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Abstract— In this work, an opportunistic group scheduling
scheme is proposed which schedules a group of users based
upon the instantaneous channel conditions. The users empty the
buffer partially corresponding to short term fast fading. The
task is to provide a maximum hard delay guarantee to each
user and minimize the consumption of the overall system energy.
The scheme performs well for large networks because all the
users perform scheduling independent of each other and no state
information is required about the other users for the scheduling
task, making the task simpler. The hard delay constraint is
proposed as a system parameter to control the maximum delay-
energy tradeoff and the results demonstrate the energy efficiency
of the scheme for the multiuser environment.

I. INTRODUCTION

Wireless systems can be divided into two major classes
depending on their delay requirements. Some of the systems
have strict delay requirements and resources such as bandwidth
and power need to be provided to keep the delay within the
acceptable limit and remove the delay jitter. Such systems
are termed as delay limited systems. The second class of
systems do not demand for high delay requirements and
resources can be used more efficiently by delaying the data for
some time depending upon the application. Such systems are
termed as delay tolerant systems. There exist systems which
have application delay requirements lying in between the two
classes. In such applications, delay jitter and average system
delay are not important factors but a hard delay constraint
needs to be fulfilled. Wireless sensor networks (WSN) belong
to this class where average system delay and delay jitter in
transmission of sensed data is not as relevant for the scheduling
of data but data transmission before the hard deadline is
the most necessary requirement. Using delay tolerance of the
WSN, system energy can be saved to minimize the energy
consumption of the batteries installed on the sensor nodes.

Fading is termed as fast fading if the coherence time
of the channel is much shorter than the application delay
requirement and if the coherence time is greater than the delay
requirements, it is called slow fading [1]. Therefore, fading
is associated with the variability of the channel as well as
with the application delay requirement. In wireless systems,
channel fading has been treated as a source of uncertainty
but in the context of multiuser diversity, it can be considered

as randomness that can be exploited by scheduling the users
experiencing a good channel [2].

The work in [3] deals with maximization of the information
capacity by scheduling the users having the instantaneous
channel quality near the peaks. This form of diversity in
which different users experience independent channels at the
same time is called multiuser diversity. In [2] an opportunistic
scheduling scheme called proportional fair scheduling (PFS)
is proposed to provide the fairness guarantees to all users.
Reference [4] deals with the tradeoffs between average delay
and average power. In [5], an exact solution for the average
packet delay under the optimal offline scheduler has been
presented and the results of [4] have been extended to the
multiuser context in [6].

This work deals with the concept of energy-delay tradeoff
in a multiuser environment in the presence of a hard deadline
transmission constraint. This deadline constraint depends on
the application delay requirement. Randomly varying nature of
the channel has been exploited to schedule the users according
to the instantaneous short term fading state. It is a partial buffer
emptying scheme as compared to emptying buffer scheduling
proposed in [7] but the operation of the scheduler is still
quite simple. An offline optimization is performed using the
statistics of the channel and all the users perform online
scheduling without any inter-user communication. This feature
makes the scheme flexible and appropriate for the multiuser
environment having a large number of users.

The rest of the paper has been organized as follows.
Background about the previous work on deadline scheduling
has been provided in Section I-A. Section II describes the
system model used for evaluating the results. Section III
presents the detailed discussion of the Deadline Dependent
Partial Buffer Scheduling (DDPS) scheme proposed in this
work. In section IV, numerical results have been described
to evaluate the DDPS scheme and section V concludes the
contribution of this paper.

A. Background

Opportunistic Superposition Coding (OSPC) has been pro-
posed to exploit the channel diversities of the users in [8]. This
scheme provides the desired throughput for all the users and
average delay guarantees for each user. The results of [8] have



been extended in [7] and Deadline Dependent Opportunistic
Scheduling (DDOS) has been proposed. DDOS provides op-
portunistic channel access to the users in presence of a hard
delay constraint. The users use the channel opportunistically
as long as the maximum buffer length is less than the hard
delay constraint and reaching the deadline empty the buffer
regardless of the channel state. This scheme specifically suits
to wireless sensor networks due to their passive nature and
wake up cycles.

It is very simple scheduling scheme but the operation of
emptying of buffer in the deadline mode is the major drawback
[7]. The energy required for transmission is exponential in
rate R and buffering the data increases the required energy
exponentially. If the channel is not good and the deadline
is reached, the user empties the buffer and a large amount
of energy is wasted due to large buffer size. In this process,
a large fraction of data is transmitted unnecessarily because
the deadline of only the oldest data was reached. In this
work, this issue is addressed and a scheme is proposed which
increases the opportunistic use of the channel and transmit the
data proportional to the channel state in the opportunistic and
deadline mode. This effectively results in energy effectiveness
as demonstrated in the numerical results.

II. SYSTEM MODEL

We consider a multi access system with K users placed
uniformly at random in a cell. Each user requires a certain
fraction of the data rate provided in the system. The required
average rate R for each user is Γ

K where Γ denotes the spectral
efficiency of the system. The system is time slotted and we
consider an uplink case but results can be generalized for
downlink in a straightforward manner.

The fading environment of the multi-access system is de-
scribed as follows. Each user k experiences a channel gain
dk(t) in slot t. The channel gain dk(t) is the product of path
loss sk and short term fading fk(t) i.e. dk(t) = skfk(t). The
path loss and short term fading are assumed independent. The
path loss is a function of distance between the transmitter
and the receiver and we assume a constant path loss from
slot to slot for a specific user. Short term fading depends
on the scattering environment and depicts the situation when
coherence time of the channel is much less than the delay
requirement of the application. Short term fading changes
from slot to slot for every user and is i.i.d across both users
and slots but remains constant within a block. This model is
referred to as block fading. ER

k (t) and Ek(t) represent the
received and the transmitted energy for each user k such that
ER

k (t) = dk(t)Ek(t). It can be observed that the distribution
of dk(t) is not symmetric across the users. Let N0 denote the
noise power spectral density.

Using superposition coding, the transmit energy Eπk
of the

scheduled user k is given by [9],

Eπ =
N0

dπk

[exp(
∑
i≤k

Rπi)− exp(
∑
i<k

Rπi)]. (1)

where π is the permutation of the users which sorts the channel
gains in increasing order and results in minimum transmit
energy for the scheduled users.

III. DEADLINE DEPENDENT PARTIAL BUFFER
SCHEDULING

Deadline Dependent Partial Buffer Scheduling (DDPS) is
a multiuser scheduling scheme where users are scheduled
opportunistically depending upon the instantaneous short term
fading states as long as the hard deadline for the transmission
of data is not reached. In each time slot only integer multiples
of rate Γ

K (packet size) can be transmitted. The delay of
the oldest arriving (and yet not transmitted) data packet is
represented by a state S. The hard delay constraint τmax

represents the maximum number of states n. State transition
Ti→j from a state Si to the next higher state Sj occurs if no
data is transmitted. Similarly state transition Ti→j from a state
Si to a lower state Sj occurs by transmitting certain packets of
size Γ

K depending upon the transmission thresholds as shown
in Fig. 1.

Definition: Transmission threshold: A transmission
threshold for a state Sj is defined as the minimum short term
fading value causing state transition Ti→j of Si to Sj for all
states Si where i ≥ j. It is denoted by κi→j .

Note that state Sj can be entered from the lower states also
but those transitions occur due to non transmission of data and
are excluded from the definition of transmission threshold.

Properties of Transmission threshold:
1) κi→j > κi→j+1 ∀ i, j

The transmission threshold for entering into any state Sj

is greater than the threshold for the next higher state.
2) κi→j = κí→j ∀ i 6= í

The transmission threshold for entering into a state
Sj from all the higher states is same. Therefore,
we denote κi→j by κj for simplicity. For n states,
κjε{κ1, κ2...κn}.

3) κn→n = 0
This is the deadline constraint. Transmission threshold
for remaining in the last state is set to zero to fulfill the
deadline constraint.

We consider constant arrivals of one packet in each time slot
and this assumption is true when all the links are saturated
with traffic. Arrivals are queued in a finite buffer of length
τmax before transmission. As user is receiving one data packet
in its buffer in each time slot, it stays in the same state by
transmitting a single packet and the corresponding fk value is
termed as minimum transmission threshold. The user moves
back from state Si to any of the Sj states by transmitting
multiple packets depending upon the short term fading gain
fk. DDPS chooses the transition Ti→j such that,

κj < fk ≤ κj+1 (2)

If user is in state Si and fk is greater than κj , the user
moves back by L−1 states while transmitting L packets where
Lε{1, 2, ...n}. If the short term fading of the user is below the
minimum threshold and hard delay deadline is reached, the
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Fig. 1. State diagram for the transition states of a single user. User can move back to any one of the states but move forward only to immediate next sate
due to constant arrival.

oldest arrived packet in the buffer is transmitted regardless
of the short term fading state. The last state, called deadline
state is different from the opportunistic states in the way that
at least a single data packet is transmitted for any value of fk

to fulfill the hard deadline requirements.
We can represent the single user transition state model as a

Markov Decision Process (MDP). In a MDP, if the process is
in state i at time n and action a is chosen, then the next state of
the system is determined according to transition probabilities
Pij(a) where aεA [10]. By letting Sn as a state of the process
at time n and an, the action chosen at time n, the transition
probabilities in MDP can be defined as,

P{Sn+1 = j|S0, a0, S1, a1, ...Sn = i, an = a} = Pij(a) (3)

Transition probabilities are related with current state Si and
the subsequent action a. This action depends on the short term
fading statistics in our scheme. A policy describes a rule for
choosing the actions. Under a policy β, the sequence of sates
{Sn, n = 0, 1, ...} constitutes a Markov chain with transition
probabilities Pij(β) and is given by,

P =


α11 α12 0 · · · 0
α21 α22 α23 · · · 0
· · · · · · · · · · · · · · ·

α(n−1)1 α(n−1)2 α(n−1)3 · · · α(n−1)(n)

αn1 αn2 αn3 · · · αnn


(4)

The Markov chain has been shown in Fig. 1. For any policy
β, the limiting probability that the process will be in state i
at time n and action a is chosen is denoted by πia.

πia = lim
n→∞

Pβ{Sn = i, an = a} (5)

The limiting probabilities of the user in state S1, S2 and S3

are given by,

π1a = α11π1a + α21π2a + α31π3a + · · ·αn1πna (6)
π2a = α12π1a + α22π2a + α32π3a + · · ·αn2πna (7)
π3a = α23π2a + α33π3a + · · ·αn3πna (8)

Similarly for state n, the limiting probabilities can be written
as,

πna = α(n−1)nπ(n−1)a + αnnπna (9)

The sum of the limiting probabilities of all the states should
be 1 and we have, ∑

a

∑
i

πia = 1 (10)

The solution of n+1 equations gives the limiting probabilities
for n states. The limiting probability of being in state j is
independent of state i and is given by,∑

a

πja =
∑

i

∑
a

πiaPij(a) for all j (11)

We want to minimize the cost function [11], [10].

Expected cost under β = lim
n→∞

Eβ

[∑n
i=1 C(Si, ai)

n

]
(12)

πia denotes the limiting probability of being in state i and
choosing action a, then the limiting expected cost function at
time n is given by,

lim
n→∞

E[C(Sn, an)] =
∑

i

∑
a

πiaC(i, a) (13)

Using Eq. (12) and Eq.(13),

Expected cost under β =
∑

i

∑
a

πiaC(i, a) (14)

Now our policy tries to minimize the cost function,

minπia

∑
i

∑
a

πiaC(i, a) (15)

subject to πia ≥ 0 and
∑

i

∑
a

= 1πia

and
∑

a

πja =
∑

i

∑
a

πiaαij

In our case the cost function is the system energy and it
depends on the vector of transmission thresholds ~κ.

~κ = (κ1, κ2, ...κn)T (16)

Optimal vector ~κ is computed by combining the effect of
the energy when user remains in opportunistic mode and the
time it spends in deadline mode. In large limit system, this
probability represent the proportion of users in a specific state
at a given time and minimum energy solution is obtained by
taking into account the proportion of users in opportunistic
and deadline modes simultaneously.



TABLE I
RECURSIVE THRESHOLD COMPUTATION

τmax κ for κ for κ for κ for
entering S1 entering S2 entering S3 entering S4

2 κ1 = 2.5 κ2 = 0 NA NA
3 κ1 = 3 κ2 = 2.5 κ3 = 0 NA
4 κ1 = 3.3 κ2 = 3 κ3 = 2.5 0

The threshold vector is found by linear programming such
that overall system energy is minimized,

~κopt = arg min
κi

∑
S

E[E(κn)πna +
n−1∑
i=1

E(κi)πia] (17)

where first term represents the sum energy of the users in
the deadline mode while second term corresponds to the sum
energy of the proportion of users in opportunistic mode.

Using the Eq. (9), Eq. (17) can be written as,

~κopt = arg min
κi

∑
S

E
[
E(κn)

α(n−1)nπ(n−1)a

1 − αnn

+
n−1∑
i=1

E(κi)πia

]
(18)

A common problem with MDP is exponential increase in
complexity with the number of states. We have found that
at the large system limit, behavior of the system energy is
relatively indifferent to changes in user rates in different states
and therefore transmission thresholds optimized for lower state
space still holds for higher state space. Ignoring the future
cost is a suboptimal approach but it reduces the computational
complexity significantly making the scheduling task simpler
by optimizing only n− 1 transmission thresholds for n states.

Limiting probabilities πna for state n depends on the lim-
iting probabilities π(n−1)a for state n − 1. Similarly, π(n−1)a

depends on π(n−2)a and this dependence chain goes to the
base case of π(1a). This leads us to the recursive solution of
the equation for the threshold values. For recursive solution,
hard delay constraint τmax = 2 is the base case when state S1

is in opportunistic mode and state S2 represents the deadline
mode. Using n = 2 in Eq. (18),

~κopt = arg min
κi

∑
S

E[π1a{E(κ2)
α12

1 − α22
+ E(κ1)}] (19)

Here, we set κ2 = 0 due to hard deadline constraint. κ1 is
computed numerically such that energy is minimized.

For n = 3, Eq. (18) can be written as,

~κopt = arg min
κi

∑
S

E
[
π1a

{
E(κ3)

(
α12

1− α22

) (
α23

1 − α33

)
+ E(κ2)

(
α12

1− α22

)
+ E(κ1)

}]
(20)

Again, κ3 = 0, due to hard delay constraint. Due to recursive
nature of the equation, κ1 found in Eq. (19) represents κ2 here
and optimum solution for κ1 is computed again as shown in

table I. The columns represent the threshold values for entering
in state Si from state Sj when j > i.

Optimization operation is performed offline using the sta-
tistics of the channel. Users perform online scheduling by
comparing the optimized threshold values with the instanta-
neous short term fading. There is no computational load on
the user side but central scheduler needs to provide the rate
and allocated power information to all the scheduled users.

IV. NUMERICAL RESULTS

We have considered a multi-access channel with M bands
and it is assumed that fading on these channels is statistically
independent. It implies that every user senses M channels
instead of a single channel and selects its best channel as a
candidate channel for the transmission scheduling. Therefore,
the scheduler schedules a specific user in the opportunistic
mode if its best channel is greater than the opportunistic
scheduling threshold. This is the optimal multi-band allocation
for the asymptotic case [9]. We consider a system where users
are placed uniformly at random in a cell except for a forbidden
region around the access point of radius δ = 0.01. The path
loss is exponential with exponent 2. All users experience
fast fading with exponential distribution with mean one on
each of the M channels. We consider M = 10 in our
numerical results. The spectral efficiency values used in the
results are divided by M to get spectral efficiency/channel. The
numerical results in Fig. 2 have been obtained by simulating
a multiuser environment where 1000 users have simultaneous
access to the 10 channels while Fig. 3 and Fig. 5 have been
obtained for 5000 users. For each operation, 100 path loss
environments have been simulated to remove the effect of
variation in path loss on the system energy. For a single
path loss environment, 200 scheduling operations have been
performed for the convergence of the sum energy of the
system. Fig. 2 shows the computation of optimal threshold,
κ for the hard delay constraint τmax = 2 and τmax = 3.
Spectral efficiency per channel is 0.5. This point corresponds
to the threshold that results in minimum system energy. The
threshold values have been summarized in table I.
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Fig. 2. The figure shows the recursive computation of balance point for
τmax = 2 and τmax = 3.
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Fig. 3. The figure shows the energy efficiency of DDPS by increasing the
maximum delay deadline.

Fig. 3 shows the effectiveness of the scheme for increas-
ing maximum delay constraint. An increase in transmission
deadline results in more energy efficiency and the system
designer can effectively use this maximum delay parameter
to achieve the desired system efficiency and vice versa. Fig.
4, demonstrate the effect of number of users on the scheme.
The scheme has the same performance for small spectral
efficiencies for the number of users ranging from 250 to 4000.
For large values of spectral efficiencies, the performance is
improved with number of users. At spectral efficiency of 10
b/s/Hz, almost 2 dB difference is observed between 500
and 1000 user case. A lot of applications like wireless sensor
networks do not operate on so high spectral efficiencies and
this allows the scheme to operate effectively for small number
of users.
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Fig. 4. The figure demonstrate the effect of number of users on DDPS.

Fig. 5 shows the comparison of DDPS with DDOS proposed
in [7] for τmax = 4. Opportunistic use of the channel and
partial emptying of buffer results in energy saving for DDPS
as compared to DDOS while providing the same deadline
transmission guarantee.

V. CONCLUSIONS

In this paper, an opportunistic scheduling scheme DDPS is
proposed in the presence of a deadline transmission constraint.
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Fig. 5. The figure shows the comparison of DDOS and DDPS Schemes.

The users are scheduled according to short term fading and
buffer is emptied partially in proportion to the channel quality.
It is an offline optimization problem but scheduler performs
on line scheduling without the need of any communication
between the users resulting in a very simple scheduler. The
results demonstrate the energy efficiency of the scheme as
compared to scheduling schemes which empty the buffer. The
scheme exhibits similar results for a wide range of spectral
efficiencies and number of users but at very high spectral
efficiencies, better performance is observed for large number
of users. The scheduling scheme is useful for the application
like wireless sensor networks which operate in small spectral
efficiency region but require features of hard delay deadline,
simple scheduling and saving in energy.
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