
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

ATLAS software stack on ARM64
To cite this article: Joshua Wyatt Smith et al 2017 J. Phys.: Conf. Ser. 898 072001

View the article online for updates and enhancements.

Related content
Collecting conditions usage metadata to
optimize current and future ATLAS
software and processing
L Rinaldi, D Barberis, A Formica et al.

-

Software representation of the ATLAS
solenoid magnetic field
J C Hart, P S Miyagawa and S W Snow

-

ATLAS software packaging
Grigory Rybkin

-

This content was downloaded from IP address 130.209.115.202 on 16/01/2018 at 09:24

https://doi.org/10.1088/1742-6596/898/7/072001
http://iopscience.iop.org/article/10.1088/1742-6596/898/4/042028
http://iopscience.iop.org/article/10.1088/1742-6596/898/4/042028
http://iopscience.iop.org/article/10.1088/1742-6596/898/4/042028
http://iopscience.iop.org/article/10.1088/1742-6596/119/3/032022
http://iopscience.iop.org/article/10.1088/1742-6596/119/3/032022
http://iopscience.iop.org/article/10.1088/1742-6596/396/5/052063

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072001 doi :10.1088/1742-6596/898/7/072001

ATLAS software stack on ARM64

Joshua Wyatt Smitha, Graeme A Stewartb, Rolf Seusterc and Arnulf
Quadta on behalf of the ATLAS Collaboration
aII. Physikalisches Institut, Georg-August Universität, Friedrich-Hund-Platz 1, 37077
Göttingen, Germany
bSchool of Physics and Astronomy, University of Glasgow, University Avenue, Glasgow G12
8QQ, Scotland
cUniversity of Victoria, PO Box 1700 STN CSC, Victoria BC V8W 2Y2, Canada

E-mail: joshua.wyatt.smith@cern.ch

Abstract. This paper reports on the port of the ATLAS software stack onto new prototype
ARM64 servers. This included building the “external” packages that the ATLAS software relies
on. Patches were needed to introduce this new architecture into the build as well as patches
that correct for platform specific code that caused failures on non-x86 architectures. These
patches were applied such that porting to further platforms will need no or only very little
adjustments. A few additional modifications were needed to account for the different operating
system, Ubuntu instead of Scientific Linux 6 / CentOS7. Selected results from the validation of
the physics outputs on these ARM 64-bit servers will be shown. CPU, memory and IO intensive
benchmarks using ATLAS specific environment and infrastructure have been performed, with
a particular emphasis on the performance vs. energy consumption.

1. Introduction
The ATLAS experiment [1] is exploring new hardware and software platforms that, in the future,
may be more suited to its bulk production workloads. An example is simulation: a CPU intensive
workload that would profit drastically if it was more “portable” and therefore usable on a wider
variety of platforms.

One such alternative hardware platform is the ARM (Advanced RISC (Reduced Instruction
Set Computing) Machine) architecture, which is designed to be extremely power efficient and is
found in most smartphones and tablets. It is an architecture where less instructions are used on
the CPU, thereby reducing the number of transistors required that then reduces overall power
consumption.

2. Hardware
CERN openlab recently installed a small cluster of ARM 64-bit (Aarch64) evaluation prototype
servers (Aarch64 Proto). Each server is based on a single-socket ARM 64-bit system on a chip,
with 32 Cortex-A57 cores. In total, each server has 128 GB RAM connected with four fast
memory channels. Another type of ARM server is also maintained (HP Moonshot) as well as
two types of Intel servers (Intel Atom and Intel Xeon). It is important to note the Intel Atom
has been discontinued but still provides interesting results. The features of each server are
described in Table 1. ARM is significantly newer to this server market and this is reflected in

http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072001 doi :10.1088/1742-6596/898/7/072001

the semiconductor fabrication size. Only recently has an ARM server been able to compete with
Intel in this respect.

Table 1. The different setups for Intel and Aarch64 servers.

Name Processor Cores RAM Cache Fabrication
(Release)

OS

HP
Moonshot

X-Gene, 2.4 GHz 8 Armv8 64 GiB DDR3
(1600 MHz)

32 KiB L1/core, 256
KiB L2/core pair, 8
MiB L3

40 nm
(2014)

Ubuntu
14.04

Aarch64 Proto -, 2.1 GHz 32 Cortex-A57 128 GiB DDR3
(1866 MHz)

32 KiB L1, 1 MiB
L2

16 nm (-) Ubuntu
14.04

Intel Atom Intel Atom
Processor C2750,
2.4GHz

8 32 GiB DDR3
(1600 MHz)

24 KiB L1d, 32 KiB
L1i, 1 MiB L2

22 nm
(2013)

Fedora 21

Intel Intel Xeon CPU
E5-4650, 2.70 GHz

32 512 GiB DDR3
(1600 MHz)

32 KiB
L1(d)(i)/core, 256
KiB L2/core, 20
MiB L3

32 nm
(2012)

Scientific
Linux
CERN 6

3. AthSimulation
The ATLAS codebase (Athena) is powerful and complex, consisting of around 2400 packages.
Due to its size, this makes porting to alternative architectures more difficult. Thus, a project
called AthSimulation was chosen which consists of a subset of packages from a full Athena
release. AthSimulation is capable of carrying out CPU intensive simulations needed for the
experiment. At around 350 packages, the porting process becomes significantly easier and faster.
AthSimulation is comprised of the following sub-projects:

• LCG: This projects consists of the external tools that are needed in any ATLAS software.
This includes packages such as ROOT, python, various event generators and many others.
These packages form the base of the pyramid. Minor changes such as compilation options
have to be tweaked for Aarch64.

• AtlasExternals: This project contains ATLAS specific patches and changes. An example
is a modified version of Geant4. In this version of the build, AtlasExternals consists of
18 packages. A patch of interest, which propagates through the build, is how the random
number generator (AtlasDSFMT) is built. By default -sse compiler options are used for
x86 (this is an Intel instruction) and cannot be used for Aarch64.

• Gaudi [2]: This is a framework that provides common interfaces for HEP experiments. It
is externally maintained and required no changes when compiled on Aarch64.

• AthSimulation: This project is made up of a subset of packages from the ATLAS code.
It is a lightweight version of ATLAS Simulation, needing minimal dependencies to be
compiled. This project is built with CMake, thus requiring rewrites of the CMake steering
files. However, once this was done, no changes or additions were needed for this project to
compile on Aarch64.

To ensure reproducibility and bookkeeping, the above was built using the automation server
tool, Jenkins. This enabled the ability to rebuild the software stack on multiple servers with
little user input. AthSimulation was compiled on both Aarch64 servers, while the Intel servers
made use of the equivalent pre-existing builds already available from the ATLAS nightlies.

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072001 doi :10.1088/1742-6596/898/7/072001

3.1. Validation
The strategy was to first verify that the results from the different architectures were comparable.
Thus, initial validation was carried out. The benchmark was run on each server, with the output
HITS files put through another reconstruction phase on a traditional x86 server running Athena.
This is an important distinction as it shows that data files created on one architecture can still be
opened and manipulated on another - described as heterogenous computing. Due to the nature
of simulation, which is a Monte Carlo process, numerical identity is not expected. Some reasons
can include and are not limited to random numbers being generated in an architecturally specific
way, as well as the way floating point numbers are handled by each compiler. Figure 1 shows
the hits in the pixel and SCT detectors for different architectures compared to the Intel Xeon.
When compared to the Intel Xeon, the ARM and Intel Atom servers give similar distribution
shapes, but around 10-15% less hits on ARM and 15-20% more hits on Intel Atom. Further
research needs to be done to understand why this occurs.

H
it
s

0

2000

4000

6000

8000

10000

12000

14000

16000 Intel Xeon
HP Moonshot
Intel Atom
Aarch64_Proto

 SimulationATLAS

Pixel_x

150− 100− 50− 0 50 100 150

ra
ti
o

0.6

0.8

1

1.2

1.4

(a)

H
it
s

0

5000

10000

15000

20000

25000

Intel Xeon
HP Moonshot
Intel Atom
Aarch64_Proto

 SimulationATLAS

SCT_x

600− 400− 200− 0 200 400 600

ra
ti
o

0.6

0.8

1

1.2

1.4

(b)

Figure 1. Results showing the hits resulting from 100 tt̄ events in the (a) pixel and (b) silicon
microstrip (SCT) detectors on ATLAS. The ratio between the three servers and the Intel Xeon
is shown in the ratio plots. The Intel Xeon is taken as the “accepted” distribution due to being
closest as to what is used in server farms. [3]

One can also gain insight into individual events by comparing event displays. Figure 2 shows
the same tt̄ event simulated on Intel Xeon and Aarch64 Proto. One can clearly see this difference
in energy depositions due to a different number of hits and also a very minor difference in tracks.
However the general topology of the event matches well.

3.2. Power Measurements
Power measurements were taken every 10 seconds. Figure 3 shows the results of the benchmark
for a period of 6 hours on a single core. The total times for each server are (in units of hours):
Intel Atom=18.03, HP Moonshot=15.10, Aarch64 Proto=10.46 and Intel Xeon=6.33.

It is clear that the Intel Xeon performs the best in terms of time, but it also uses the
most energy as shown in the top graph. The middle graph takes this into account and shows
Events/kWh. Here, one can see that the Aarch64 Proto is more power conservative for the
overall benchmark.

The bottom graphs shows the difference in the total power while running the benchmark and
the idling power. This is essentially how much extra energy one CPU uses when under a full

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072001 doi :10.1088/1742-6596/898/7/072001

(a) (b)

Figure 2. Same tt̄ event simulated on the (a) Intel Xeon and (b) Aarch64 Proto. [3]

load.

Figure 3. Power measurements for each of the servers. Top: Total power for 6 hours. Middle:
Events/kWh calculated for each hour. Bottom: Idling power of each server subtracted from
total power when running the simulation.

To take I/O into account, the benchmark was repeated on the Aarch64 Proto and the Intel
Xeon server with multiple jobs running. However, in this benchmark, 8 tt̄ events are simulated
on an increasing number (2,4,8,16,32) of cores.

Figure 4 shows the results. Due to a minor bookkeeping error, test times had to be read from
the top graph when calculating kWh. The uncertainty in reading these measurements “by eye”
is incorporated into the conservative error bars of the lower graph.

4. Results
Validation tests show that ARM servers register around 10-15% less hits while the Intel Atom
shows approximately 15-20% more hits. Further validation over a more statistically significant
sample needs to be done, this will help decrease statistical fluctuations seen in Figure 1 as well
as help to understand why a different number of hits are registered on different architectures.

5

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072001 doi :10.1088/1742-6596/898/7/072001

Figure 4. Power measurements for identical benchmark running on increasing number of cores.
Top: total time and power for all tests. Bottom: Events/kWh calculated for each test.

Power measurements on a single core show that the Aarch64 Proto performs the best on
an event/watt basis. Even though the time to process 100 events is slower, the overall power
consumption is much better.

When loading the servers with an increasing amount of jobs, the ARM servers clearly uses
significantly less power. At 32 active cores the benchmark test time increases due to developing
bottlenecks. Taking total processing time and power consumption into the equation, the ARM
server performs between 1.7 and 2.4 times more efficiently than the Intel server while under
load.

5. Conclusions
The porting of AthSimulation to Aarch64 as well as initial validation and power measurements
are presented. Four servers, two ARM and two Intel, are compared alongside each other in
a real-world ATLAS simulation benchmark that was ported to the ARM architecture. The
results show that ARM servers have improved dramatically over the past few years. Their 64-
bit architecture is now competitive with the traditional Intel machines. In terms of performance
per watt, these results show that the Aarch64 Proto performs more effectively than a standard
Intel Xeon server. The next step is to integrate the Aarch64 architecture into ATLAS nightly
builds. This will allow for quicker and more in-depth performance studies.

Acknowledgments
The authors would like to thank Attila Krasznahorkay for useful discussions and tips when
porting the code and to Zachary Marshall for providing the knowledge required to run the
AthSimulation benchmark. Also, many thanks to CERN openlab and Techlab, specifically
Aritz Brosa Iartza for helping with power measurements and for maintaining the hardware.

References
[1] ATLAS Collaboration 2008 Journal of Instrumentation 3 s08003
[2] Barrand G et al. 2001 Comput. Phys. Commun. 140 45–55
[3] Smith J W, Stewart G, Seuster R and Quadt A (ATLAS Collaboration) 2016 URL

https://cds.cern.ch/record/2220902

