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 Abstract  19 

The length of telomeres, the protective caps of chromosomes, is increasingly used as a biomarker 20 

of individual health state since it has been shown to predict chances of survival in a range of 21 

endothermic species including humans. Oxidative stress is presumed to be a major cause of 22 

telomere shortening, but most evidence to date comes from in vitro cultured cells. The 23 

importance of oxidative stress as a determinant of telomere shortening in vivo remains less clear 24 

and has recently been questioned.  25 

We therefore reviewed correlative and experimental studies investigating the links between 26 

oxidative stress and telomere shortening in vivo. While correlative studies provide equivocal 27 

support for a connection between oxidative stress and telomere attrition (10/18 studies), most 28 

experimental studies published so far (7/8 studies) partially or fully support this hypothesis. Yet, 29 

this link seems to be tissue-dependent in some cases, or restricted to particular categories of 30 

individual (e.g. sex-dependent) in other cases. 31 

More experimental studies, especially those decreasing antioxidant protection or increasing pro-32 

oxidant generation, are required to further our understanding of the importance of oxidative 33 

stress in determining telomere length in vivo. Studies comparing growing vs. adult individuals, or 34 

proliferative vs. non-proliferative tissues would provide particularly important insights. 35 
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Introduction 38 

Because of the central function of telomeres in protecting chromosome ends and genome 39 

integrity, their study has gained interest in different domains of biology, ranging from cellular 40 

biology and epidemiology to ecology and evolutionary biology [1],[2]. It has been shown that 41 

telomeres shorten with age in a broad range of organisms [3,4], and more importantly that 42 

telomere length and/or shortening rate could predict subsequent survival [4,5]. Consequently, 43 

telomere length and/or attrition has been suggested to act as a biomarker of individual ‘biological 44 

age’. Telomere dynamics has been linked to individual survival prospects, early-life growth 45 

conditions and reproductive success, but also to various physiological and psychological stressors. 46 

Telomeres are thus thought to be a biomarker of exposure to environmental challenges and 47 

individual lifestyle [1,2,6]. 48 

Although the pivotal role of telomeres in health and ageing biology is well recognized, our 49 

understanding of the physiological determinants of telomere dynamics in vivo is still imperfect. For 50 

instance, information regarding the in vivo effects of oxidative stress on telomere length and/or 51 

shortening rate remain limited since most studies conducted so far have used an in vitro approach. 52 

Yet, most studies on telomere dynamics make the assumption that, because there is an in 53 

vitro effect of oxidative damage on telomeres, it is also the case in vivo. The recent paper by 54 

Boonekamp et al. [7] highlights this limitation and the gap that exists in the literature on these in 55 

vivo effects. 56 

With this review, we aim to provide a clearer picture of the situation by focusing on what we do 57 

and do not know about the in vivo links between oxidative stress and telomeres. We provide a 58 

brief summary of telomere structure and main mechanisms by which telomere length is regulated. 59 

We then cover the in vivo aspects of the impact of oxidative stress on telomere dynamics. We 60 

survey the literature and critically evaluate in vivo correlative and experimental studies 61 

investigating the link between oxidative stress and telomere length and/or shortening. Finally, we 62 

highlight several key parameters likely to contribute to the mixed results published so far, and 63 

propose different experimental approaches that should help to provide robust data in future 64 

studies.  65 

 66 

Telomeres structure and shortening 67 

Telomeres are protective DNA-protein complexes situated at the end of eukaryotic chromosomes, 68 

are made of non coding DNA sequences that consist of tandem repeats of a simple sequence of 69 



nucleotides, which is rich in guanine (G) [8]. While the length of telomeres varies between 70 

chromosomes and species, the sequence is similar in all eukaryotes, indicating that telomeres are 71 

a highly conserved and ancient structure with a significant evolutionary role in protecting genome 72 

integrity [9].  73 

The length of telomeres is dynamic and results from a balance between restoration and loss 74 

processes. Because DNA replication is a partially incomplete process, each time a cell divides 75 

telomeric DNA sequences of the chromosomes are lost, a phenomenon known as the ‘end 76 

replication problem’ [10]. Telomeres can shorten by 30 to 200 bp per cell division, but only 10 bp 77 

are thought to be due to the end replication problem in human cultured cells [11]. Oxidative stress 78 

leading to DNA damage is thought to be the main factor responsible for the remaining loss [12]. 79 

Oxidative stress can arise from the reactive oxygen species (ROS) generated from exogenous 80 

sources (UV radiation and pollutants), but the majority of intracellular ROS are thought to arise as 81 

a by-product of aerobic metabolism and ATP production in the mitochondria [13]. ROS are highly 82 

reactive and will cause oxidative damage to various biomolecules. Such damage can either be 83 

prevented by defence mechanisms known as antioxidant defences, or repaired in some cases after 84 

they occur. Oxidative stress is thus the result of an imbalance between antioxidant defences and 85 

ROS production. Due to their high guanine content, telomeres are thought to be especially 86 

sensitive to oxidative damage [14]. If not prevented, the oxidative damage of telomere regions will 87 

lead to an accumulation of damage to DNA and exacerbate telomere loss. Although oxidative 88 

damage can cause telomere shortening through double stranded breaks to DNA, most telomere 89 

loss due to oxidative stress occurs during DNA replication as a result of single-strand DNA damage 90 

[12]. As telomeric regions have a low efficiency of single-strand DNA damage repair, telomeres 91 

containing such single-strand DNA damage will not be fully replicated at the next cellular division. 92 

Therefore telomeres containing such DNA damage will shorten more following the next cellular 93 

division since the sequence beyond the damage will be lost [15]. Different mechanisms exist to 94 

maintain or restore telomere length, and the main one is telomerase activity, a ribonucleoprotein 95 

being able to elongate telomeres [16]. In the absence of restoration, telomere length shortens 96 

with each cell division; when the telomeres reach a critical length threshold, they induce a 97 

permanent arrest in the cell cycle known as cellular senescence, which may be followed by cell 98 

death. Given their role into cellular senescence, telomeres are thought to be also implicated into 99 

organismal senescence and ageing [1].  100 

Most of the work looking at the effects of oxidative stress on telomere dynamics has been 101 



conducted in vitro. Except for a couple of studies [17,18], most in vitro experiments have shown 102 

that oxidative stress accelerates telomere shortening [12,15,19]. Oxidative stress is therefore 103 

thought to mediate the effects of several environmental factors on telomere dynamics at the 104 

organismal level, but surprisingly in vivo effects of oxidative stress on telomere dynamics have 105 

been relatively poorly investigated, as highlighted in a recent publication [7]. 106 

 107 

What is the current evidence showing that oxidative stress shortens telomeres in vivo? 108 

We searched the published literature using the Web of Science search engine in May 2017, using 109 

combinations of the following terms: telomere*, oxidative stress, antioxidant*, oxidative damage, 110 

correlation*, experiment*. We identified studies of interest reporting either correlations between 111 

oxidative stress markers (without restriction on the nature of the markers) and telomere length 112 

and/or shortening, or experimental manipulations of oxidative stress (antioxidant 113 

depletion/supplementation) and subsequent measures of telomere length and/or shortening. 114 

Correlative studies: 115 

Eighteen studies reported correlative information on the links between oxidative stress and 116 

telomeres (Table 1); 8 in humans and 10 in avian species. Overall, 10/18 studies report significant 117 

correlations between a variety of oxidative stress marker(s) and telomere length and/or attrition. 118 

Studies in human (6/8) were slightly more likely to report significant results than studies in birds 119 

(4/10). The methodology used for telomere measurement had no major effect on the outcome, 120 

with 2/5 studies using TRF and 7/12 studies using qPCR reporting significant results. Surprisingly, 121 

markers of oxidative damage were not more likely (6/14) to be associated with telomere length 122 

than markers of antioxidant defences (5/12). In birds, studies looking at telomere shortening were 123 

slightly more likely to find significant results than those looking at telomere length per se (4/8 vs. 124 

1/8). Overall, the correlative evidence remains equivocal in supporting the assumption that 125 

oxidative stress contributes to telomere shortening in vivo. 126 

 127 

Experimental studies: 128 

In total, 8 studies used a controlled experimental approach (i.e. manipulation of oxidative stress) 129 

to investigate the links between oxidative stress and telomeres (Table 2). Two studies used L-130 

buthionine sulfoximine (BSO) treatment to selectively reduce the endogenous levels of 131 

glutathione, an important intra-cellular antioxidant. The six other studies used supplementation 132 

with various antioxidants either alone or in combination, such as vitamin C and E, Coenzyme Q10 133 



or methionine. Overall, 7/8 studies provide partial or total support for a significant effect of 134 

oxidative stress on telomere length and/or shortening rate. The only study not supporting this 135 

hypothesis [20] was conducted during embryonic development, when telomerase activity is 136 

supposed to be high, and did not show a clear effect on oxidative damage levels either. Still, it is 137 

worth noting that the effects of oxidative stress on telomere length are likely to be tissue-138 

dependent [21], and in some cases restricted to particular groups of animals that might be more 139 

sensitive to changes in antioxidant defences than others [22,23]. Among the six studies measuring 140 

the impact of their treatment on oxidative damage levels, five of them obtained results that were 141 

mostly consistent between the effects of the treatment on oxidative damage on the one hand, 142 

and on telomere length and/or shortening on the other hand. Overall, the experimental evidence 143 

gathered so far mostly support the assumption that oxidative stress contributes to telomere 144 

shortening in vivo.  145 

 146 

Limitations of the current correlative and experimental evidence 147 

Several experimental aspects could explain the heterogeneity of results we found in studies 148 

looking at in vivo relationships between oxidative stress and telomere length. First of all, the 149 

tissues sampled as well as the timing of sampling are key parameters to consider. Indeed, it was 150 

shown that increased telomere shortening in response to oxidative stress is likely to be tissue-151 

dependent [21]. However, most correlative studies (13/18) measured oxidative stress markers and 152 

telomere length in different tissue types (e.g. oxidative stress in plasma and telomere length in 153 

DNA isolated from blood cells). This probably precludes obtaining robust information since both 154 

variations in telomere length and oxidative stress markers can be tissue-dependent (e.g. [24,25]). 155 

Similarly, measuring oxidative damage to lipids/proteins but not to DNA is not ideal when testing 156 

the effect of oxidative stress on telomere length, since oxidative damage levels to different 157 

biomolecules are not necessarily correlated (e.g. [26,27]).  158 

The timing of sampling to measure both oxidative stress and telomere length is also a key 159 

parameter to take into account. Indeed, oxidative stress levels are likely to vary much more 160 

quickly than telomere length. Moreover, most of the effects of oxidative stress on telomere length 161 

are supposed to be visible only after the next cellular replication, because single-strand damage 162 

are more likely to occur than double-strand breaks, and such single-strand damage will only 163 

shorten telomeres during replication [12]. Therefore, the effects of a rise in oxidative stress at a 164 

given time point might only be visible on telomere shortening later on. This implies that 165 



experimental studies should look at telomere length long enough for replication to happen after 166 

the manipulation occurred, but also that correlative studies should wisely choose their sampling 167 

timing. For instance, one potential sampling strategy could be to measure ‘initial’ telomere length 168 

and oxidative stress, measure ‘final’ telomere length later on (ideally considering the timing of 169 

cellular division in the target tissue), and then correlate telomere shortening to initial oxidative 170 

stress levels. Indeed, since telomere length is likely to be largely determined by inheritance and 171 

early-life conditions [28,29], using the rate of telomere shortening will avoid this ‘background 172 

noise’ in a correlation with oxidative stress levels. Accordingly, we show in supplementary material 173 

(ESM S1 and S2) using one of our own dataset (data available in ESM S3) that such an approach 174 

was the only one revealing a significant relationship between oxidative damage to DNA and 175 

telomeres in coal tit (Periparus ater) nestlings (information on oxidative stress and telomeres 176 

measurements were previously published separately in [30,31]).  177 

The life stage at which animals are sampled is a paramount aspect to consider as well. For 178 

instance, telomerase is likely to be active during embryo development, and potentially at later life 179 

stages in particular tissues in some taxa [3]. This is important to consider, since it could mask the 180 

true relationship between oxidative stress and telomere shortening in vivo. In addition, during the 181 

growth period, the end replication problem during cellular division is likely to be one key driver of 182 

telomere shortening, which can have different consequences that researchers should consider. 183 

Indeed, the rapid cellular division and the associated end replication problem during growth could 184 

reduce the likelihood of finding significant results in correlative studies, because it will decrease 185 

the relative proportion of telomere shortening being linked to oxidative stress. Alternatively, rapid 186 

cellular division linked to growth could increase the likelihood of detecting significant results in 187 

experimental studies by converting rapidly single-strand damage into actual telomere shortening.  188 

The nature of the experimental manipulation should also be carefully considered. Indeed, while 189 

antioxidant supplementation studies detailed in Table 2 were quite successful in finding significant 190 

beneficial effects on telomere length, any non-significant result of such supplementation would be 191 

unsurprising in our opinion. Indeed, such antioxidant supplementation is likely to be beneficial 192 

only if there is a need for extra antioxidants, but not if animals are not naturally resource-limited 193 

[32]. This could explain why in some cases antioxidant supplementation was only beneficial for 194 

some specific groups of animals [22,23].  195 

Finally, other types of biases, such as statistical bias or publication bias could also skew our 196 

understanding of the effects of oxidative stress on telomeres. Indeed, keeping in mind that 197 



“correlation is not causation”, the lack of significant correlation is definitively not a good support 198 

against causation either. Importantly, the type II statistical error (i.e. ‘false-negative’) thus has to 199 

be carefully considered before drawing conclusions about non-significant relationships (as done by 200 

[7]), and sample sizes have generally to be very large to limit type II error. The potential bias 201 

toward the publication of only significant results is also likely to alter the overall picture found in 202 

the scientific literature so far. This is likely to be especially true in experimental studies as their 203 

main focus is on the links between oxidative stress and telomere shortening; correlative studies 204 

are probably less sensitive to this bias since they are often reporting the correlation between 205 

oxidative stress and telomeres as part of other biological information. 206 

 207 

What should we do to move the field forward? 208 

We believe that only carefully designed experiments will provide a robust answer to the question 209 

of the importance of oxidative stress for telomere shortening in vivo. Direct manipulation of ROS 210 

production or down-regulation of antioxidant defences is undoubtedly a more powerful approach 211 

than antioxidant supplementation, since supplementation is only efficient in response to a natural 212 

limitation in antioxidant defences. However, manipulating ROS in vivo is very challenging as 213 

highlighted in a recent review [33]. Still, some experiments using pro-oxidant molecules have been 214 

successful in inducing moderate oxidative damage (e.g. [34]), and measuring telomere length in 215 

such context should provide useful information. The selective down-regulation of the endogenous 216 

antioxidant glutathione using L-buthionine sulfoximine (BSO) is undoubtedly one of the most 217 

powerful tools available to researchers [21]. This manipulation is highly selective since BSO only 218 

inhibits glutathione synthesis and does not affect other cellular pathways. It is also worth 219 

mentioning that experimental studies are more likely to reveal a significant impact of oxidative 220 

stress on telomeres than correlative studies. Indeed, it is possible that organisms under natural 221 

conditions are able in most cases to maintain oxidative stress at a threshold level that does not 222 

impact telomeres, while experimentally manipulating oxidative stress could disrupt such balance. 223 

Regardless of the kind of experimental manipulation employed, it is important to validate the 224 

impact of the treatment on oxidative damage (preferably on DNA) before examining the impact on 225 

telomere length and/or shortening. If possible, oxidative damage and telomere length should be 226 

measured in the exact same sample type. Investigating the impact of the treatment should be 227 

done in several tissues since the most convincing study to date [21] found tissue-specific effects of 228 

BSO on telomere length. As mentioned in the previous paragraph, life stage as well as tissue type 229 



could constrain the effects of oxidative stress on telomere dynamics. Conducting the same 230 

experiment in both growing and adult individuals and comparing proliferative vs. non-proliferative 231 

tissues will thus be important, in order to assess the sensitivity of telomeres to oxidative stress at 232 

different life stages as well as the importance of cellular division in revealing the impact of 233 

oxidative stress on telomere length. Finally, given the various experimental constraints (e.g. 234 

repeated injections or continuous supplementation in water/food, close monitoring of health 235 

state) and ethical considerations, we suggest that such studies should be conducted in captive 236 

animals. 237 

 238 

Conclusion 239 

The limited number of studies investigating the in vivo connection between oxidative stress and 240 

telomere dynamics highlights that our understanding of this link still remains incomplete. 241 

Although the correlative studies display equivocal results, findings from the limited number of 242 

experimental studies conducted so far seem to indicate that oxidative stress affects telomere 243 

shortening in vivo. Yet, experimental studies are more likely to be susceptible to publication bias 244 

as mentioned above. The key to a better understanding of the impact of oxidative stress on 245 

telomere shortening in vivo will undoubtedly come from robust experimental studies, especially if 246 

conducted in a broad range of organisms since between-taxa differences in telomere biology do 247 

exist. Finally, when the number of published studies will be sufficient to overcome limitations 248 

linked to data heterogeneity, it will be of utmost importance to conduct a quantitative meta-249 

analysis of the relationships between oxidative stress and telomere length in vivo. 250 

 251 

Acknowledgements 252 

We thank three anonymous referees for their constructive comments, Pat Monaghan and Neil 253 

Metcalfe for useful comments and discussions, as well as all co-authors of [30,31] for their 254 

contribution in obtaining the data presented in ESM. 255 

Author contributions 256 

AS and SR had the original ideas and wrote the paper 257 

Data accessibility 258 

Data is accessible as an excel file in ESM S3 259 

Funding 260 



AS and SR were both supported by a Marie Sklodowska-Curie Postdoctoral Fellowship (#658085 261 

and #659937). 262 

Competing interests 263 

Authors declare no competing interests. 264 

Ethical statement 265 

No ethical statement to declare 266 

 267 

References  268 

1. Monaghan, P. & Haussmann, M. 2006 Do telomere dynamics link lifestyle and lifespan? 269 
Trends in Ecology & Evolution 21, 47–53.  270 

2. Blackburn, E. H. & Epel, E. S. 2012 Telomeres and adversity: Too toxic to ignore. Nature 490, 271 
169–171. (doi:10.1038/490169a) 272 

3. Gomes, N. M. V., Shay, J. W. & Wright, W. E. 2010 Telomere biology in Metazoa. FEBS 273 
Letters 584, 3741–3751. (doi:10.1016/j.febslet.2010.07.031) 274 

4. Stier, A., Reichert, S., Criscuolo, F. & Bize, P. 2015 Red blood cells open promising avenues 275 
for longitudinal studies of ageing in laboratory, non-model and wild animals. Experimental 276 
Gerontology 71, 118–134. (doi:10.1016/j.exger.2015.09.001) 277 

5. Cawthon, R. M., Smith, K. R., O'Brien, E., Sivatchenko, A. & Kerber, R. A. 2003 Association 278 
between telomere length in blood and mortality in people aged 60 years or older. The 279 
Lancet 361, 393–395.  280 

6. Angelier, F., Costantini, D., Blévin, P. & Chastel, O. 2017 Do glucocorticoids mediate the link 281 
between environmental conditions and telomere dynamics in wild vertebrates? A review. 282 
General and comparative endocrinology, 1–13. (doi:10.1016/j.ygcen.2017.07.007) 283 

7. Boonekamp, J. J., Bauch, C., Mulder, E. & Verhulst, S. 2017 Does oxidative stress shorten 284 
telomeres? Biol Letters 13, 20170164. (doi:10.1002/ece3.2551) 285 

8. De Lange, T., Lundblad, V. & Blackburn, E. H. 2006 Telomeres. Cold Spring Harbor 286 
Laboratory Press, New York 576.  287 

9. Louis, E. J. & Vershinin, A. V. 2005 Chromosome ends: different sequences may provide 288 
conserved functions. Bioessays 27, 685–697. (doi:10.1128/MCB.14.9.5777) 289 

10. Harley, C. B., Futcher, A. B. & Greider, C. W. 1990 Telomeres shorten during ageing of 290 
human fibroblasts. Nature 345, 458–460. (doi:10.1038/345458a0) 291 

11. Zglinicki, von, T., Bürkle, A. & Kirkwood, T. B. 2001 Stress, DNA damage and ageing -- an 292 
integrative approach. Experimental Gerontology 36, 1049–1062.  293 

12. Zglinicki, von, T. 2002 Oxidative stress shortens telomeres. Trends in Biochemical Sciences 294 



27, 339–344.  295 

13. Balaban, R. S., Nemoto, S. & Finkel, T. 2005 Mitochondria, Oxidants, and Aging. Cell 120, 296 
483–495. (doi:10.1016/j.cell.2005.02.001) 297 

14. Kawanishi, S. & Oikawa, S. 2004 Mechanism of telomere shortening by oxidative stress. 298 
Annals of the New York Academy of Sciences 1019, 278–284. (doi:10.1196/annals.1297.047) 299 

15. Zglinicki, von, T., Pilger, R. & Sitte, N. 2000 Accumulation of single-strand breaks is the major 300 
cause of telomere shortening in human fibroblasts. Free Radical Biology and Medicine 28, 301 
64–74.  302 

16. Greider, C. W. & Blackburn, E. H. 1985 Identification of a specific telomere terminal 303 
transferase activity in Tetrahymena extracts. Cell 43, 405–413.  304 

17. Romano, G. H. et al. 2013 Environmental Stresses Disrupt Telomere Length Homeostasis. 305 
PLoS Genet 9, e1003721. (doi:10.1371/journal.pgen.1003721.s008) 306 

18. Chen, Q. M., Prowse, K. R., Tu, V. C., Purdom, S. & Linskens, M. H. K. 2001 Uncoupling the 307 
Senescent Phenotype from Telomere Shortening in Hydrogen Peroxide-Treated Fibroblasts. 308 
Experimental Cell Research 265, 294–303. (doi:10.1006/excr.2001.5182) 309 

19. Richter, T. & Zglinicki, T. V. 2007 A continuous correlation between oxidative stress and 310 
telomere shortening in fibroblasts. Experimental Gerontology 42, 1039–1042. 311 
(doi:10.1016/j.exger.2007.08.005) 312 

20. Parolini, M. et al. 2017 Yolk vitamin E prevents oxidative damage in gull hatchlings. R. Soc. 313 
open sci. 4, 170098. (doi:10.1111/jeb.12615) 314 

21. Cattan, V. et al. 2008 Chronic oxidative stress induces a tissue-specific reduction in telomere 315 
length in CAST/Ei mice. Free Radical Biology and Medicine 44, 1592–1598.  316 

22. Noguera, J. C., Metcalfe, N. B., Boner, W. & Monaghan, P. 2015 Sex-dependent effects of 317 
nutrition on telomere dynamics in zebra finches (Taeniopygia guttata). Biol Letters 11, 318 
20140938. (doi:10.1098/rsbl.2014.0938) 319 

23. Kim, S.-Y. & Velando, A. 2015 Antioxidants safeguard telomeres in bold chicks. Biol Letters 320 
11, 20150211–20150211. (doi:10.1073/pnas.1113306109) 321 

24. Ludlow, A. T., Witkowski, S., Marshall, M. R., Wang, J., Lima, L. C. J., Guth, L. M., 322 
Spangenburg, E. E. & Roth, S. M. 2012 Chronic Exercise Modifies Age-Related Telomere 323 
Dynamics in a Tissue-Specific Fashion. The Journals of Gerontology Series A: Biological 324 
Sciences and Medical Sciences 67, 911–926. (doi:10.1093/gerona/gls002) 325 

25. Stier, A., Bize, P., Habold, C., Bouillaud, F., Massemin, S. & Criscuolo, F. 2014 Mitochondrial 326 
uncoupling prevents cold-induced oxidative stress: a case study using UCP1 knockout mice. 327 
J Exp Biol 217, 624–630. (doi:10.1242/jeb.092700) 328 

26. Stier, A., Massemin, S. & Criscuolo, F. 2014 Chronic mitochondrial uncoupling treatment 329 
prevents acute cold-induced oxidative stress in birds. J Comp Physiol B 184, 1021–1029. 330 
(doi:10.1007/s00360-014-0856-6) 331 



27. Christensen, L. L., Selman, C., Blount, J. D., Pilkington, J. G., Watt, K. A., Pemberton, J. M., 332 
Reid, J. M. & Nussey, D. H. 2015 Plasma markers of oxidative stress are uncorrelated in a 333 
wild mammal. Ecol Evol 5, 5096–5108. (doi:10.1002/ece3.1771) 334 

28. Reichert, S., Criscuolo, F., Zahn, S., Arrivé, M., Bize, P. & Massemin, S. 2015 Immediate and 335 
delayed effects of growth conditions on ageing parameters in nestling zebra finches. J Exp 336 
Biol 218, 491–499. (doi:10.1242/jeb.109942) 337 

29. Reichert, S., Rojas, E. R., Zahn, S., Robin, J. P., Criscuolo, F. & Massemin, S. 2015 Maternal 338 
telomere length inheritance in the king penguin. Heredity 114, 10–16. 339 
(doi:10.1038/hdy.2014.60) 340 

30. Stier, A., Delestrade, A., Zahn, S., Arrivé, M., Criscuolo, F. & Massemin-Challet, S. 2014 341 
Elevation impacts the balance between growth and oxidative stress in coal tits. Oecologia 342 
175, 791–800. (doi:10.1007/s00442-014-2946-2) 343 

31. Stier, A., Delestrade, A., Bize, P., Zahn, S., Criscuolo, F. & Massemin, S. 2016 Investigating 344 
how telomere dynamics, growth and life history covary along an elevation gradient in two 345 
passerine species. Journal of Avian Biology 47, 134–140. (doi:10.1111/jav.00714) 346 

32. Beaulieu, M. & Schaefer, H. M. 2013 Animal Behaviour. Animal Behaviour 86, 17–24. 347 
(doi:10.1016/j.anbehav.2013.05.022) 348 

33. Koch, R. E. & Hill, G. E. 2017 An assessment of techniques to manipulate oxidative stress in 349 
animals. Funct Ecol 31, 9–21. (doi:10.1111/1365-2435.12664) 350 

34. Galván, I. & Alonso-Alvarez, C. 2017 Individual quality as sensitivity to cysteine availability in 351 
a melanin-based honest signalling system. J Exp Biol, jeb.160333. (doi:10.1242/jeb.160333) 352 

35. Demissie, S. et al. 2006 Insulin resistance, oxidative stress, hypertension, and leukocyte 353 
telomere length in men from the Framingham Heart Study. Aging Cell 5, 325–330. 354 
(doi:10.1038/nbt0303-229b) 355 

36. Salpea, K. D., Talmud, P. J., Cooper, J. A., Maubaret, C. G., Stephens, J. W., Abelak, K. & 356 
Humphries, S. E. 2010 Association of telomere length with type 2 diabetes, oxidative stress 357 
and UCP2 gene variation. Atherosclerosis 209, 42–50. 358 
(doi:10.1016/j.atherosclerosis.2009.09.070) 359 

37. Watfa, G., Dragonas, C., Brosche, T., Dittrich, R., Sieber, C. C., Alecu, C., Benetos, A. & 360 
Nzietchueng, R. 2011 Study of telomere length and different markers of oxidative stress in 361 
patients with Parkinson's disease. J Nutr Health Aging 15, 277–281.  362 

38. Sampson, M. J., Winterbone, M. S., Hughes, J. C., Dozio, N. & Hughes, D. A. 2006 Monocyte 363 
telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care 29, 283–364 
289.  365 

39. Starr, J. M., Shiels, P. G., Harris, S. E., Pattie, A., Pearce, M. S., Relton, C. L. & Deary, I. J. 2008 366 
Oxidative stress, telomere length and biomarkers of physical aging in a cohort aged 79 years 367 
from the 1932 Scottish Mental Survey. Mech Ageing Dev 129, 745–751. 368 
(doi:10.1016/j.mad.2008.09.020) 369 

40. Sen, A., Marsche, G., Freudenberger, P., Schallert, M., Toeglhofer, A. M., Nagl, C., Schmidt, 370 



R., Launer, L. J. & Schmidt, H. 2014 Association Between Higher Plasma Lutein, Zeaxanthin, 371 
and Vitamin C Concentrations and Longer Telomere Length: Results of the Austrian Stroke 372 
Prevention Study. J Am Geriatr Soc 62, 222–229. (doi:10.1111/jgs.12644) 373 

41. Xu, Q., Parks, C. G., DeRoo, L. A., Cawthon, R. M., Sandler, D. P. & Chen, H. 2009 374 
Multivitamin use and telomere length in women. American Journal of Clinical Nutrition 89, 375 
1857–1863. (doi:10.3945/ajcn.2008.26986) 376 

42. Shen, J., Gammon, M. D., Terry, M. B., Wang, Q., Bradshaw, P., Teitelbaum, S. L., Neugut, A. 377 
I. & Santella, R. M. 2009 Telomere length, oxidative damage, antioxidants and breast cancer 378 
risk. Int. J. Cancer 124, 1637–1643. (doi:10.1002/ijc.24105) 379 

43. Stier, A., Massemin, S., Zahn, S., Tissier, M. L. & Criscuolo, F. 2015 Starting with a handicap: 380 
effects of asynchronous hatching on growth rate, oxidative stress and telomere dynamics in 381 
free-living great tits. Oecologia 179, 999–1010. (doi:10.1007/s00442-015-3429-9) 382 

44. Taff, C. C. & Freeman-Gallant, C. R. 2017 Sexual signals reflect telomere dynamics in a wild 383 
bird. Ecol Evol 274, 819. (doi:10.1002/ece3.2948) 384 

45. Geiger, S., Le Vaillant, M., Lebard, T., Reichert, S., Stier, A., LE Maho, Y. & Criscuolo, F. 2012 385 
Catching-up but telomere loss: half-opening the black box of growth and ageing trade-off in 386 
wild king penguin chicks. Mol Ecol 21, 1500–1510. (doi:10.1111/j.1365-294X.2011.05331.x) 387 

46. Stier, A. et al. 2014 Starting with a handicap: phenotypic differences between early‐and 388 
late‐born king penguin chicks and their survival correlates. Funct Ecol 28, 601–611. 389 
(doi:10.1111/1365-2435.12204) 390 

47. Nettle, D., Monaghan, P., Gillespie, R., Brilot, B., Bedford, T. & Bateson, M. 2015 An 391 
experimental demonstration that early-life competitive disadvantage accelerates telomere 392 
loss. Proceedings of the Royal Society B: Biological Sciences 282, 20141610. 393 
(doi:10.1098/rspb.2014.1610) 394 

48. Nettle, D., Andrews, C., Reichert, S., Bedford, T., Kolenda, C., Parker, C., Martin-Ruiz, C., 395 
Monaghan, P. & Bateson, M. 2017 Early-life adversity accelerates cellular ageing and affects 396 
adult inflammation: Experimental evidence from the European starling. Sci. Rep. 7, 40794. 397 
(doi:10.1038/srep40794) 398 

49. Reichert, S., Stier, A., Zahn, S. & Arrive, M. 2014 Increased brood size leads to persistent 399 
eroded telomeres. Frontiers in Ecology and Evolution 9. 400 
(doi:10.3389/fevo.2014.00009/abstract) 401 

50. Ouyang, J. Q., Lendvai, Á. Z., Moore, I. T., Bonier, F. & Haussmann, M. F. 2016 Do Hormones, 402 
Telomere Lengths, and Oxidative Stress form an Integrated Phenotype? A Case Study in 403 
Free-Living Tree Swallows. Integrative and Comparative Biology 56, 138–145. 404 
(doi:10.1093/icb/icw044) 405 

51. Ozsarlak-Sozer, G., Kerry, Z., Gokce, G., Oran, I. & Topcu, Z. 2010 Oxidative stress in relation 406 
to telomere length maintenance in vascular smooth muscle cells following balloon 407 
angioplasty. J Physiol Biochem 67, 35–42. (doi:10.1007/s13105-010-0046-2) 408 

52. Tarry-Adkins, J. L. 2013 Coenzyme Q10 prevents accelerated cardiac aging in a rat model of 409 



poor maternal nutrition and accelerated postnatal growth. Molecular Metabolism 2, 480–410 
490. (doi:10.1016/j.molmet.2013.09.004) 411 

53. Sohn, S. H., Cho, E. J., Jang, I. S. & Moon, Y. S. 2013 The Effects of Dietary Supplementation 412 
of Vitamin C and E on the Growth Performance and the Stress Response in Broiler Chickens. 413 
Korean Journal of Poultry Science 40, 31–40. (doi:10.5536/KJPS.2013.40.1.031) 414 

54. Badás, E. P., Martinez, J., Rivero de Aguilar Cachafeiro, J., Miranda, F., Figuerola, J. & 415 
Merino, S. 2015 Ageing and reproduction: antioxidant supplementation alleviates telomere 416 
loss in wild birds. Journal of Evolutionary Biology 28, 896–905. (doi:10.1111/jeb.12615) 417 

55. Noguera, J. C., Monaghan, P. & Metcalfe, N. B. 2015 Interactive effects of early and later 418 
nutritional conditions on the adult antioxidant defence system in zebra finches. J Exp Biol 419 
218, 2211–2217. (doi:10.1242/jeb.120956) 420 

 421 



Table 1: Summary of correlative studies conducted in vivo and testing the relationships between oxidative stress markers and telomere length (TL) and/or telomere 422 
shortening (ΔTL). The directions of the correlations are not presented in the table, since they were always in the predicted direction, namely that high oxidative damage 423 
were associated with shorter telomeres or faster telomere shortening, while high antioxidant levels were associated with longer telomeres or reduced telomere 424 
shortening. Method of telomere length measurement is indicated as quantitative PCR (qPCR), terminal restriction fragment (TRF) or quantitative fluorescence in situ 425 
hybridization (qFISH). RBCs refers to red blood cells. TAC refers to measurements of total antioxidant capacity; SOD refers to the antioxidant enzyme superoxide 426 
dismutase; glutathione is a major intra-cellular antioxidant; ROMs refers to reactive oxygen metabolites, a marker of overall early oxidative damage. 427 

Species 
Sample type 
(TL vs. OS) 

Oxidative stress (OS) 
markers 

TL method 
Significant link between 

OS and TL / ΔTL 
Reference 

Human Homo sapiens Leukocytes vs. Urine Urinary lipid damage TRF TL: YES  [35] 

Human Homo sapiens Leukocytes vs. Plasma Plasma TAC TRF TL: YES  [36] 

Human Homo sapiens 
White blood cells vs. 

plasma 
Plasma protein damage, 

Glutathione and SOD 
TRF TL: NO overall1 [37] 

Human Homo sapiens Monocytes DNA damage qFISH 
TL: YES  

 
[38] 

Human Homo sapiens Leukocytes 
Oxidative stress genes 

polymorphism 
qPCR TL: YES [39] 

Human Homo sapiens 
White blood cells vs. 

plasma 
Plasma non-enzymatic 

antioxidants 
qPCR TL: YES [40] 

Human Homo sapiens 
White blood cells vs. 

plasma 
Plasma vitamins C and E qPCR TL: YES [41] 

Human Homo sapiens 
White blood cells vs. 

urine 
Urinary lipid and DNA damage qPCR TL: NO [42] 

Great tit Parus major RBCs vs. plasma Plasma ROMs and TAC qPCR 
TL: NO 

ΔTL: YES (ROMs) 
[43] 

Common yellowthroat Geothlypis trichas RBCs vs. plasma 
Plasma TAC 

RBC DNA damage 
qPCR 

TL: not reported 
ΔTL: YES (TAC) 

[44] 

King penguin Aptenodytes patagonicus RBCs vs. plasma Plasma ROMs and TAC qPCR 
TL: YES (TAC + ROMS) 

ΔTL: YES (ROMs) 
[45] 

King penguin Aptenodytes patagonicus RBCs vs. plasma ROMs, TAC and DNA damage qPCR TL: NO [46] 

Coal tit Periparus ater RBCs vs. plasma 
RBC DNA damage and plasma 

TAC 
qPCR 

TL: NO 
ΔTL: YES  (DNA damage) 

[30,31], see ESM  

European starling Sturnus vulgaris RBCs vs. plasma Plasma lipid damage qPCR 
TL: NO 

ΔTL: NO 
[47] 

European starling Sturnus vulgaris RBCs vs. plasma Plasma DNA damage qPCR 
TL: NO 

ΔTL: NO 
[48] 

Zebra finch Taeniopygia guttata RBCs vs. plasma 
Plasma ROMs + TAC, and RBC 

DNA damage 
qPCR 

TL: NO 
ΔTL: NO 

[49] 

Tree Swallow Tachycineta bicolor RBCs vs. plasma Plasma ROMs + TAC TRF TL: NO [50] 

Jackdaw Corvus monedula RBCs vs. plasma 
Plasma ROMs + lipid damage, 

RBC glutathione 
TRF 

TL: not reported 
ΔTL: NO 

[7] 

1 except for a significant correlation between protein damage and TL in Parkison disease patients only. 428 



Table 2: Summary of experimental studies conducted in vivo and testing the effects of antioxidant depletion or supplementation on telomere length (TL) 429 
and/or telomere shortening (ΔTL). Method of telomere length measurement is indicated as quantitative PCR (qPCR), terminal restriction fragment (TRF) or 430 
quantitative fluorescence in situ hybridization (qFISH), and arrows describe decrease (↘), increase (↗) or non-significant (↔) effects.  431 
 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

1 presented in [55]; 2 in the ‘recuperated’ group at 3 month of age only 443 
 444 

 445 

 446 

 447 

 448 

Species Type of study Tissue type Oxidative damage 
TL 

Method 
Telomere length (TL) / 

Telomere shortening (ΔTL) 
Significant link between 

OS and TL / ΔTL 
Reference 

CAST/Ei mouse 
Mus 

musculus 
Antioxidant 

depletion 
12 tissues ↗ Protein damage TRF ↘ TL in 5/12 tissues YES, but tissue-dependent [21] 

New Zealand 
White Rabbit 

Oryctolagus 
cuniculus 

Antioxidant 
depletion 

Contralateral 
arteries 

↗ Oxidized 
glutathione 

TRF ↘ TL YES [51] 

Wistar rat 
Rattus 

norvegicus 
Antioxidant 

supplementation 
Heart 

↔ Lipid damage 
↘ Protein damage2 

TRF ↘ ΔTL and ↗ TL YES [52] 

Broiler chicken Gallu gallus 
Antioxidant 

supplementation 
Lymphocytes 

↘ DNA damage for 
vit C and E 

qFISH ↘ ΔTL for vit E but not vit C YES, but for vit E only [53] 

Blue tit 
Cyanistes 
caeruleus 

Antioxidant 
supplementation RBCs not measured qPCR ↘ ΔTL  YES [54] 

Zebra finch 
Taeniopygia 

guttata 
Antioxidant 

supplementation 
RBCs vs. plasma 

↔ Lipid damage1 

 
qPCR 

↘ ΔTL and ↗ TL in Females  
↔ TL and ↔ ΔTL in Males 

YES in females [22] 

Yellow-legged 
gull 

Larus 
michahellis 

Antioxidant 
supplementation 

RBCs not measured qPCR 
↗ TL in ‘bold’ chicks 

↔ TL in ‘fearful’ chicks 
YES in ‘bold’ chicks [23] 

Yellow-legged 
gull 

Larus 
michahellis 

Antioxidant 
supplementation 

RBCs vs. plasma 
↔ Lipid and protein 

damage 
qPCR ↔ TL NO [20] 


