acid cycle (TCA cycle) (Figure 7) [42]. The 
products of leucine and valine degradation, namely 4mop and 3-hydroxyisovalerate (HMB), 



respectively, are excreted by Leishmania [57] while the generated HMG-CoA is used in 
isoprenoid synthesis [62].  

Phenylalanine can be converted to tyrosine, phenyllactate, and phenylpyruvate while 
tryptophan can be converted to indole 3-lactate, indole 3-pyruvate, indole 3-acetate, and 
kynurenate, which are all excreted by Leishmania (Figure 7) [42, 57]. No intracellular 
metabolic function has been assigned to these metabolites. It has been proposed, however, 
that when excreted, the products of aromatic amino acid breakdown are involved in parasite-
host interactions and pathogenesis [63, 64].  

Table 3. Relative importance of individual amino acids in Nayak defined medium. Amino acid 
colours correspond to those in Figure 7 and reflect their importance.  

Critical for viability Support growth
Support protein 

synthesis

Non-essential     

(in the presence o f glucose)

L-Arginine L-Aspartate L-Histidine L-Alanine
L-Leucine L-Glutamate L-Isoleucine L-Asparagine
L-Lysine L-Glutamine L-Methionine L-Cyteine
L-Phenylalanine L-Serine L-Threonine Glycine
L-Tryptophan L-Proline
L-Valine L-Tyrosine
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Figure 7. Amino acids shown to be crucial for Leishmania mexicana viability in defined 
Nayak medium. Abbreviations: AAP, amino acid permease; Ala, alanine; Arg, arginine; Asn, asparagine; Asp, 
aspartate; Cys, cysteine; Glu, glutamate; Gln, glutamine; Gly, glycine; His, histidine; HMB, 3-hydroxyisovalerate; HMG-
CoA, hydroxymethylglutaryl-CoA; Ile, isoleucine; Leu, leucine; Lys, lysine; Met, methionine; Phe, phenylalanine; Pro, 
proline; SAM, S-adenosyl-L-methionine; Ser, serine; TCA, tricarboxylic acid cycle; Thr, threonine; Trp, tryptophan; Tyr, 
tyrosine; Val, valine. 

  

 



Amino acids required for growth and protein synthesis in Leishmania 

The observation that arginine, leucine, lysine, phenylalanine, tryptophan, and valine were 
crucial for promastigote survival was not surprising, as bioinformatics analyses suggest that 
Leishmania are auxotrophic for these amino acids [42]. They are also predicted to be 
auxotrophic for isoleucine and histidine, but we observed moderate growth in media lacking 
these amino acids. However, the protein content and size of these cells was dramatically 
reduced, suggesting that isoleucine and histidine limitation does impact the cells. It is likely 
that growth would not be sustained in a subsequent passage into histidine or isoleucine 
knockout media. The histidine-glutamate pathway does not operate in Leishmania and the 
amino acid thus cannot be used as an energy source [42]. Histidine, instead, serves as a 
precursor for ovothiol A and as such is proposed to be involved in defence against oxidative 
stress [65]; a property that may be dispensable in axenic culture but critical in the host. 
Isoleucine is converted to acetyl-CoA and used in lipid synthesis [66]. 

Tyrosine can be synthesized from phenylalanine and excreted as 3-(4-hydroxyphenyl)lactate 
and 4-hydroxyphenil pyruvate [42, 57]. In 2014, Moreno and colleagues elucidated the 
crystal structure of L. infantum tyrosine aminotransferase (TAT) and showed that TAT is a 
cytoplasmic enzyme of the Iγ subfamily of aminotransferases that is expressed at a higher 
rate in amastigotes [63, 64]. The latter suggests that tyrosine, similar to other aromatic amino 
acids whose oxidation end-products have been related to Leishmania infectivity in 
macrophages [63, 64], could be more important, and even vital, for Leishmania amastigotes. 

Culture of promastigotes in NM that was deficient in lysine resulted in a profound decrease in 
protein synthesis that was equal to that observed in promastigotes grown without any amino 
acid. Similarly, omission of methionine and threonine significantly inhibited protein synthesis 
while that of aspartate and serine slowed, to a great extent, promastigote growth. Aspartate 
serves as a carbon and energy source and supports asparagine synthesis (Figure 7), TCA 
cycle anaplerosis, and carbohydrate synthesis via gluconeogenesis [42, 67 - 69]. Serine and 
methionine are precursors for cysteine (Figure 7) [70] while serine, glycine, and threonine 
can reversibly be converted into each other by the serine hydroxymethyltransferase (SHMT) 
and tetrahydrofolate (THF)-dependent glycine cleavage system (GCS) [42]. SHMT and GCS, 
additionally, are involved in the folic acid biosynthesis pathway whose operation leads to the 
formation of one-carbon units that are used for the synthesis of thymidylate, purines, and 
methionine [71, 72]. The latter is a precursor for S-adenosyl-L-methionine (SAM) (Figure 7) 
which is used in polyamine synthesis [73] and as a methyl donor in various methylation 
reactions. Cysteine, glycine, and glutamate, in turn, are precursors for glutathione whose 
conjugation with spermidine leads to the generation of trypanothione, the central antioxidant 
of trypasomatids [65]. Serine, additionally, is an important building block in phospho- and 
sphingolipid biosynthesis while threonine is used for production of acetyl-CoA and acetate 
(unpublished data). Interestingly, aspartate, glutamate, glutamine and serine, which markedly 
promote promastigote growth are among the most abundant amino acids in the honeydew on 
which the insect vectors of Leishmania feed [74 - 76]. 

Of the 20 proteogenic amino acids, only alanine, asparagine, glycine, and proline could be 



omitted from NM without significant consequences to promastigote growth. These amino 
acids can directly be synthesized from pyruvate, aspartate, serine, and glutamate, 
respectively, and may not be of benefit when the latter substrates are in sufficient quantities.  

Alanine plays a key role in osmoregulation [77, 78] and proline, which is a primary carbon 
and energy source for L. mexicana promastigotes when glucose cannot be acquired [67], is 
not as important under amino acid- and glucose-replete conditions. Metabolism of alanine, 
asparagine, glycine, and proline might be of greater importance in the gut of the insect vector 
where energy substrates are variable and osmotic challenges more extreme. In the defined 
NM medium, however, the four amino acids are non-essential. 

Co-factors, vitamins, and metals required for Leishmania viability  

Previous studies on medium formulation and nutrient requirements and transport have 
established that Leishmania must salvage biotin, pterins, folic acid, pantothenate, pyridoxine, 
riboflavin, nicotinate, and heme from exogenous sources [10, 33, 42, 72, 79 - 81]. In this 
study, we showed that biopterin has the highest impact on in vitro growth of promastigotes, 
followed by lipoic acid, folic acid, riboflavin, and p-aminobenzoic acid (pABA). Leishmania 
encode multiple genes for folate/biopterin transporters [81 – 84]. When internalised, folic 
acid is conjugated to pteridine moieties and pABA to form folates which are reduced by 
pteridine reductase (PTR1) and dihydrofolate reductase–thymidylate synthase (DHFR-TS) 
and used as co-factors in one-carbon metabolism (Figure 8) [42, 72]. The latter is 
interweaved with many essential processes, such as the synthesis of thymidylate, methionine, 
and 10-formyltetrahydrofolate (required for mitochondrial protein synthesis), in Leishmania 
[71, 72, 81]. Folate transport and metabolism, furthermore, have been associated with drug 
resistance in Leishmania [72, 81, 82] and are validated chemotheraputic targets.  

Lipoic acid and its reduced form, dihydrolipoic acids, are highly reactive antioxidants which 
scavenge reactive oxygen species such as superoxide radicals, hydroxyl radicals, 
hypochlorous acid, peroxyl radicals, singlet oxygen, chromanoxyl radicals of vitamin E, and 
ascorbyl radicals of vitamin C [85, 86]. Lipoic acid, additionally, is an essential co-factor in 
several multienzyme complexes, such as pyruvate dehydrogenase (PDH), 2-oxoglutarate 
dehydrogenase (OGDH), and branched-chain 2-oxo acid dehydrogenase (BCDH) complexes 
[87]. Similarly, riboflavin, in the form of flavin mononucleotide (FMN) and flavin adenine 
dinucleotide (FAD), is a co-factor in many flavoproteins which participate in reduction-
oxidation reactions, including such leading to energy generation (Figure 8).   
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Figure 8. Co-factors, vitamins, and metals shown to be important for Leishmania growth in 
defined Nayak medium. Abbreviations: Mg2+, magnesium ion; Ca2+, calcium ion; Fe2+, ferrous ion; Zn2+, zinc ion; 
Mn2+, manganese ion; Co2+, cobalt ion. 

Although we observed growth without specific addition of metals, it is likely that some metal 
ions are required for growth, and we cannot exclude the possibility that trace amounts of 
essential metals are added as impurities in other medium components. Nevertheless, we 
observed that addition of calcium (Ca2+), cobalt (Co2+), copper (Cu2+), iron (Fe2+), manganese 
(Mn2+), magnesium (Mg2+), and zinc (Zn2+) were important for Leishmania growth (Figure 
8). Co2+, Cu2+, and Mn2+ were effective at much lower concentrations than the other 4 metals. 
Accordingly, it has been determined that Mg2+, Zn2+, and Fe2+ are the most abundant divalent 
cations in the cytosol of the related organism, Trypanosoma brucei, whereas Co2+ is present 
in trace amounts [88]. Two potential CorA-like Mg2+ transporters, designated MGT1 and 
MGT2, have recently been identified in L. major and were shown to be important for parasite 
propagation and infectivity in mice [89]. Mg2+, similar to the other cations discussed here, is 
an important metal biocatalyst and as such, it has been linked to activation of enzymes such 
as the ecto-ATPase of L. tropica which has been implicated in virulence (Figure 8) [90]. Ca2+ 
is stored in acidic compartments termed acidocalcisomes and plays a critical role in signal 
transduction and host invasion in Leishmania [91]. A number of genes encoding putative 
Ca2+-binding proteins have been identified in the genome of trypanosomatids, and some of 
these proteins, including protein kinases, peptidases, peroxiredoxins, and ion channels, have 
been characterised in Leishmania [91 - 93]. Metabolically, Ca2+ is required for the proper 
operation of enzymes such as the inorganic pyrophosphatase of L. major (Figure 8) [94].  

Acquisition of external iron has recently been elucidated and involves the conversion of Fe3+ 
into Fe2+ and import of the latter in the Leishmania milieu [95]. Fe2+, Zn2+, and Mn2+ are 
components of three well-characterised metalloenzymes of Leishmania, namely the 
antioxidant and virulence factor superoxide dismutase (SOD) [96], the major surface 
glycoprotein and virulence factor GP63 [97, 98], and arginase [87] (Figure 8). All three 
enzymes have been associated with host invasion, evasion of host immune response, and 
establishment of infection [96 - 99]. Mn2+, additionally, is a co-factor for xanthine 



phosphoribosyltransferase [100] while Co2+ is required by phosphoglycerate mutase [101] 
(Figure 8).  

Although NM was developed as a simple defined medium, our study suggests that many 
components are not essential for L. mexicana growth, as observed for most amino acids. We 
have tested still more simple media compositions but we observed that growth rates and 
sustainable growth are reduced as components are removed (data not shown), limiting the use 
of such minimal media to studies where there is a specific advantage to its use 

The development of a defined medium for the axenic culture of amastigotes would be of 
great use, though this may be more challenging as many of the factors present in animal sera 
will be relevant to the parasite persistence in the vertebrate host. Accumulating data suggests 
that amino acids are key substrates throughout the Leishmania life-cycle, and our data 
underscore the relative order of importance of the 20 proteogenic amino acids for parasite 
growth. Although their phenotypes are very different, exogenous amino acids that are 
essential to promastigotes are likely essential also in amastigotes, and the routes by which 
these are acquired and metabolised represent potential drug targets.  
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