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ABSTRACT 13 

Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in 14 

genetically susceptible individuals. Innate immunity contributes to the pathogenesis of 15 

CD, but the mechanisms remain poorly understood. Although previous in vitro work 16 

suggests that gliadin peptide p31-43 acts as an innate immune trigger, the underlying 17 

pathways are unclear and have not been explored in vivo. Here we show that 18 

intraluminal delivery of p31-43 induces morphological changes in the small intestinal 19 

mucosa of normal mice consistent with those seen in CD, including increased cell 20 

death and expression of inflammatory mediators. The effects of p31-43 were 21 

dependent on MyD88 and Type I IFNs, but not TLR4, and were enhanced by co-22 

administration of the TLR3 agonist poly I:C. Together these results indicate that gliadin 23 

peptide p31-43 activates the innate immune pathways in vivo, such as IFN-dependent 24 

inflammation, relevant to CD. Our findings also suggest a common mechanism for the 25 

potential interaction between dietary gluten and viral infections in the pathogenesis of 26 

CD.  27 



INTRODUCTION 28 

Celiac disease (CD) is a multifactorial disorder triggered by the ingestion of gluten in 29 

susceptible individuals who carry the HLA-DQ2 and/or HLA-DQ8 predisposing alleles. 30 

Both innate and adaptive immune mechanisms are involved in the pathogenesis of CD. 31 

While the adaptive immune response has been well studied, less is known about 32 

innate mechanisms and their triggers (1). Some gluten-derived peptides could initiate 33 

this process, but there is not enough in vivo experimental evidence to confirm this 34 

hypothesis. The study of whether and how innate immune mechanisms are induced by 35 

gluten peptides is relevant to CD pathophysiology. 36 

Several non-immunogenic gluten peptides that stimulate innate immune responses 37 

(termed “toxic peptides”) but not the adaptive immune response have been proposed. 38 

Studies have shown that a mix of gluten peptides, pepsin-trypsin digested gliadin (PT-39 

gliadin), activated dendritic cells (26) and peripheral blood mononuclear cells (16) in 40 

vitro, but identification of the responsible peptides was not achieved. The most studied 41 

toxic peptide is the derived α-gliadin p31-43 (LGQQQPFPPQQPY) that is part of the 42 

longer peptide p31-55 (LGQQQPFPPQQPYPQPQPFPSQQPY), and is resistant to 43 

digestive enzymes in the gut (19). Increased IL-15 production and enterocyte apoptosis 44 

were reported in duodenal biopsies of celiac patients incubated with p31-43 (18). p31-45 

43 was also shown to interact with epidermal growth factor receptor (EGFR) (5) and 46 

with the IL-15/IL-15R complex (6, 24), to affect proliferative activity in intestinal 47 

biopsies, influence human fibroblasts (23), and induce oxidative stress and endosome 48 

maturation in enterocytes (17). In murine tissues, p31-43 induced pro-inflammatory 49 

cytokines by macrophages (34). Altogether, these studies suggest a role for p31-43 in 50 

the stimulation of innate immune mechanisms in CD. However, the underlying 51 

pathways and in vivo relevance remain unclear. 52 

Type I IFNs are thought to play a role in CD pathogenesis, as there is increased 53 

expression of IFNα in duodenal mucosa from CD patients (22) and blockade of IFNα 54 

inhibits gliadin-induced IFNγ expression in ex vivo experiments (28). Furthermore 55 

epidemiological studies suggest that enteric viral infections such as rotavirus might 56 

trigger inflammatory or functional gastrointestinal disease (20, 35). The aim of this 57 

study was to determine whether p31-43 elicits innate immune activation in murine small 58 

intestine in vivo and to investigate potential underlying pathways. We also analyzed the 59 

effect of combined intraluminal administration of p31-43 and poly I:C, which mimics a 60 

viral infection, a proposed trigger of CD.  61 



MATERIALS AND METHODS 62 

Mice 63 

Eight-week old male C57BL/6J mice were purchased from the Animal Care Facility of 64 

the Facultad de Ciencias Exactas y Naturales of the Universidad de Buenos Aires. 65 

Eight-week old male MyD88 KO (B6.129P2(SJL)-Myd88tm1.1Defr/J) mice were 66 

purchased from the Jackson Laboratory. IFNαR KO mice (IFN-αβR-/-, IFNAR-/-) on 67 

C57BL/6 background were kindly provided by M. Albert (Institute Pasteur, Paris, 68 

France). Eight-week old male C3H-HeJ mice were kindly provided by Dr. Martin 69 

Rumbo from Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP-CONICET, 70 

Buenos Aires, Argentina). Mice were housed in specific pathogen free condition and 71 

fed ad libitum with balanced food and autoclaved water. They were maintained on a 72 

12h light/darkness cycle and acclimatized to the surrounding conditions for 1 week 73 

before the experimental procedures. All the studies were performed in accordance with 74 

international protocols for laboratory animal care (Canadian Council on Animal Care). 75 

Experiments were conducted with approval from the Institutional Animal Care and Use 76 

Committee of the Facultad de Ciencias Exactas, Universidad Nacional de La Plata. 77 

Intraluminal administration of peptides and poly I:C 78 

p31-43 peptide (LGQQQPFPPQQPY, Biomatik), non-related peptide (NRP) 79 

(LDPLIRGLLARPACALQV, Think Peptides), polyinosinic:polycytidylic acid (Sigma 80 

Aldrich, poly I:C), a combination of p31-43 peptide and poly I:C, or phosphate buffered 81 

saline (PBS) were administered intraluminally during intestinal microsurgery as 82 

previously described (3). Briefly, mice were anaesthetized with 80mg/kg ketamine and 83 

10mg/kg xylazine. Once asleep, 100μl of 100µg/ml peptide solution in PBS, 30μg/g 84 

poly I:C solution or a combination of p31-43 and poly I:C were injected into the small 85 

intestinal lumen, 2cm below the pylorus, to avoid degradation by pancreatic enzymes. 86 

Control mice received PBS. After surgery, fluid replacement was administered and 87 

mice were monitored until recovery. C57BL/6 mice were sacrificed 2 to 72h post-88 

treatment, while C3H-HeJ, IFNαR KO, and MyD88 KO mice were sacrificed 12h post-89 

treatment. 90 

To compare the effects of p31-43, poly I:C and p31-43+poly I:C in C57BL/6 mice, 91 

histological evaluation was performed at 72h post treatment. This time point was 92 

chosen based on the previous finding indicating significant differences between 93 

treatments at this time. 94 



Histological evaluation 95 

Sections of proximal small intestine of treated mice were fixed in 10% formalin, 96 

embedded in paraffin, and stained with H&E for histological evaluation using a Nikon 97 

Eclipse Ti fluorescence microscope with X-Cites Series 120 Q light source. Images 98 

were taken with Nikon Digital Sight DS Ri1 camera using Nis-Elements software and 99 

measurements were performed using Image J software. 100 

Two sections of the proximal small intestine were scored for inflammation in a blinded 101 

fashion, with at least thirty villus-to-crypt ratios assessed in each mouse. Intraepithelial 102 

lymphocytes (IELs) per 30 enterocytes in ten randomly chosen villus tips were counted 103 

according to previously described methods and expressed as IELs/100 enterocytes (7). 104 

Histological scores were obtained following the Park-Chiu criteria (27): 0, normal 105 

mucosa; 1, subepithelial space at villus tips; 2, extension of subepithelial space with 106 

moderate lifting; 3, massive lifting down sides of villi, some denuded tips; 4, denuded 107 

villi, dilated capillaries; 5, disintegration of lamina propria; 6, Crypt layer injury; 7, 108 

transmucosal infarction; 8, transmural infarction. 109 

Real Time PCR 110 

Small Intestinal samples from C57BL/6 mice were stored in RNA Later in -80ºC freezer 111 

until use. Tissues were disrupted and RNA extraction was performed using RNeasy 112 

Mini Kit (Qiagen). cDNA synthesis was performed from isolated RNA samples (2-5μg), 113 

using iScript Reverse Transcription Supermix (Bio-Rad). Real Time PCR was 114 

performed with SsoFastEvaGreen Supermix (Bio-Rad) using appropriate forward and 115 

reverse primers and the iQ5 thermocycler with fluorescence detection (Bio-Rad). 116 

Reactions were run in triplicates. The Real Time PCR (qPCR) protocol was: Cycle 1 117 

(1X) 95°C for 10min; Cycle2 (40X) 60°C for 1min and 95° for 15sec. Primers were 118 

synthesized as described previously (9) (Table 1) The geometric mean of 119 

housekeeping gene HPRT was used as an internal control to normalize the variability 120 

in expression levels. All results were expressed as fold increase of each treatment 121 

versus the mean of PBS treatment in every time point (2 -∆∆Ct method). 122 

Isolation of epithelial cells and flow cytometric analysis  123 

Sections of proximal small intestine (10 cm) of PBS and p31-43-treated C57BL/6 mice 124 

were collected into cold calcium and magnesium free Hanks` Balanced Salt Solution 125 

(HBSS, Gibco). Tissue sections were then incubated in HBSS containing 2% v/v fetal 126 

bovine serum (FBS, Gibco) and 0.1 mM Dithriothreitol (DTT, Sigma) at 4°C for 10 127 

minutes before being incubated for 15 minutes at 37°C in HBSS with 0.5 mM EDTA 128 

(Sigma) with shaking. The cell suspensions were then filtered through an 80μm filter 129 



mesh (BD Biosciences) before use. One million cells were used for flow cytometry 130 

analysis and the remaining cells were stored in RNA Later (Ambion) for Real Time 131 

PCR analysis of Bax and Bcl2 mRNA expression as described above. For flow 132 

cytometric analysis, cells were washed twice with Annexin V Binding Buffer and 133 

incubated for 30 minutes at room temperature using Annexin V-FITC (Immunotools). 134 

One minute before cell acquisition propidium iodide (5 µg/tube) was added. Cells were 135 

analyzed in a BD FACSCalibur flow cytometer (BD Bioscience) and data were 136 

processed using CELLQest (BD Bioscience) software. 137 

Confocal microscopy 138 

Small intestinal sections were deparaffinized and treated with Antigen Retrieval AR-10 139 

Solution (BioGenex). After blocking with 2% goat serum, a primary antibody was added 140 

for 1h. Anti-Ki67 antibody (Novus Biologicals) was added ON at 4°C and Alexa488 141 

goat anti-rabbit antibody (Molecular Probes) was added at 10µg/ml for 1h. Anti-cleaved 142 

caspase-3 antibody conjugated to FITC (Cell Signaling) was added for 1h at RT. Nuclei 143 

were stained with propidium iodide at 1µg/ml for 15 minutes. Images were obtained 144 

and analyzed in a TCS SP5 Confocal Microscope combined with Leica LAS AF 145 

software. 146 

TUNEL reaction 147 

Cell death was quantified using the In Situ Cell Death Detection Kit (Roche). Paraffin-148 

embedded small intestinal tissue sections were dewaxed, rehydrated and treated with 149 

Proteinase K for permeabilization. TUNEL reaction mixture was then added and 150 

samples were analyzed by confocal microscopy. Images were taken from a confocal 151 

microscope Olympus FV1000 (Tokyo, Japan) using a 20x NA 0.75 objective and a 152 

zoom of 2x. A 473nm solid-state laser 473 nm was used to detect apoptotic cells while 153 

a 405nm state laser was used to identify nuclei stained with DAPI. Images were 154 

analyzed with ImageJ software. 155 

Statistical analysis 156 

Statistical analysis was performed with GraphPad Prism software. When two groups 157 

were compared, an unpaired t test was used. When more than two groups were 158 

compared, a one-way ANOVA test was used; p<0.05 was considered significant. Data 159 

are displayed as mean ±SEM.  160 



RESULTS 161 

Intraluminal p31-43 peptide induces pathological changes in the murine small 162 

intestine. 163 

We used a previously developed technique to deliver molecules of interest 164 

intraluminally (3) and tested the capacity of p31-43 to induce morphological changes in 165 

small intestinal mucosa. At 12h post p31-43 administration, we observed shortening 166 

and widening of villi, increased cell infiltration in the lamina propria and edema. 167 

Administration of PBS or NRP did not cause intestinal damage (Figure 1A). At this 168 

time point, we also observed reduction in V/C ratios, increased IEL counts, and higher 169 

histological scores in mice treated with p31-43 compared to PBS and NRP (Figure 170 

1B). At 72h, mice treated with p31-43 exhibited persistent edema and cellular 171 

infiltration in the LP (Figure 1A), reduced V/C ratios, increased number of IELs, and 172 

higher histological score compared with PBS and NRP-treated mice (Figure 1B). 173 

Although the surgical procedure itself altered intestinal histology transiently (3) PBS 174 

and NRP-treated mice (controls) experienced faster recovery than p31-43-treated mice 175 

(Figure 1B). We also evaluated the proliferative activity in small intestinal crypts by 176 

counting Ki67+ epithelial cells. At 12h proliferative activity was significantly higher in 177 

p31-43 than in PBS-treated mice (Figure 2A). 178 

Intraluminal p31-43 increases mRNA expression of inflammatory cytokines. 179 

We next explored the expression of pro-inflammatory mediators induced by p31-43. In 180 

comparison with PBS-treated mice, there was a rapid and marked increase in IFNγ 181 

mRNA 2h after p31-43 treatment, followed by increases in CXCL10 and IFNβ mRNA, 182 

which peaked 6h after intraluminal administration of p31-43 (Figure 2B). The 183 

expression of mRNA for IL-15, IL-18, IL-1β, IL-6 and TNFα, and chemokines such as 184 

MCP1, CXCR3 and CXCL2 was similar in all groups (data not shown).  185 

Intraluminal p31-43 induces cell death in the mucosa. 186 

Cell death by gluten specific and non-specific cytotoxic mechanisms plays a role in 187 

intestinal damage in CD (31). To study whether p31-43 has cytotoxic activity, we 188 

examined TUNEL staining of small intestinal sections 12h after treatment. This 189 

revealed a large increase in the number of TUNEL+ cells in the lamina propria 190 

compared with PBS-treated mice (Figure 3A). TUNEL+ cells were also found in the 191 

epithelium of p31-43-treated, but not in PBS-treated mice (white arrows, Figure 3A). 192 

Automated counting confirmed an increase in the frequency of total TUNEL+ cells, 193 

when both the lamina propria and epithelium of p31-43-treated mice were analyzed 194 

(Figure 3B). The expression of anti- and pro-apoptotic mediators, Bcl2 and Bax, 195 



respectively, was evaluated by qPCR analysis of whole small intestinal mucosa. At 196 

12h, we found increased Bax/Bcl2 ratio in p31-43-treated mice compared with PBS-197 

treated controls (Figure 3C), suggesting that p31-43 has a pro-apoptotic effect in the 198 

small intestine in vivo. Mice treated with p31-43 had increased numbers of TUNEL+ 199 

cells in epithelium compared to PBS-treated control mice (Figure 3D). A similar trend 200 

was seen in lamina propria alone, although this did not attain statistical significance. To 201 

further explore the hypothesis that p31-43 caused death of epithelial cells, we first used 202 

qPCR analysis of isolated epithelial cells, which showed a trend towards an increase in 203 

the Bax/Bcl2 ratio in intraepithelial cells (IEC) from p31-43-treated mice. Although this 204 

difference did not reach statistical significance (Figure 3E), flow cytometry showed 205 

increased number of Annexin V+/Propidium Iodide+ in IEC from mice treated with p31-206 

43 (Figure 3F). 207 

Mucosal changes induced by p31-43 are MyD88- and Type I IFN-, but not TLR4-208 

dependent. 209 

To investigate possible signaling pathways that might mediate the effects of p31-43, 210 

we used MyD88 KO, IFNαR KO and TLR4 deficient (C3H-HeJ) mice. No histological 211 

changes were observed in MyD88 KO mice 12h after administration of p31-43 (Figure 212 

4A). There were no differences in V/C ratio, IEL counts, global histological scores 213 

(Figure 4B), or in cell death analysis (Figure 4C) between p31-43 and PBS-treated 214 

mice. However, TLR4 deficient C3H-HeJ mice had decreased V/C ratios, increased 215 

IELs counts and increased global histological scores after administration of p31-43 216 

(Figure 4D). The effects of p31-43 were absent in IFNαR KO (Figure 4E). 217 

P31-43 and poly I:C cause mucosal damage via independent mechanisms. 218 

Intraluminal administration of poly I:C, a synthetic analogue of dsRNA that mimics the 219 

innate response to viral infection acting via TLR3 receptor, induces mucosal damage 220 

(3). We therefore investigated the effect of intraluminal administration of p31-43 and 221 

poly I:C on mucosal damage. Based on previous work that determined an optimal time 222 

point for the induction of intestinal damage and inflammation with poly I:C and reduced 223 

effect of surgery at 72 hours (3), we used this time point to evaluate the combined 224 

effect of p31-43 and poly I:C. As expected, p31-43 treated mice had reduced V/C ratios 225 

compared with control mice at 72h (Figure 1C and Figure 5A), but poly I:C alone or 226 

the combination of p31-43+poly I:C had a more pronounced decrease in V/C ratios 227 

(Figure 5A). 228 

P31-43 and poly I:C induce distinct pattern of inflammatory mediators 229 

The analysis of mRNA at different time points after treatment showed distinct patterns 230 

of expression for the proinflammatory cytokines IFNβ, IFNγ and TNFα in p31-43, poly 231 

I:C or p31-43+poly I:C-treated mice. Increased expression of IFNβ in the mucosa was 232 



found 2h after treatment with poly I:C, whereas this increase was only noted 4h post 233 

p31-43+poly I:C treatment. Induction of IFNβ was modest and delayed until 6h after 234 

treatment with p31-43 alone. TNFα expression was increased by poly I:C or p31-235 

43+poly I:C, but not by p31-43 treatment. Consistent with previous results, p31-43 236 

induced IFNγ expression, which was not observed in p31-43+poly I:C or poly I:C-237 

treated mice. Poly I:C is a strong inducer of CXCL10 (8), which was also upregulated 238 

by p31-43+poly I:C treatment, while CXCL10 induction by p31-43 was weaker and 239 

delayed. A synergistic effect of p31-43+poly I:C was only observed for CXCL2 and 240 

MCP1 (Figure 5B). Altogether, these results suggest that mucosal damage caused by 241 

p31-43 and poly I:C may employ different pathways, which can interact in a complex 242 

fashion. 243 

Poly I:C enhances cell death induced by p31-43. 244 

Treatment with p31-43 led to increased cell death in the intestinal mucosa as assessed 245 

by TUNEL staining (Figure 3) and this was further increased in mice given p31-246 

43+poly I:C together. However, poly I:C alone had no effect on cell death (Figure 6A). 247 

Confirming our previous findings, p31-43 alone also induced a pro-apoptotic pattern of 248 

Bax/Bcl2 ratio 12h after treatment, but this was not seen in mice receiving poly I:C 249 

alone or in combination with p31-43 (Figure 6B). On the other hand, treatment with 250 

p31-43+poly I:C induced a marked increase in the number of cleaved-caspase 3 251 

positive cells in lamina propria compared with mice treated with PBS, poly I:C or p31-252 

43 alone (Figure 6C). As caspase 3 is central to both the intrinsic and extrinsic 253 

pathways of apoptosis, these results suggest that p31-43+poly I:C is a stronger 254 

stimulus for cell death than poly I:C or p31-43 alone and that the pathways involved 255 

may be different.  256 



DISCUSSION 257 

In this study we found that intraluminal administration of p31-43 reduced V/C ratio, 258 

increased IEL infiltration and led to higher histological scores in wild type (C57BL/6) 259 

mice. P31-43 caused an inflammatory response in the small intestine, characterized by 260 

elevation IFNγ expression followed by elevations in IFNβ and CXCL10. P31-43 also 261 

induced cell death in epithelial cells. Treatment with p31-43 in mice lacking TLR4 262 

induced similar morphological changes than in wild type, but not in mice lacking the 263 

MyD88 molecule. The results indicate a direct pro-inflammatory effect of p31-43 in vivo, 264 

that requires the central adaptor of the TLR pathway, MyD88, but is independent of 265 

TLR4. Finally, we demonstrated that the mucosal damage induced by p31-43 is type I 266 

IFN dependent. 267 

There is controversy on the potential induction of the innate immune response by 268 

gliadin peptides. Critiques are based on the lack of specific receptor identification and 269 

reports on in vivo effects. P31-43 has been shown to trigger inflammation using cell 270 

lines and duodenal biopsies, while instillation of p31-49 into the duodenum of treated 271 

CD patients led to reduced villus/crypt ratios and increased IEL counts within 4h after 272 

administration(4, 33). Others have shown that chemokines IP-10 (CXCL10) and MCP-273 

5, which recruit monocytes and T cells, were increased in vitro by p31-43 (34), as well 274 

as cell proliferation and pro-apoptotic activity (4, 6, 12). In this study, we provide 275 

evidence for in vivo innate immune stimulation and apoptosis by p31-43. We found that 276 

intraluminal p31-43 stimulated a broad spectrum of pro-inflammatory genes such as 277 

IFNγ, CXCL10 and IFNβ, increased the number of Ki67+ cells in crypts of C57BL/6 278 

mice, and cellular death in lamina propria and in epithelial cells. A high number of 279 

TUNEL+ cells were found in p31-43-treated mice, which was associated with a pro-280 

apoptotic profile (high Bax/Bcl2 ratio). Finally, cell death evaluated by qPCR (Bax/Bcl2 281 

ratio), fluorescence microcopy (TUNEL reaction) and flow cytometry (annexin V/ 282 

Propidium Iodide) indicated that p31-43 may induce enterocyte death in vivo. 283 

Some previous studies demonstrated that pepsyn-trypsin digested (PT)-gliadin induced 284 

pro-inflammatory genes in a MyD88 dependent, but TLR2 and TLR4 independent 285 

manner (34), while others showed that gliadin-derived peptides increased inflammatory 286 

mediators through TLR4/MyD88/TRIF/MAPK/NFκB and NLRP3 inflammasome 287 

pathways (25). Although these findings suggest that innate response via TLR signaling 288 

and inflammasome can be elicited by gliadin peptides, p31-43 was not specifically 289 

evaluated. Type I IFNs play a critical role in our experimental model, as p31-43 induced 290 

the expression of type I IFNs in vivo and its effects on intestinal pathology were absent 291 

in IFNαR KO mice. Type I IFNs have been suggested as early mediators of CD 292 



pathogenesis and MxA, a downstream element of the Type I IFN pathway, has been 293 

reported to be increased in duodenal biopsies of untreated CD patients (13). Although 294 

it is not known what factors might drive the induction of Type I IFNs in patients at risk of 295 

CD, viral infection is an obvious potential candidate (15, 31, 32). A role for Type I IFNs 296 

might also overlap with the proposed involvement of IL-15 in CD (15), as although 297 

these mediators activate different downstream pathways, IL-15 upregulation during 298 

experimental virus infection depends on IFNαR signaling (11). Our data suggest that 299 

p31-43 and viral infection could act in synergy to induce the innate immune responses 300 

such as IL-15 production thought to be critical for the initiation of tissue pathology in 301 

CD. In order to test whether pathways induced by p31-43 and other stimuli synergize to 302 

worsen the innate immune response, we employed a poly I:C model (3). We observed 303 

distinct proinflammatory patterns in p31-43, poly I:C, or p31-43+poly I:C-treated mice. 304 

Poly I:C alone increased IFNβ, TNFα and CXCL10. p31-43 alone induced IFNβ and 305 

CXCL10 at lower levels, and it was the only stimuli that rapidly increased IFNγ. The 306 

combination of p31-43 and poly I:C increased IFNβ, TNFα, CXCL10, and was the only 307 

stimuli that increased CXCL2 and MCP-1. CXCL10, CXCL2 and MCP-1 are relevant 308 

for the recruitment of T cells, polymorphonuclear cells and monocytes. 309 

Analysis by TUNEL staining, Bax/Bcl2 ratio and cleaved caspase 3, suggests that a 310 

pro-apoptotic pathway is involved in the increased cell death observed in p31-43-311 

treated mice. In contrast, poly I:C treatment did not induce a significant increase in any 312 

of these parameters, perhaps indicating that the histological damage caused by these 313 

stimuli may be driven by different pathways. As well as cell apoptosis, mechanisms 314 

such as metalloproteases- and TGFβ-induced fibrosis can all contribute to tissue 315 

pathology and these may be induced differentially by individual triggers. Further 316 

support for complexity in the pathogenic processes could come from our finding that in 317 

p31-43+poly I:C-treated mice, the number of TUNEL+ cells and of cleaved caspase 3+ 318 

cells was increased, but there was no change in Bax/Bcl2 ratio. Since caspase 3 can 319 

be activated by both intrinsic and extrinsic apoptotic pathways, but also can be cleaved 320 

by Granzyme B (10), this may explain why in p31-43+poly I:C treated mice cleaved 321 

caspase 3 and TUNEL+ cells were increased but not the pro-apoptotic ratio. Together 322 

our results suggest that distinct or partially overlapping pathways of tissue damage 323 

may be induced by p31-43 and poly I:C. 324 

The adaptive immune response in CD is necessary for the development of the disease, 325 

however it is now clear that it is insufficient to cause full intestinal pathology (21). 326 

Cytotoxic activity of IELs has been considered as a key element for enterocyte 327 

damage. Though increased number and activation of IELs are a hallmark of CD, how 328 

these cells are induced and activated is still a matter of discussion. Setty et al. have 329 

recently suggested that epithelial stress and anti-gluten adaptive immune responses 330 



can be independently induced at early stages of the disease (30). In accordance with 331 

these results, previous reports from our group revealed the presence of epithelial 332 

stress in active CD (2). Altogether, the results raise the hypothesis that by activating 333 

innate immunity, peptides such as p31-43 may lead to epithelial stress, a condition that 334 

together with the adaptive immune response would facilitate the development of 335 

enteropathy in CD. . It remains to be determined whether this mechanisms could also 336 

have implications for other gluten-related disorders such as non-celiac gluten sensitivity 337 

(29). Our work shows that induction of inflammation by non-immunogenic peptides 338 

depends on MyD88, but not TLR4, signaling. In contrast, wheat amylase-trypsin 339 

inhibitors (ATIs), have been identified as potent stimulators of an inflammatory reaction 340 

through activation of TLR4 signaling on monocytes, macrophages and dendritic cells 341 

(14). Therefore, it is possible that non-immunogenic gluten peptides and non-gluten 342 

proteins in wheat induce inflammation through different pathways facilitating the onset 343 

of CD and other intestinal inflammatory diseases. 344 

In summary, in vivo inflammatory changes driven by p31-43 and poly I:C occur through 345 

different pathways, as judged by the kinetics of the mucosal damage and histological 346 

recovery. Though the receptor for p31-43 has not been identified yet, different cells can 347 

produce inflammatory mediators after incubation with this peptide. Since HLA-DQ2 or 348 

DQ8 molecules do not present p31-43 and the mucosal changes observed are MyD88- 349 

and Type I IFN- dependent, future work should determine the effect of p31-43 in other 350 

genetically modified mouse strains. Signals triggered by gliadin-derived peptides, 351 

particularly p31-43, in addition to those elicited by certain infections, may exacerbate 352 

inflammation promoting the development of intestinal pathology in a genetically 353 

susceptible individual.  354 
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TABLE 1: PRIMERS USED FOR QUANTITATIVE PCR 495 

Gene Forward Reverse
HPRT CAATGCAAACTTTGCTTTCC CAAATCCAACAAAGTCTGGC 
IFNβ AATGGAAAGATCAACCTCAC AAGGCAGTGTAACTCTTCTG 
CXCL10 ATAGGGAAGCTTGAAATCATCC TTCATCGTGGCAATGATCTC 
CXCR3 TGTAGTTGGGCTAGCTCGAACTT ACCTGGATATATGCTGAGCTGTCA 
TNFα CTCCCTCTCATCAGTTCTATGG TTGAGAAGATGATCTGAGTGTG 
IL-15 CATCCATCTCGTGCTACTTGTGTT CATCTATCCAGTTGGCCTCTGTTT 
MCP1 CTACAAGAGGATCACCAGCAG TTCTGATCTCATTTGGTTCCG 
CXCL2 AAGATACTGAACAAAGGCAAGG TTCTTTCTCTTTGGTTCTTCCG 
IL-1β CGTTCCCATTAGACAACTGC CTCATGGAGAATATCACTTGTTGG 
IL-18 GATCAAAGTGCCAGTGAACC GATCTTGTTCTTACAGGAGAGG 
IL-6 CATGTTCTCTGGGAAATCGT TATATCCAGTTTGGTAGCATCC 
IFNγ CTGAGACAATGAACGCTACAC TTTCTTCCACATCTATGCCAC 
Bax TGCTACAGGGTTTCATCCAG ATTGCTGTCCAGTTCATCTC 
Bcl2 GATCTCTGGTTGGGATTCCT ACAACTTGCAATGAATCGGG 
  496 



LEGENDS TO FIGURES 497 

Figure 1: Intraluminal p31-43 peptide induces pathological changes in the murine 498 

small intestine. 499 

Representative H&E stained sections of proximal small intestine of C57BL/6 mice after 500 

12h and 72h of intraluminal administration of p31-43, NRP or PBS. Black scale bar: 501 

100μm. Red arrows show edema and Light Blue arrows show some IELs (A). 502 

Morphological analysis of small intestine from C57BL/6 mice: villus-to-crypt (V/C) ratio, 503 

number of IELs and histological score after 12h (B) and 72h (C) (Stats: N= 4 mice per 504 

group, Unpaired t test, *P<0.05, **P<0.01, ***P<0.001). 505 

Figure 2: Intraluminal p31-43 peptide produces hyperproliferation in crypts and a 506 

proinflammatory response in small intestine. 507 

Evaluation of the proliferative activity in small intestinal crypts by Ki67+ cell counts. 508 

After 12h post-treatment with p31-43 or PBS, samples of small intestine were stained 509 

with anti-Ki67 antibody. Images were obtained and analyzed in a TCS SP5 Confocal 510 

Microscope. The plots show the number of Ki67+ cells per crypt. (Stats: N= 4 mice per 511 

group, Unpaired t test, **P<0.01) (A). Real Time-PCR analysis of small intestinal 512 

samples from C57BL/6 mice after intraluminal administration of p31-43 or PBS was 513 

performed. Plots show mRNA expression after 2 to 12h of p31-43 (black dots) or PBS 514 

(empty dots) treatment. IFNγ, IFNβ, and CXCL10 mRNA expression was assessed. All 515 

values were normalized with the housekeeping mRNA expression (HPRT). Results 516 

were expressed as fold increase of every treatment versus the mean of PBS treatment 517 

in every time point (2-∆∆Ct method). (Stats: N= 4 mice per group, Unpaired t test, 518 

*P<0.05, **P<0.01, p31-43-treated mice versus PBS control in the same time point). 519 

Figure 3: Intraluminal p31-43 induces cell death in the small intestinal mucosa. 520 

Sections of small intestine after 12h post-treatment with p31-43 or PBS were stained 521 

with TUNEL reaction. Sections were analyzed by confocal microscopy. Images were 522 

taken from a confocal microscope Olympus FV1000. White arrows point some TUNEL+ 523 

nuclei in the epithelial layer. White scale bar: 100μm (A). TUNEL+/total cells from 524 

mucosa were determined using ImageJ software (B). The expression of anti- and pro-525 

apoptotic mediators, Bcl2 and Bax, respectively, was evaluated by quantitative PCR 526 

analysis of small intestinal mucosa; results were plotted as Bax/Bcl2 ratio (C). 527 

TUNEL+/total cells from epithelium and lamina propria, separately, were determined 528 

using ImageJ software (D). Epithelial cells were isolated from small intestine 12h after 529 

treatment with p31-43 or PBS and the expression of Bcl2 and Bax was evaluated by 530 

quantitative PCR; results were plotted as Bax/Bcl2 ratio (E). Isolated epithelial cells 531 



were stained with Annexin V and Propidium Iodide and analyzed by flow cytometry (F). 532 

(Stat: N= 4 mice per group, Unpaired t test, *P<0.05, **P<0.01, p31-43-treated mice 533 

versus PBS control) 534 

Figure 4: Changes induced by p31-43 are MyD88- and type I IFN-dependent. 535 

Representative H&E stained sections of proximal small intestine of MyD88 mice after 536 

12h and 72h of intraluminal administration of p31-43 or PBS. Black scale bar: 100μm 537 

(A). Morphological analysis of small intestine from MyD88 KO mice treated with p31-43 538 

or PBS: villus-to-crypt (V/C) ratio, number of IELs and histological score after 12h (B). 539 

Small intestinal sections after 12h post-treatment with p31-43 or PBS were stained with 540 

TUNEL reaction. Sections were analyzed by confocal microscopy. Images were taken 541 

from a confocal microscope Olympus FV1000. White scale bar: 100μm. TUNEL+/total 542 

cells from mucosa were determined using ImageJ software (C). Morphological analysis 543 

of small intestine from C3H/HeJ mice (TLR4 deficient mice) treated with p31-43 or 544 

PBS: Villus-to-crypt (V/C) ratio, number of IELs and histological score after 12h (D). 545 

Morphological analysis of small intestine from IFNαR-/- mice treated with p31-43 or 546 

PBS: villus-to-crypt (V/C) ratio, number of IELs and histological score, after 12h. (Stats: 547 

N= 4 mice per group, Unpaired t test, **P<0.01, ***P<0.001). 548 

Figure 5: P31-43 and poly I:C cause mucosal damage via independent 549 

mechanisms. 550 

Morphological analysis of small intestine from C57BL/6 mice after p31-43, poly I:C 551 

(PIC), p31-43+poly I:C or PBS treatment. villus-to-crypt (V/C) ratio was determined 552 

after 72h. (Stats: N= 4 mice per group, Unpaired t test, *P<0.05, **P<0.01, all treatment 553 

versus PBS control in the same time point) (A). Real Time-PCR analysis of small 554 

intestinal samples from C57BL/6 mice after p31-43, poly I:C (PIC), p31-43+poly I:C or 555 

PBS administration. Plots show mRNA expression after 2 to 12h of p31-43, poly I:C, 556 

p31-43+poly I:C or PBS treatment. IFNγ, IFNβ, TNFα, CXCL10, CXCL2, and MCP1 557 

mRNA expression was assessed. All values were normalized with the housekeeping 558 

mRNA expression (HPRT). Results were expressed as fold increase of every treatment 559 

versus the mean of PBS treatment in every time point (2-∆∆Ct method) (Stats: N= 4 mice 560 

per group, One-way ANOVA, *P<0.05, **P<0.01, ***P<0.001, every treatment versus 561 

PBS control in the same time point) 562 

Figure 6: Poly I:C enhances cell death induced by p31-43. 563 

Sections of small intestine after 12h post-treatment with p31-43 or PBS were stained 564 

with TUNEL reaction. Sections were analyzed by confocal microscopy. Images were 565 

taken from a confocal microscope Olympus FV1000. White scale bar: 100μm. TUNEL+/ 566 



total cell ratio was determined using ImageJ software (A). The expression of anti- and 567 

pro-apoptotic mediators, Bcl2 and Bax, respectively, was evaluated by quantitative 568 

PCR analysis of small intestinal mucosa; results were plotted as Bax/Bcl2 ratio (Stat: 569 

N= 4 mice per group, Unpaired t test, **P<0.01, p31-43-treated mice versus PBS 570 

control) (B). Expression of cleaved caspase 3 was assessed by confocal microscopy. 571 

Anti-cleaved caspase 3 antibody conjugated to FITC was used. Nuclei were stained 572 

with propidium iodide. Images were obtained and analyzed in a TCS SP5 Confocal 573 

Microscope combined with Leica LAS AF software. White scale bar: 100μm (C). 574 
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