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Abstract 

Since the Sun-Earth libration points L1 and L2 are regarded as ideal locations for 

space science missions and candidate gateways for future crewed interplanetary 

missions, capturing near-Earth asteroids (NEAs) around the Sun-Earth L1/L2 points has 

generated significant interest. Therefore, this paper proposes the concept of coupling 

together a flyby of the Earth and then capturing small NEAs onto Sun–Earth L1/L2 

periodic orbits. In this capture strategy, the Sun-Earth circular restricted three-body 

problem (CRTBP) is used to calculate target Lypaunov orbits and their invariant 

manifolds. A periapsis map is then employed to determine the required perigee of the 

Earth flyby. Moreover, depending on the perigee distance of the flyby, Earth flybys with 

and without aerobraking are investigated to design a transfer trajectory capturing a small 

NEA from its initial orbit to the stable manifolds associated with Sun-Earth L1/L2 

periodic orbits. Finally, a global optimization is carried out, based on a detailed design 

procedure for NEA capture using an Earth flyby. Results show that the NEA capture 

strategies using an Earth flyby with and without aerobraking both have the potential to 

be of lower cost in terms of energy requirements than a direct NEA capture strategy 

without the Earth flyby. Moreover, NEA capture with an Earth flyby also has the 

potential for a shorter flight time compared to the NEA capture strategy without the 

Earth flyby.  

Keywords: Circular restricted three-body problem; Lyapunov orbit; stable manifolds; 

Earth flyby; aerobraking 
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1. Introduction 

Near-Earth Asteroids (NEAs) can in principle provide useful resources in terms of 

feedstock for spacecraft propellant, crew logistic support and a range of useful metals 

(Sonter, 1997). The exploitation of these in-situ resources has long been proposed as a 

necessary part of long-term space development (Lewis and Hutson, 1993; Bottke, 2002; 

Sanchez et al., 2012; Yárnoz et al., 2013). Therefore, the idea of capturing NEAs, based on 

current technology, for scientific and potentially commercial purposes, has been studied in 

recent work (Hasnain et al., 2012; Sanchez et al., 2012; Lladó et al., 2014; Sánchez and 

Yárnoz, 2016). In these works, the Sun-Earth collinear libration points L1 and L2 

repeatedly appear as ideal locations for captured NEAs (Yárnoz et al., 2013; Lladó et al., 

2014; Sánchez and Yárnoz, 2016).  

The Sun-Earth L1 and L2 points are so noteworthy due to their unique locations and 

dynamical characteristics. The Sun–Earth L1 point is an ideal position for scientific 

observations of the Sun–Earth system, such as monitoring the solar wind. Similarly, the 

Sun–Earth L2 point is also a useful location for space-based observatories and is regarded 

as a staging node for interplanetary missions to NEAs and Mars (Farquhar et al., 2004). 

Overall, the Sun-Earth L1 and L2 points represent potentially beneficial gateways for future 

interplanetary missions (Zimmer, 2013). Periodic orbits around these collinear libration 

points have an unstable behaviour and will consequently diverge under a small 

perturbation. The trajectories generated from a periodic orbit under such perturbations are 

the invariant manifolds associated with the periodic orbit.  Hence, such periodic orbits and 

their associated invariant manifolds can be employed to investigate low-cost transfer 

trajectories between different orbits (Lo and Parker, 2004; Davis et al., 2011; Xu et al., 

2012).  After a spacecraft moves onto the stable manifold of a libration point orbit (LPO), 

it will transfer to the target periodic orbit without any further manoeuvres. Meanwhile, 

such dynamical characteristics have been widely used in various trajectory design 

problems, including transfers between LPOs within the circular restricted three-body 

problem (CRTBP) of the Sun-Earth system (Davis et al., 2010; 2011; Xu et al., 2012). 

Furthermore, invariant manifolds are also proposed as a basic design strategy to calculate 

connections between different dynamical systems, such as low energy transfers between 

the Earth–Moon CRTBP and Sun–Earth CRTBP (Koon et al., 2000; Koon et al., 2001; 

Howell and Kakoi, 2006; Koon et al., 2011; Lei and Xu, 2016) . In these studies, transfers 

between two different three-body systems can be modelled by patching together invariant 

manifold tubes from each system. Usually a manoeuvre at or near the patching point is 

needed to move the spacecraft from one manifold tube to the other.  



3 
 

     Following the interest in capturing NEAs onto Sun-Earth LPOs, continuous-thrust 

propulsion has been considered to capture NEAs to LPOs around the Sun–Earth L2 point 

(Lladó et al., 2014). Meanwhile, a family of Easily Retrievable Objects (EROs) has been 

defined, corresponding to a subset of NEAs which are captured onto the Sun–Earth L1 or 

L2 periodic orbits with a total cost below 500 m/s (Yárnoz et al., 2013). Accordingly, the 

list of EROs have been updated (Sánchez and Yárnoz, 2016) and low thrust has been 

considered to design retrieval trajectories (Mingotti et al., 2014; Tang and Jiang, 2016).  

Meanwhile, work on low-energy transfers between Sun-Earth LPOs and NEAs has also 

been undertaken. The Sun–Earth L2 point is regarded as an important gateway for NEA 

and Mars exploration missions (Farquhar et al., 2004). For low-energy crewed exploration 

of NEAs, Zimmer (2013) proposed to employ a reusable spacecraft that is stationed on a 

halo orbit at the Sun-Earth L1 or L2 point for such missions. A perturbation method has 

been proposed to search for possible flyby opportunities between Sun-Earth Lissajous 

orbits and the asteroids Toutatis and 2010 JK1. The method then calculates low-energy 

transfers between the Lissajous orbit and the asteroids (Wang et al., 2013). Then Gao 

(2013) investigated optimal bi-impulse flyby trajectories from the Sun-Earth L2 point to the 

asteroids Toutatis, 2005 NZ6 and 2010 CL19. Besides, the Earth-Moon collinear libration 

points L1 and L2 are also viewed as potential staging points for future NEA exploration. 

NASA has also proposed a near-Earth asteroid redirect mission (ARM) to capture and 

return an NEA (or part of an NEA) to the Earth–Moon system and place it into a distant 

retrograde orbit around the Moon (Brophy et al., 2012). 

Gravity assists have also played a significant role in interplanetary mission design and 

deep space exploration. The concept of the gravity assist was proposed by Minovitch after 

he developed the patched conic method and accordingly it was used to design a range of 

low-cost interplanetary trajectories (Minovitch, 2010). Gravity assists can provide 

extended opportunities for interplanetary exploration, including NEA missions. Earth 

Gravity Assists (EGAs) were investigated to reduce the launch energy and the total cost of 

two-impulse transfer trajectories to NEAs (Qiao et al., 2006). EGA is also utilized to 

reduce the total cost of transporting a small asteroid to impact a larger hazardous asteroid 

(Eismont et al., 2013). Moreover, Mars gravity assists and solar electric propulsion were 

applied to design low-cost transfer trajectories to the main belt asteroids (Casalino and 

Colasurdo, 2003) and it has been shown that Mars is the most useful gravity-assist body 

for main-belt asteroid exploration through the utilization of Tisserand graphs (Chen et al., 

2014). Multiple gravity assists (MGAs) based on a hybrid approach were applied to design 

interplanetary transfers both to the asteroids and comets (Vasile and Pascale, 2006). MGAs 

can be also used to design transfer trajectories between an NEA and a main-belt asteroid 

(Yang et al., 2015). As for asteroid capture missions, a lunar flyby was used to capture an 
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NEA temporarily into the Earth’s Hill region (Gong and Li, 2015). Gravity assists were 

also investigated to capture NEAs into bound orbits around the Earth (Bao et al., 2015). 

Low energy trajectory design in multi-body environments is a rich and active research 

area which focuses on various classes of orbit design problems. As noted earlier, the 

utilization of periodic orbits and their associated invariant manifolds, to design low-energy 

trajectories in multi-body systems, has been a topic of particular interest in recent years 

(Folta et al., 2012; Pavlak, 2013). Weak Stability Boundary (WSB) theory has also been 

proposed and developed to design low energy Earth-Moon transfers (Belbruno and Miller, 

1993). To design transfer trajectories in multi-body environments, efficient mathematical 

tools are necessary, including the shooting method and Poincaré maps. Since the multiple 

shooting method can significantly reduce the dynamical sensitivities of the trajectories 

associated with LPOs, it has been studied extensively to obtain solutions of the boundary 

value problems (BVP) in the CRTBP (Keller, 1976; Grebow, 2010). Moreover, the 

Poincaré map that employs common hyper-plane definitions in a rotating reference frame 

can be used to transform a continuous time system to a discrete time dynamical system. A 

variety of map formulations are possible in the CRTBP and Hill's problem, including the 

periapsis map (Villac and Scheeres, 2003; Howell et al., 2011) which will be used later.  

     The strategy of coupling together a flyby of the Earth and capturing NEAs onto Sun–

Earth L1/L2 periodic orbits is now proposed. The dynamical model of the CRTBP is firstly 

introduced to calculate Lyapunov orbits around the Sun-Earth L1/L2 points and their 

associated stable manifolds. Then, according to the height of the flyby orbit at perigee, two 

types of the Earth flyby are determined, an Earth flyby with and without high altitude 

aerobraking. A grazing flyby is used, but it is assumed that only small bodies which would 

safely ablate in the Earth’s atmosphere at lower altitudes are considered for aerobraking. 

After selecting appropriate candidate NEAs and calculating the NEA capture window, a 

detailed design procedure is presented and finally global optimization is carried out. 

Meanwhile, the NEA capture strategy without an Earth flyby is investigated and results 

then obtained. Comparing the results of NEA capture strategies with and without the Earth 

flyby, the NEA capture strategy using an Earth flyby with and without aerobraking both 

have the potential to be cheaper. Moreover, these NEA capture strategies using an Earth 

flyby also have the potential to be save flight time.  
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2. Dynamical model 

2.1 Circular Restricted Three-Body Problem 

The Sun and Earth are assumed to be in circular orbits around their common centre–of-

mass while the NEA moves under the gravitational attraction of these two primary bodies. 

In a coordinate frame xyz with non-dimensional units which is centred at the Sun-Earth 

barycentre and rotating synchronously with the primaries, shown in Fig. 1, the Sun and 

Earth are located at [μ, 0, 0]T and [1μ, 0, 0]T, respectively. Therefore, the model of the 

circular restricted three-body problem (CRTBP) is introduced to describe the motion of an 

NEA as follows (Szebehely, 1967)  

 2 , 2 ,x y y x z
x y z

  
    

  
&& & && & &&  (1) 

where 

2 2

1 2

1 1( , , , ) [( ) (1 )]
2

x y z x y
r r

 
  


        

and 2 2 2 1/2
1 [( ) ]r x y z    , 2 2 2 1/2

2 [( 1 ) ]r x y z     are the distances of the NEA to 

the two primary bodies and the distance between the Sun and Earth is normalized to 1 (SE 

unit); / ( )e s em m m    is the mass parameter in the Sun-Earth CRTBP system and 

sm and em  are the mass of the Sun and Earth, respectively.   

   The CRTBP system is autonomous and so there exists an integral of motion in the 

CRTBP, termed the Jacobi constant J, as follows  

 2 2 22 ( , , , ) ( )x y z x y z J    & & &  (2) 

For the CRTBP, there are also five Lagrange points, also known as the libration points, 

Li, (i = 1, 2 . . . 5). The mass parameter assumed for this model is μ = 3.036  10-6 (Koon et 

al., 2011). In this paper, the collinear libration points L1 and L2 are the target libration 

points for the captured NEAs. 
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Figure 1. Geometry of the Sun-Earth CRTBP system in the Sun-Earth rotating frame xyz and in an 

inertial frame XYZ 

 

2.2 Lyapunov orbits and invariant manifolds 

There exist numerous periodic solutions to the CRTBP problem and so numerical 

algorithms have been proposed to determine these periodic orbits (Richardson, 1980; 

Gómez, 2001; Henon, 2003). In this paper, the planar Lyapunov orbits are investigated as 

the target periodic orbits for the captured NEAs. Families of periodic orbits with different 

Jacobi constants can be obtained by using differential correction, based on the initial states 

which are estimated by means of the Richardson third-order approximation (Richardson, 

1980), as shown in Fig. 2. 

 

 
 

Figure 2. Lyapunov orbits around L1 (left) with Jacobi constant [3.00008799, 3.00089706] and L2 

(right) with Jacobi constant [3.00023845, 3.00089301] in the Sun-Earth CRTBP system 
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     Lyapunov orbits are unstable periodic orbits which have associated stable manifolds 

and unstable manifolds. The stable manifolds or unstable manifolds of a periodic orbit are 

the set of trajectories that asymptotically approach or depart the target orbit and can be 

calculated under a perturbation in the direction of the stable or unstable eigenvector. The 

stable manifold WS consists of the set of all possible trajectories through which a particle 

could be asymptotically inserted onto the target periodic orbit, corresponding to the stable 

eigenvector. The stable manifolds associated with a Sun-Earth L2 Lyapunov orbit are 

shown in Fig. 3. 

A Poincaré map can transform a continuous time dynamical system to a discrete time 

dynamical system. To obtain the state of the perigee of the Earth flyby orbit, we use the 

periapsis map as a Poincaré map (Villac and Scheeres, 2003; Howell et al., 2011). The 

periapsis map is defined by the following condition 

 2 20, 0r r & &&  (3) 

The periapsis map of the stable manifolds associated with the Sun-Earth L1/L2 Lyapunov 

orbits can be obtained by propagating the stable manifolds backward until they cross the 

section defined by Eq. (3).  An example of the periapsis map of the stable manifolds 

associated with a Sun-Earth L2 Lyapunov orbit is shown in Fig. 3. In this paper, the 

aerobraking manoeuvre, or an additional propulsive manoeuvre, is assumed to occur at the 

perigee of the Earth flyby orbit where the state of the perigee of the flyby orbit can be 

determined by the periapsis condition defined by Eq. (3).  

 

  
 

Figure 3. Stable manifolds associated with a Sun-Earth L2 periodic orbit and the periapsis map 
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2.3 Coordinate transformation   

As shown in Fig. 1, the direction of the Earth with respect to the Sun-Earth barycentre 

in the inertial frame XYZ is described by the angle , measured from the x-axis. We denote 

the states of the Sun-Earth L1/L2 stable manifolds at the periapsis map in the Sun-centred 

inertial frame and in the Sun-Earth rotating frame by in

SS  and ro

SES  respectively. Thus, we 

have 

 ( )( ), [0,2 ]in ro

S SE Sun    S R S S  (4) 

 1( ) , [0,2 ]ro in

SE S Sun    S = R S S  (5) 

where [ ,0,0,0,0,0]T

Sun  S  and 

 

cos sin 0 0 0 0
sin cos 0 0 0 0

0 0 1 0 0 0
( )

sin cos 0 cos sin 0
cos sin 0 sin cos 0

0 0 0 0 0 1

 

 


   

   

 
 
 
 

  
   
 
 
 

R  (6) 

In the following sections, Eq. (4) will be used to transform the state of the candidate 

NEA in the Sun-centred inertial frame to the Sun-Earth rotating frame. Moreover, Eq. (5) 

will be used to transform the state of the NEA at the aerobraking manoeuvre in the Earth-

centred inertial frame to the Sun-Earth rotating frame. Consequently, the dynamical model 

of the aerobraking manoeuvre in the Sun-Earth rotating frame can be obtained.  

 

3. Strategies for Earth flyby 

During the flyby of the Earth, the Earth’s atmosphere may provide opportunities for a 

grazing aerobraking manoeuvre to move the NEA onto the stable manifold of the Sun-

Earth L1 or L2 periodic orbits. However, issues associated with the precision of the 

aerobraking required for subsequent injection onto the stable manifold are not considered 

here. However, for a small NEA the body may in principle be actively guided by a carrier 

spacecraft (Brophy et al., 2012), with the carrier spacecraft remaining attached to, and 

shielded, by the NEA during the aerobraking manoeuvre. Therefore, there will exist two 

types of Earth flyby, i.e. with and without the aerobraking manoeuvre, corresponding to a 

low or high altitude flyby orbit at perigee. In practice only small bodies would be 

considered to mitigate impact risks and so we envisage targeting NEAs which would 
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completely ablate in the Earth’s atmosphere at low altitude in the event of a failure prior to 

or during the aerobraking pass (Vasile and Colombo, 2008).   

The trajectory of the captured NEA in the Earth’s atmosphere can be modelled by 

means of a Keplerian orbit. Thus, assuming that the NEA remains in the Earth’s 

atmosphere for a small arc of true anomaly close to pericentre and the ablative mass loss of 

the NEA is small, an approximation for the v imparted to the NEA through aerobraking 

can be obtained. The model assumes an exponential atmospheric model and quadratic drag 

as developed by (Heppenheimer, 1971; Sanchez and McInnes, 2012) and used by 

(Heppenheimer, 1971; Sanchez and McInnes, 2012) such that 

 2 ( 1)/(1 )p sB r H e e

pe
  

  v v  (7) 

where pv  is the relative velocity of the NEA at perigee with respect to the Earth and 

 
2d

A
B C

M
  (8) 

is the NEA ballistic coefficient, where Cd is the drag coefficient of a sphere, assumed to be 

0.47 (Sanchez and McInnes, 2012); A/M is the area-to-mass ratio of the NEA; rp is the 

perigee radius of the flyby orbit from the centre of the Earth and e is the eccentricity of the 

flyby orbit; Hs is the atmosphere scale height. Assuming that the NEA is a spherical with 

density a = 2600 kg/m3 (Chesley et al., 2002), the NEA ballistic coefficient can be written 

as  

 
10.75 dB C

D
  (9) 

where D is the diameter of the NEA. 

Many density models of the Earth’s atmosphere have been developed, including the 

Standard Atmosphere, USSA76 and COSPAR International Reference Atmosphere. 

However, one of the simplest models is the exponential atmospheric model (Vallado, 

2007). In this model, it is assumed that the density of the atmosphere deceases 

exponentially from the Earth’s surface and so can be written as  

 
0

s

h

H
e 


  (10) 

where 0 = 1.225 kg/m3 is the density of the Earth’s atmosphere at the surface and Hs = 

7.249 km is the scale height (Vallado, 2007).  

From Fig. 4, we note that once the height h at perigee above the Earth’s surface is larger 

than approximately 100 km, the Earth’s atmosphere can be assumed not to provide an 

aerobraking manoeuvre. Therefore, we define hthreshold = 100 km as the height threshold for 

aerobraking, or rthreshold = 6478 km (rEarth + 100 km) as the distance threshold for 

aerobraking, where rEarth = 6378 km is the radius of the Earth. 
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a)  

b)  
 

Figure 4. (a) Aerobraking v provided by the atmosphere as a function of height h and different 

relative velocities vp of the NEA, given a NEA diameter of D = 10 m; (b) Aerobraking v provided 

by the atmosphere as a function of height h and NEA diameter D given a perigee speed vp = 15 km/s. 

 

4. NEA capture opportunities 

4.1 Candidate NEA selection 

To obtain possible capture opportunities for NEAs, the JPL Small Body Database2 is 

used. This database represents the current catalogued NEAs, including their orbital 

elements and estimated size.  

To capture NEAs with low energy, it is necessary to remove those NEAs with a high 

inclination and a semi-major axis far from that of the Earth’s. Therefore, those NEAs with 
                                                             
2 https://ssd.jpl.nasa.gov/?sb_elem 
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a semi-major axis in the range 0.85-1.15 AU are considered to be candidates which can be 

captured into the vicinity of the Earth with a relatively low energy (Sanchez et al., 2012). 

Furthermore, the Jacobi constant J of the NEA can be approximated by the Tisserand 

parameter as follows 

 21 2 (1 )cosJ a e i
a

    (11) 

where a, e and i are the semi-major axis (in AU), eccentricity and inclination of the NEA 

orbit. If an NEA’s Jacobi constant is significantly different from that of the final periodic 

orbit, it may have too high a total cost for capture (Sánchez and Yárnoz, 2016). It should 

therefore be possible to achieve low energy capture with a Jacobi constant close to the 

Jacobi constant of the target periodic orbit. Therefore, here we set J = 2.99 as the critical 

value. Those NEAs with J  2.99 are then considered to be candidate NEAs. 

However, a captured NEA using an Earth flyby may present a collision risk, as noted 

above. Therefore, we only consider those NEAs with a diameter less than 40 m since this 

is considered to be the critical threshold above which the Earth’s atmosphere will no 

longer disintegrate a NEA (Vasile and Colombo, 2008). Here it is assumed that the NEA is 

a homogeneous spherical object with density ρa and diameter D. The diameter D of the 

NEA can be estimated by the following relationship (Chesley et al., 2002) 

 1/2/51329km 10 vH p
D


   (12) 

where H is absolute magnitude of the NEA and pv is its albedo. Here we assume that the 

NEAs are typical and thus have a density ρa = 2600 kg/m3 and albedo pv = 0.154 (Chesley 

et al., 2002). If D  40 m then H  24.64. Considering the filters stated above, the 

candidate NEAs should be those NEAs with H  24.64, J  2.99 and a  [0.85, 1.15], as 

shown in Fig. 5. 
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Figure 5. Distribution of candidate NEAs 
 

4.2 NEA capture window 

For each of these candidate NEAs, feasible capture dates are assumed to be in the 

interval 2018–2050 (or 58119 MJD - 70171 MJD). It is assumed that the NEA orbital 

elements remain unchanged until they have a close approach to the Earth. We define this 

time period during which the NEA orbital elements are valid as the NEA capture window. 

In this paper, it is assumed that the upper limit of the NEA capture window is the date 

when the distance of the candidate NEA to the Earth is 0.21 AU where the gravitational 

attraction of the Earth is then considered small enough with respect to the gravity of the 

Sun (the ratio of Earth’s and Sun’s gravity is then less than 10-4). Denoting the date when 

the NEA has a distance to the Earth of 0.21 AU as Tthreshold (Tthreshold  2050), the capture 

window of a candidate NEA is then [2018, ]thresholdT , shown in Fig. 6. 
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Figure 6. Tthreshold of candidate NEAs 

 

5. NEA capture using Earth flyby without aerobraking 

5.1 Problem statement 

In this capture strategy, a flyby of the Earth without aerobraking is used. The candidate 

NEA leaves its orbit with an impulse manoeuvre and approaches the vicinity of the Earth 

for the flyby. At the perigee of the flyby, an additional manoeuvre is imposed on the 

candidate NEA. This is because a manoeuvre at perigee can represent the most effective 

way to achieve the outgoing flyby orbit (Ceriotti, 2010). Finally, the NEA moves onto the 

stable manifold of a target periodic orbit around the Sun-Earth L1 or L2 points and will be 

asymptotically captured onto it. In this scenario, a manoeuvring spacecraft is first assumed 

to be attached to the target NEA before the first manoeuvre and will then stay attached to 

the NEA for the entire mission. All the propulsive manoeuvres will be provided by the 

manoeuvring spacecraft. It should be noted that the entire transfer trajectory is modelled in 

the Sun-Earth CRTBP. 

Figure 7 shows a schematic of the NEA capture strategy using an Earth flyby without 

aerobraking. The basic concept of the NEA capture strategy is though the following steps: 

(1) With an initial manoeuvre v1, the candidate NEA leaves its initial orbit and its motion 

can then be described by the Sun-Earth CRTBP, shown in Fig. 7(a); 

(2) With a second manoeuvre v2, the NEA approaches the vicinity of the Earth and then 

reaches perigee, shown in Fig. 7(b); 
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(3) At the perigee, a third manoeuvre v3, which is parallel to the NEA’s current velocity 

vector, is applied to the NEA and the NEA then moves onto the stable manifold of a Sun-

Earth L1 or L2 periodic orbit and so will asymptotically transfer onto it, shown in Fig. 7(b). 

The total cost of capturing an NEA onto the target periodic orbit around the Sun-Earth 

L1 or L2 points can then be written as  

 1 2 3+v     v v v  (13) 

Therefore, for each candidate NEA, six parameters can determine the NEA capture 

manoeuvre using an Earth flyby without aerobraking, as defined in Fig. 7 and described as 

follows: (1) epoch T0 when the first manoeuvre is applied to the candidate NEA; (2) flight 

time Tfly1 between the first manoeuvre and the second manoeuvre; (3) flight time Tfly2 

between the second manoeuvre and the third manoeuvre; (4) Jacobi constant J of the target 

Sun-Earth L1 or L2 Lyapunov orbit; (5) time tp determining the point along the Lyapunov 

orbit where the stable manifold of the target Lyapunov orbit is propagated backward from 

and where tp  [0 Tp] where Tp is the period of the final target orbit; (6) third manoeuvre 

v3 that is parallel to the velocity vector of the NEA at the perigee. 

 

a)  

b)  

 

Figure 7. Schematic strategy for NEA capture using Earth flyby without aerobraking 

 

5.2 Differential correction 

A differential correction method will be utilized to design the transfer trajectory 

between the candidate NEA’s initial orbit and the target point on the stable manifold 
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associated with the Sun-Earth LPOs in the following section. It is assumed that the NEA 

initial state is [ , , , , , ]T

i i i i i ix y z x y ziS & & &  and then the final state after flight time T is 

' ' ' ' ' ' '[ , , , , , ]T

f f f f f f fx y z x y zS & & &  Assuming that the state of the target point 

is [ , , , , , ]T

f f f f f fx y z x y zfS & & & , we can then seek conditions such that 

' ' '[ , , ,0,0,0] [ , , ,0,0,0]T T

f f f f f f f f fx y z x x y y z z         0fS  by correcting the 

initial velocity vector [0,0,0, , , ]T

i i ix y z   iS & & &  as follows 

 1 i fS S
 (14) 

where   is the 6 6  state transition matrix of the CRTBP. 

A heliocentric Sun-centered two-body Lambert arc with two impulsive manoeuvres can 

be used to provide an initial guess, where the first impulse is applied and the asteroid 

transfers to the Sun-Earth stable manifolds. The differential correction defined by Eq. (14) 

uses this initial guess and then the correction is repeated until 

[ , , ]T

f f fx y z   fr approaches 0, within some small tolerance. 

 

5.3 Design Procedure 

The process of designing the transfer trajectory to capture the candidate NEA using an 

Earth flyby without aerobraking is as follows: 

(1) Select one target NEA in the candidate catalogue (e.g. 2010UJ) in Fig. 5;  

(2) Given the Jacobi constant J and the parameter tp, the stable manifold associated with 

the final periodic orbit is propagated backward with a given propagation time (e.g. 200 

days); the perigee where the third manoeuvre v3 is applied to the NEA can then be 

determined, corresponding to the perigee along the stable manifold with the closest 

distance to the Earth and a height above the Earth’s surface larger than 100 km. Then, the 

state [ , , , , , ]T

p p p p p px y z x y zp+S & & & at perigee is obtained, shown in Fig. 8; 

(3) Given the value of the third manoeuvre v3 at perigee, the state before the third 

manoeuvre is [ , , , , , ]T

p p p p p px y z x y z   & & &
p-S  where 2 2 2 1/2

31 / ( )p p pv x y z    & & & ; 

(4) Given the flight time Tfly2, the state p-S  is propagated backward and then the target 

point Sf is obtained, shown in Fig. 9; 

(5) Given a departure date T0, the transformation of the initial state of the candidate NEA 

in the Sun-centred inertial frame to the Sun-Earth rotating frame Si is then obtained; 

(6) Given the flight time Tfly1, the Lambert arc in the Sun-centered two-body problem is 

utilized to design the transfer to the stable manifold from the candidate asteroid’s orbit and 
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so the first impulse can be estimated; based on the initial guess of the first impulse, the 

differential correction method in Eq. (14) is then applied to design the transfer between the 

candidates NEA’s initial orbit Si and the target point Sf. Thus, the manoeuvres v1 and v2 

can be calculated.  

     The total cost of capturing the NEA onto a Sun-Earth L1/L2 periodic orbit using the 

Earth flyby can then be obtained, where the entire transfer trajectory is shown in Fig. 10 

and Fig. 11.  

 

 

 
 

Figure 8. Given C=3.00079405, tp=1.575712, perigee of the stable manifold associated with the 

Sun-Earth L2 Lyapunov orbit  
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Figure 9. Given v3 = 0.005194 and Tfly2 = 0.322368, the trajectory prior to v3 is obtained by 

propagating backward from the state at perigee. 

 

 

 
Figure 10. Given T0 = 59287.2 [MJD], Tfly1 = 4.134983, the transfer trajectory (xy projection) to 

capture 2010UJ onto a Sun-Earth L2 Lyapunov orbit in the Sun-Earth rotating frame. 
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Figure 11. Transfer trajectory (xy projection) for capturing 2010UJ onto the Sun-Earth L2 Lyapunov 

orbit in the Sun-centred inertial frame. 

 

5.4 Optimization 

For each of these candidate NEAs, feasible capture transfers with capture dates in the 

interval 2018–Tthreshold were obtained. Then, for each candidate NEA, there are 6 

parameters, so the problem can be defined with the following variables:  departure date T0, 

flight time Tfly1, flight time Tfly2, the Jacobi constant J of the target Lyapunov orbit, a 

variable tp associated with the state on the target orbit where the stable manifold is 

integrated from and the value of the third manoeuvre v3 that is parallel to the velocity 

vector of the NEA at perigee of the flyby orbit. As the objective function for this 

optimization problem, the total cost v can be minimised by optimizing over these 6 

parameters (T0, Tfly1, Tfly2, J, tp, v3) using NSGA-II, a global optimisation method that uses 

a non-dominated sorting-based multi-objective evolutionary algorithm (Deb et al., 2002). 

Then transfers obtained with NSGA-II can be locally optimized with sequential quadratic 

programming (SQP), implemented in the function fmincon in MATLAB. The optimal 

results of NEA capture using the Earth flyby without aerobraking are shown in Table 1. 

 
Table 1 Results of capturing NEAs onto Sun-Earth L1/L2 Lyapunov orbits using an Earth flyby 

without aerobraking 

NEA 
Total 

cost, m/s 

Epoch, 

MJD 
Total flight 
time, days 

Jacobi constant of 

Lyapunov orbit 

Propellant 

mass, ton 

Target 

point 

2003WT153 843.07 58638.9 365.5 3.00080233 205.3 L2 

2006UQ216 1217.8 61686.1 860.1 3.00009708 735.4 L1 
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2007UN12 193.64 58297.1 1595.7 3.00008893 19.9 L1 

2008EL68 492.65 58393.8 1209.0 3.00038241 192.1 L1 

2008JL24 793.05 58646.5 2148.1 3.00015052 21.3 L1 

2009YR 996.75 58168.2 1132.9 3.00052577 236.9 L1 

2009YR 881.13 58274.6 841.6 3.00031693 213.3 L2 

2010UJ 574.36 59036.2 622.1 3.00052358 1755.6 L1 

2010UJ 515.71 59287.2 464.5 3.00079405 1591.3 L2 

2010UY7 747.02 61556.4 459.6 3.00039055 92.6 L2 

2010VQ 820.62 58257.6 401.7 3.00076975 303.6 L2 

2011BQ50 553.99 58918.9 1174.8 3.00052923 141.3 L1 

2011CL50 440.14 58706.2 808.2 3.00038285 198.7 L2 

2012HG2 484.67 60448.8 791.8 3.00008868 497.7 L1 

2012WR10 661.51 61424.2 1062.9 3.00070261 63.0 L1 

2014JR24 889.81 58716.7 2569.3 3.00017493 35.7 L1 

2014QN266 574.78 61256.2 1070.1 3.00014755 1530.1 L1 

2014QN266 668.90 61271.3 518.0 3.00053956 1753.8 L2 

2015PS228 698.47 62932.5 1554.4 3.00015471 47.5 L1 

 

5.5 Comparison of the results of NEA capture with and without Earth flyby 

According to the work of Yárnoz et al. (2013) and Sánchez and Yárnoz (2016), a 

candidate NEA can be captured directly from its orbit to the stable manifold of the target 

Sun-Earth L1/L2 periodic orbit. The candidate NEA is first assumed to leave its orbit with 

an initial manoeuvre and then will move onto the stable manifold of the Sun-Earth L1/L2 

periodic orbit with a second manoeuvre. These two manoeuvres can be calculated by 

solving a Lambert arc between the NEA orbit and the stable manifold in the Sun-inertial 

two-body problem. Finally, once the NEA moves onto the stable manifold, it will then 

transfer to the target periodic orbit without any further manoeuvres. In this work, to avoid 

too long a flight time for capturing the NEAs, Lambert arcs with up to 2 complete 

revolutions from the NEA initial orbit to the stable manifold are considered. The 

schematic diagram of the NEA capture strategy without Earth flyby is shown in Fig. 12. In 

this NEA capture strategy, there are 5 parameters: departure date T0, flight time Tfly1 

between the asteroid’s orbit and the stable manifold, stable manifold transfer time Tfly2, the 
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Jacobi constant J of the target Lyapunov orbit, a variable tp associated with the state on the 

target orbit where the stable manifold is integrated from. Then the total v can be 

minimised by optimizing over these 5 parameters using NSGA-II. Then transfers obtained 

with NSGA-II can be locally optimized with a gradient-based method, such as the SQP 

implemented in the function fmincon in MATLAB. The optimal results of NEA capture 

using the Earth flyby without aerobraking are shown in Table 1. Therefore, the optimal 

results of NEA capture without Earth flyby are also listed in Table 2. 

Comparing the results of Table 1 and Table 2, we can note that the NEA capture 

strategy using an Earth flyby has the potential to be cheaper in terms of v than the capture 

strategy without the Earth flyby, especially for 2003WT153, 2011CL50 and 2012HG2, et 

al. Moreover, since NEA capture using an Earth flyby does not require significantly more 

time for the captured NEA to travel along the stable manifold of the Sun-Earth L1/L2 

periodic orbit, this capture strategy also has the potential to achieve quicker transfers, e.g.  

2003WT153, 2010UJ and 2011CL50, et al. Moreover, some candidate NEAs can be 

simultaneously captured with low energy onto periodic orbits both around the Sun-Earth L1 

and L2 points, e.g. 2009YR, 2010UJ and 2014QN266 et al. Therefore, the Earth flyby can 

be regarded as a way of increasing NEA capture opportunities. However, one drawback of 

the NEA capture strategy using an Earth flyby is that the NEA flies by the Earth at a 

relatively high velocity and thus we have limited time to apply the third manoeuvre to the 

NEA at the perigee of the flyby orbit. Therefore, in principle a high thrust engine would be 

required to achieve the third manoeuvre in a realistic mission scenario. 

 
 

 
 

Fig. 12 Schematic strategy for NEA capture without Earth flyby 
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Table 2 Results of capturing NEAs onto Sun-Earth L1/L2 Lyapunov orbits without using an Earth 
flyby 

NEA 
Total 

cost, m/s 

Epoch, 

MJD 
Total flight 
time, days 

Jacobi constant of 

Lyapunov orbit 

Propellant 

mass, ton 

Target 

point 

2003WT153 2049.47 58151.6 2005.7 3.00013872 414.8 L1 

2006UQ216 1757.21 61469.4 967.7 3.00061006 977.2 L2 

2007UN12 303.06 58580.8 756.4 3.00061320 30.6 L2 

2008EL68 818.07 62673.9 2670.3 3.00064089 302.7 L2 

2008JL24 968.78 58705.2 1974.5 3.00030555 25.4 L2 

2008UA202 470.55 59889.3 1618 3.00053193 17.6 L2 

2009YR 1063.19 58120.8 1494.0 3.00012440 250.1 L1 

2010JR34 1589.32 58164.6 1549.4 3.00014389 521.7 L1 

2010UJ 750.47 58462.0 1549.8 3.00039880 2229.9 L1 

2010UY7 1541.23 58939.0 1778.9 3.00013998 168.7 L1 

2010VQ 2351.54 58135.3 1497.0 3.00031707 689.2 L1 

2011BQ50 699.46 58925.1 1546.0 3.00028523 174.3 L1 

2011CL50 1502.87 58634.5 1715.3 3.00036376 573.9 L1 

2012HG2 1824.27 59032.1 2351.3 3.00045694 1520.1 L2 

2012WR10 902.13 60917.6 1839.5 3.00025078 82.7 L2 

2014AA 2926.1 58402.0 2274.7 3.00034024 9.5 L2 

2014JR24 1260.13 59417.2 1386.6 3.00028684 47.7 L2 

2014QN266 671.63 60136.6 1395.7 3.00033712 1760.2 L2 

2014UV210 1450.96 58490.5 1462.8 3.00030621 1468.9 L2 

2014WE6 1446.04 62447.9 1629.8 3.00010017 11.6 L1 

2014WX202 400.69 61416.5 2174.9 3.00031213 11.5 L2 

2015PS228 709.89 60891.8 1973.2 3.00041603 48.2 L2 

 

6. NEAs capture using aerobraking 

In this capture strategy using aerobraking, the candidate NEA is firstly assumed to 

leave its orbit with an impulse manoeuvre and approach the vicinity of the Earth for a 

single aerobraking pass. During the flyby of the Earth, the Earth’s atmosphere provides 
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drag to modify the NEA orbit without the use of propellant. Again, after the flyby of the 

Earth, the candidate NEA moves onto the stable manifold of a periodic orbit around the 

Sun-Earth L1 or L2 points. 

6.1 Problem statement 

Figure 13 shows the new concept of NEA capture using aerobraking as follows: 

(1) With a first manoeuvre v1, the candidate NEA departs from its initial orbit and its 

motion can be described by the Sun-Earth CRTBP, shown in Fig. 13(a); 

(2) With a second manoeuvre v2, the NEA approaches the vicinity of the Earth and 

accordingly it reaches perigee; 

(3) An aerobraking manoeuvre is applied to the candidate NEA and then the NEA moves 

onto the stable manifold of a Lyapunov orbit around the Sun-Earth L1 or L2 points and will 

finally be captured, shown in Fig. 13(b). 

The total cost of capturing the candidate NEA onto the target periodic orbit around the 

Sun-Earth L1 or L2 points can then be written as  

 v    1 2v v  (15) 

 

a)  

b)  
 

Figure 13. Schematic strategy for NEA capture using aerobraking 

 

Hence, for each candidate NEA, there now are 5 parameters to describe the sequence of 

manoeuvres as follows: (1) epoch T0 when the NEA departs from its initial orbit; (2) flight 
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time Tfly1 between the first manoeuvre and the second manoeuvre; (3) flight time Tfly2 

between the second manoeuvre and the aerobraking phase; (4) Jacobi constant J of the 

final Lyapunov orbit around the Sun-Earth L1 or L2 points; (5) time tp associated with the 

point on the periodic orbit where the stable manifold is integrated from where tp  [0 Tp], 

where Tp is the period of the final Lyapunov orbit. 

 

6.2 Aerobraking phase 

Assuming that the states of the candidate NEA before and after aerobraking in the 

Earth-centred inertial frame are given by [ , , , , , ]E E E E E E E T

p p p p- p- p-x y z x y zp-S & & &  

and [ , , , , , ]E E E E E E E T

p p p p+ p+ p+x y z x y z & & &
p+S , respectively, then Eq. (7) can be written as 

 
2 ( 1)/p sB r H e e

e
    


p+

p-

V

V
 (16) 

 p+ p-r = r  (17) 

where [ , , ]E E E T

p- p- p-x y z & & &
p-V , [ , , ]E E E T

p+ p+ p+x y z & & &
p+V , [ , , ]E E E T

p p px y zp-r , [ , , ]E E E T

p p px y zp+r  

and e- is the eccentricity of the flyby orbit before aerobraking.  

Here we assume that aerobraking only provides a limited manoeuvre and thus e-  e+ 

where e+ is the eccentricity of the flyby orbit after aerobraking. Therefore, the velocity 

before aerobraking can be guessed as 

 2 ( 1)/p sB r H e e
e

   
p- p+V V  (18) 

The accurate value of the velocity Vp- before aerobraking can then be obtained through 

Newton's method based on the initial guess in Eq. (18). 

It is assumed that the states of the candidate NEA before and after aerobraking in the 

Sun-Earth rotating frame are then [ , , , , , ]T

p p p p p px y z x y z   & & &
p-S  

and [ , , , , , ]T

p p p p p px y z x y z   & & &
p+S , respectively. Thus, it can be seen that  

 
( )( )

( )( )
Earth

Earth





 

 

Κ

Κ

p+ p+

p- p-

V R S S

V R S S
 (19) 

where ( )R is a coordinate transformation matrix in Section 3.2 and 

 
0 0 0 1 0 0

[1 ,0,0,0,0,0] , 0 0 0 0 1 0
0 0 0 0 0 1

T

Earth 

 
 

  
 
  

S   (20) 

Defining 2 ( 1)/p sB r H e e
e

 
   
 , Eq. (19) can be written as 
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 ( )( ) ( )( )Earth Earth     p- p+R S S R S S  (21) 

Then, 

 1 1( ) ( )( ) ( ) ( )( )T T

Earth Earth       p- p+R R S S R R S S   (22) 

Letting 1( ) ( )T  R R  , Eq. (22) can be written as 

 ( ) ( )Earth Earth  Μ Μp- p+S S S S  (23) 

where 

 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
0 0 0 0 0 1

 
 
 
 

  
 

 
 
  

   

Hence, Eq. (17) and Eq. (23) can be combined together as follows,  

 1 2( ) ( )Earth Earth  Μ Μp- p+S S S S  (24) 

     Thus, we have  

 1
1 2 ( )Earth Earth

  =Μ Μp- p+X S S S  (25) 

where 

 1 2

1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0

,
0 1 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0

 

 



   
   
   
   

    
    

   
   
      

Μ Μ   

Therefore, the state of the captured NEA at perigee before the aerobraking phase in the 

Sun-Earth rotating frame can be estimated by the state of the NEA after aerobraking in the 

Sun-Earth rotating frame using the Eq. (25). 

 

6.3 Aerobraking window 

As noted earlier, the Earth’s atmosphere can provide an aerobraking manoeuvre only 

when the height of the perigee of the flyby orbit is low enough (hthreshold = 100 km or 

rthreshold = 6478 km). However, for a Lyapunov orbit, only a few stable manifolds can meet 

such a requirement, shown in Fig. 14(a). To determine the set of stable manifold 

trajectories whose perigee is lower than the distance threshold for aerobraking (rthreshold  = 

6478 km), the relationship between the distance of the perigee of the stable manifold and 
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the parameter tp is obtained, shown in Fig. 14(b). Therefore, we define the set of tp which 

determines the perigee distance of the stable manifold to the centre of the Earth in the 

interval [rEarth, rthreshold] as the aerobraking window. As shown in Fig. 14(b), for a Lyapunov 

orbit with J = 3.00079830, the aerobraking window is 

{ (1.6163,1.6188] (2.0227,2.0253]}p p pt t t   . 

 

a)  
 

b)  
 

Figure 14. Given a Sun-Earth L2 Lyapunov orbit with J = 3.00079830, (a) the periapis map of the 

stable manifolds and (b) the relationship between the distance of the perigee of the stable manifolds 

and the parameter tp. 

6.4 Design Procedure and Optimization 

The process of designing the transfer trajectory for NEA capture using aerobraking is 

similar to Section 5.3 and is as follows: 

(1) Select one target NEA in the candidate catalogue (e.g. 2009UJ) in Fig. 5;  
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(2) Given the Jacobi constant J and tp at the aerobraking window, which is obtained in 

Section 6.2, the stable manifold associated with the periodic orbit is propagated backward 

until it reaches the perigee and then the state [ , , , , , ]T

p p p p p px y z x y z   & & &
p+S  at perigee in 

the Sun-Earth rotating frame is obtained, shown in Fig. 15; 

(3) The velocity p-V  before aerobraking in the Earth-centred inertial frame can then be 

calculated and the state of the NEA [ , , , , , ]T

p p p p p px y z x y z   & & &
p-S  before aerobraking in 

the Sun-Earth rotating frame can be obtained using Eq. (25); 

(4) Given the flight time Tfly2, the state p-S  is propagated backward and then the target 

point Sf is obtained, shown in Fig. 16; 

(5) Given a departure date T0, transform the initial state of the candidate NEA in the Sun-

centred inertial frame to the Sun-Earth rotating frame so that Si is then obtained; 

(6) Given the flight time Tfly1, Eq. (14) is then applied to design the transfer between the 

candidate NEA’s initial orbit Si and the target points Sf. Thus, the manoeuvres v1 and v2 

can be calculated. 

Then, the total cost of capturing the NEA onto the target Sun-Earth L1 or L2 periodic 

orbit with aerobraking can be obtained by using Eq. (15). The transfer trajectory is shown 

in Fig. 17 and Fig. 18. The 5 parameters (T0, Tfly1, Tfly2, J, tp) associated with the transfers 

from the candidate NEA initial orbit to the stable manifold can be optimised using NSGA-

II, again using the total cost v as the objective function. The optimal results of capturing 

NEAs onto the Sun-Earth L1 and L2 Lyapunov orbits are shown in Table 3. 

Comparing the results of Table 2 and Table 3, we find that aerobraking can save energy 

and so the capture strategy has the potential to be cheaper than the NEA capture strategy 

without a flyby.  Moreover, the NEA capture strategy using aerobraking also has the 

potential to require a shorter flight time, as does the capture strategy using the Earth flyby 

without aerobraking. Moreover, comparing the results in Table 1 and Table 3, we find that 

aerobraking can provide a manoeuvre which can help to achieve cheaper NEA capture than 

the strategy using the Earth flyby without aerobraking, e.g. 2006UQ216, 2011BQ50 and 

2010UJ, et al. However, for the practical implementation of the NEA capture strategy 

using aerobraking, it is necessary to take into account the real ephemeris model and a more 

accurate atmosphere model. The preliminary results in this paper can serve as 

approximations for such real missions. Considering the sensitivity of the transfer trajectory 

in the Sun-Earth CRTBP, especially the aerobraking phase, an accurate navigation and 

control strategy would be required to guarantee that the fly-by of the candidate NEA is at 

required altitude in order to obtain the required aerobraking manoeuvre. For example, the 

drag-modulation flight control method (Putnam and Braun, 2013) and the blended control, 
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predictor-corrector guidance algorithm (Jits and Walberg, 2004) may provide feasible 

solutions for the asteroid capture mission using aerobraking. Again, the carrier spacecraft 

is envisaged as remaining attached to, and shielded, by the NEA during the aerobraking 

manoeuvre to deliver active control. 

Assuming that a high thrust engine of specific impulse (Isp) 300 s is utilized to capture 

candidate asteroids, the required propellant mass of the spacecraft is appended for each 

trajectory in Tables 1-3. Here we assume that a spacecraft of 5500 kg dry mass and 8100 

kg of propellant is already at the NEA encounter, an example from the Keck study report 

for asteroid retrieval (Brophy et al., 2012). Then we set 8100 kg as the threshold of the 

required propellant mass to investigate the possibility of capturing asteroids with current 

technology.  From Table 3, we find that 2014AA, 2014WE6, 2014WX202 can be captured 

onto Sun-Earth L1/L2 Lyapunov orbits with a propellant mass of less than 8100 kg. On the 

other hand, if a low-thrust engine of higher specific impulse (e.g., 3000 s) can be utilized 

to capture these asteroids, the required propellant mass would be approximately one-tenth 

that of the high-thrust case, and thus many more asteroids could be captured, e.g. 

2007UN12, 2008UA202 and 2012WR10. Furthermore, for those asteroids which cannot be 

captured even with a low-thrust engine of much higher specific impulse, the possibility of 

capturing a segment from such asteroids would be also of scientific and technological 

interest. 
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Figure 15. Given C =3.00079830, tp=1.617219, the stable manifold associated with the Sun-Earth L2 

Lyapunov orbit and its perigee. 

 

 

 
 

Figure 16. Given Tfly2 = 0.465127, the trajectory before aerobraking is obtained by propagating 

backward from the state at perigee. 
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Figure 17. Given T0 = 59284.5 [MJD], Tfly1 = 4.295717, the transfer trajectory (xy projection) for 

capturing 2010UJ onto the Sun-Earth L2 Lyapunov orbit in the Sun-Earth rotating frame. 

 

Figure 18. Transfer trajectory (xy projection) for capturing 2010UJ onto the Sun-Earth L2 Lyapunov 

orbit in the Sun-centred inertial frame. 

 

Table 3 Results of capturing NEAs onto Sun-Earth L2 Lyapunov orbits using aerobraking 

NEA 
Total cost, 

m/s 

Epoch, 

MJD 
Total flight 
time, days 

Jacobi constant of 

Lyapunov orbit 

Propellant 

mass, ton 

Target 

point 

2003WT153 445.60 58469.4 516.5 3.00009708 115.7 L1 

2006UQ216 388.60 61719.4 1004.5 3.00009708 267.8 L1 

2007UN12 152.72 58624.8 745.3 3.00022611 15.8 L1 

2008EL68 626.26 58800.1 1156.1 3.00022894 239 L1 

2008JL24 728.08 59427.7 1254.5 3.00022966 19.8 L1 
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2008UA202 241.56 61145.5 1316.5 3.00076914 9.4 L2 

2009YR 536.24 58214.4 825.0 3.00066561 137.2 L2 

2010JR34 526.59 60194.6 1119.0 3.00074606 204.2 L2 

2010UJ 323.31 59284.5 469.9 3.00079830 1029.4 L2 

2010UY7 596.27 58853.8 905.4 3.00022482 75.7 L1 

2010VQ 321.37 58275.4 386.7 3.00079251 128.9 L2 

2011BQ50 512.82 59625.5 535.1 3.00077442 131.7 L1 

2011BQ50 311.07 59478.4 1098.6 3.00079413 82.5 L2 

2011CL50 134.67 58395.3 1063.5 3.00063389 63.9 L1 

2012HG2 434.51 60247.1 849.3 3.00079477 449.9 L2 

2012WR10 243.16 61179.0 1517.1 3.00022471 24.8 L1 

2014AA 1091.77 58207.2 847.3 3.00080146 4.6 L2 

2014JR24 628.59 60200.0 1152.4 3.00009610 26.3 L1 

2014UV210 350.07 58452.2 605.3 3.00022906 421.9 L1 

2014UV210 393.26 58629.2 598.4 3.00059545 470.6 L2 

2014WE6 715.03 63975.2 1002.7 3.0007983 6.4 L2 

2014WX202 278.53 63098.7 1379.4 3.00063389 8.1 L1 

2015PS228 613.58 63417.0 735.5 3.00009617 42.3 L1 

 

6.5 Extension to the full Ephemeris Model 

In a real mission of capturing asteroids around the Sun-Earth libration points, the 

perturbations, including the eccentricity and inclination of the Earth’s orbit around the Sun, 

the Moon’s gravity should be considered. Here a Sun-centered J2000 inertial frame is 

utilized to describe the motion of captured asteroids in the full ephemeris dynamical model. 

The position and velocity vector of each body are obtained from the DE421 ephemerides 

(Folkner et al., 2008). Therefore, the equation of motion of the captured asteroid in the 

Sun-centered inertial frame can be written as 
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where r is the position vector of the asteroid with respect to the Sun; i is the gravitational 

constants of the planets (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune) 

or the Moon; ri is the position vector of the planets or the Moon with respect to the Sun. 

Since the Sun-Earth CRTBP model assumes that Earth moves on a circular orbit around 

the Sun without considering any perturbations, the final target orbits are no longer periodic 

in the full ephemeris dynamical model. A control strategy is therefore required to maintain 

a captured asteroid in an orbit around a libration point. Thus, here we still assume that the 

initial state of the stable manifold is generated from the Lyapunov orbit, as shown in 

Section 2.2 and then the transfer trajectory of capturing an asteroid will be propagated 

backwards. The first step is to move the state from the Sun-Earth rotating system to the 

Sun-centered J2000 inertial system. Assuming that the position vector and velocity vector 

of the stable manifold’s initial state in the Sun-Earth rotating frame are r

mR  and r

mV , 

respectively, the position vector and velocity vector of the stable manifold’s initial state in 

the Sun-centered J2000 inertial frame can be calculated as follows (Kolemen et al., 2012) 

 , ( ) ,i r i i r r i

m rot syn e m rot syn rot syn e     R M R R V M V M R V  (18) 
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and i

eR , i

eV  are the position vector and velocity vector of the Earth in the Sun-centered 

J2000 inertial frame. 

Then the stable manifold’s initial state in the Sun-centered J2000 inertial frame is 

propagated backwards until it reaches perigee. At perigee, the state of the captured asteroid 

before aerobraking can then be calculated, as stated in Section 6.2. Moreover, the state 

before aerobraking will be propagated backwards in the full ephemeris dynamical model 

with a given flight time and then the target point obtained. Therefore, the total cost of 

capturing an asteroid can be calculated by solving the Lambert arc between the asteroid’s 

orbit and the target periodic orbit in the full ephemeris dynamical model. According to the 

design procedure stated above, an example of capturing 2010UJ onto Sun-Earth L2 

Lyapunov orbits in the full ephemeris dynamical model is investigated and the transfer 

trajectory for capture is shown in Fig. 19. The total cost of capturing 2010UJ is v = 

379.42 m/s when the epoch T0 = 59100.3 MJD, the total flight time Tfly = 665.9 days and 

the Jacobi constant of the Lyapunov orbit is J = 3.00076653. The results of capturing 

2010UJ in the full ephemeris dynamical model and in the Sun-Earth CRTBP model are 
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slightly different. The total cost of capturing this asteroid in the full ephemeris dynamical 

model is about 17% more than that in the Sun-Earth CRTBP model. However, the Sun-

Earth CRTBP is still a good first-order approximation to the real Solar System dynamics 

(Kolemen et al., 2012). Furthermore, the family of candidate asteroids which can be 

captured with low cost in the Sun-Earth CRTBP model are not expected to change and thus 

they can also serve as candidate asteroids which can be captured with low cost in the full 

ephemeris dynamical model. 

 

 

Figure 19. Transfer trajectory (x-y projection) for capturing 2010UJ in the Sun-centred J2000 

inertial frame. 

7. Conclusions 

The possibility of capturing small NEAs using low energy transfers would in principle 

be of significant scientific and commercial interest. Although NEAs may make close 

approaches to the Earth, and so represent a potential impact threat, the exploitation of their 

resources has long been proposed as a necessary element for future space exploration. 

As an ideal location for space science, and a staging node for interplanetary missions in 

the future, the Sun-Earth L1/L2 libration points are likely to play an important role for 

future space exploration. Therefore, capturing asteroids onto periodic orbits around the 

Sun-Earth L1/L2 points is of particular interest. A strategy to couple a flyby of the Earth to 

stable manifolds to capture NEAs onto Sun–Earth L1/L2 periodic orbits has been proposed. 

In this capture strategy the candidate NEA is first assumed to leave its orbit with an 

impulse manoeuvre and will then approach the vicinity of the Earth for the flyby. During 

the flyby, the Earth’s atmosphere may also provide an aerobraking manoeuvre. If not, a 

propulsive manoeuvre is required at the perigee of the flyby. After the flyby of the Earth, 
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the candidate NEA inserts onto the stable manifold associated with a periodic orbit around 

the Sun-Earth L1 or L2 points and will be asymptotically captured onto it.  

Comparing the results of two methods, it is found that NEA capture strategies using an 

Earth flyby with and without the aerobraking both have the potential to be cheaper (in 

terms of v) than direct stable manifold capture. Besides, due to the fact that direct capture 

without a flyby requires significant additional time to move along the stable manifolds of 

the Sun–Earth L1/L2 periodic orbits, NEA capture strategies using Earth flyby also have the 

potential to save flight time.  
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