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Abstract. In this paper we explain how the C++ code quality is managed in ATLAS using a 
range of tools from compile-time through to run time testing and reflect on the substantial 
progress made in the last two years largely through the use of static analysis tools such as 
Coverity®, an industry-standard tool which enables quality comparison with general open 
source C++ code. Other available code analysis tools are also discussed, as is the role of unit 
testing with an example of how the GoogleTest framework can be applied to our codebase. 

1.  Introduction 
The ATLAS Experiment [1] has developed its offline software based on the Gaudi framework [2]; this 
allows mainly C++ code components to be organized via Python job options into full simulation or 
data analysis jobs. The total codebase consists of roughly 3.8 million lines of code (LOC) in C++ and 
1.4 million LOC in Python, and these are largely written by physicists with varying levels of coding 
experience. Currently there are approximately 420 developers spread over 140 teams, where each team 
covers a specific software domain (e.g. Inner detector tracking). Developers write code with a variety 
of tools and in different computing environments, are geographically distributed and generally write 
software only as part of a larger project or aim. 

In such an heterogeneous development environment, code quality can be problematic. In the 
following discussion we introduce the tools which have been used or introduced over the last two 
years which facilitate the testing and (if necessary) correction of existing code, the promotion of good 
coding practices and overall to augment the awareness of coding quality issues in our C++ code. 

2.  Education 
Our code developers come from a variety of educational backgrounds, and often they are students who 
have limited C++ experience but who are required to develop code in the context of their project. All 
newcomers are invited to take part in the software tutorials which take place two to three times per 
year and which teach general C++ skills as well as provide an introduction to the details of our specific 
framework. The tutorials are available online as TWiki [3] pages and are often followed independently 
of the formal classes.  

In addition to the tutorial and ‘getting started’ TWikis, there is a Software Quality page which aims 
to bring together resources (some of which are presented in this paper) to encourage awareness of code 
quality issues. The TWiki presents specific coding guidelines (including stylistic issues), books, web 
pages and software tools. For more advanced users, links are provided to code optimization resources. 

http://creativecommons.org/licenses/by/3.0
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3.  Static Analysis 
Static analysis refers to analysis of the written code by a software tool to detect code which, while 
perfectly legal C++, may be logically flawed or contain other defects which mean that the program is 
not a reflection of the developer’s intent. A common such defect in C++ is the mismatch between 
new/delete resulting in a memory leak. As compilers increase in complexity, we see that they are able 
to detect and warn about an increasing number of developer errors. Independent static analysis tools 
are nonetheless still able to detect a wider range of such defects. Over the last two years we have 
mainly used two such tools: Coverity® [4], a proprietary tool which has become an industry standard; 
and CppCheck [5], a more lightweight open source tool. Both provide similar information, although 
the Coverity® tool is clearly more comprehensive in its coverage. Both tools can provide an XML 
summary of the defects detected, and typically we generate a display of defect numbers per software 
team in a similar format for both tools. 

3.1.  Coverity® 
Coverity® is run centrally twice per week over the entire C++ codebase; it typically takes about 24 
hours to run over all the projects, and the resulting defects are each assigned an individual 
identification number and entered into a database which allows historical tracking of the defect, even 
if its detailed line position in the code changes. The Coverity® static analysis program is integrated 
with a database and a web interface which allows statistics to be generated, defects to be assigned to 
developers and comments to be entered; it is also possible to declare a defect as a ‘false positive’ or 
‘intentional’ and rank its severity, or tell Coverity® to ignore the defect. A typical defect display is 
shown below. It illustrates how Coverity® displays the logic leading up to the detection of a defect. 

 

Figure 1: Web interface displaying Coverity® defect 16510 
 
 

The Coverity database has a SOAP (Simple Object Access Protocol) interface allowing the extraction 
of defect information in XML format, however we have found that a simple one-line cURL  command 
can also perform the same task, and our scripts generally use this method. The extracted XML is 
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further processed by XSLT and Python scripts to generate emails to the developers and a web display 
ranking the number of defects per software team. A simple command line tool has also been 
introduced which queries the Coverity® results to produce a summary for an individual package, to be 
used by developers while they are in the process of editing code. 

3.2.  CppCheck 
CppCheck is a much more lightweight program which can be run interactively over individual C++ 
files. It is also run centrally twice per week and typically takes about one hour to scan the entire 
codebase. The results are generated as a text file (we use the XML output option) and a web page with 
code highlights using the ‘pygments’ package [6], but the defects are not tracked week-to-week in the 
same way that Coverity® allows. While it is more prone to false positives than Coverity®, it does 
succeed in uncovering defects which Coverity® misses. The lightweight (and open source) nature of 
the program also means it can be run by individual developers as part of the development process, 
something which cannot be done by Coverity® due to both resource (it takes too long) and licensing 
issues.  

 

Figure 2: CppCheck generated web page 
 

3.3.  Reporting and defect history 
The results from the Coverity® scan are matched to the development teams and emails are sent once 
per week (typically on Monday) to the teams indicating what defects have been detected. The XML 
files from each scan are used to update a ‘league table’ showing the number of defects per team in the 
format shown in figure 3a. This competitive comparison was also initially seen as a motivation for the 
teams to reduce the number of defects assigned to them. The absolute numbers of defects were also 
recorded, and the historical trend is shown in figure 3b. Note that the switching of compiler versions 
and subsequent upgrade to the Coverity® package introduced a significant disruption to our defect 
detection, and during this time we relied more on CppCheck. 
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Figure 3 (a) Typical ‘league table’ of defects per team, and (b) Historical trend of defects in the 
project 

 

3.4.  Other tools and code metrics 
Various other open-source C++ - checking tools were investigated by the software quality group, 
including OCLint [7], Include-What-You-Use [8] and Lizard [9]. 
OCLint  seems to be a promising suite, being able to detect stylistic issues and ‘code smells’ such as 
long sections of cut-and-pasted code between compilation units; unfortunately it underwent a long 
hiatus in its support from 2013-2016 but now looks worthy of further investigation.   
Include-What-You-Use is much more focussed in its aim: it helps to tidy up ‘#include’ statements 
and ensure that forward declarations are used where possible; this is beneficial in terms of compilation 
times and dependencies between packages.  
Lizard is a tool providing code metrics such as cyclomatic complexity (CC) and LOC per function; it 
helps to identify ‘code smells’ and when applied to our code it certainly helped to find egregious 
examples of unreadable code, however measures such as CC have never been unambiguously 
correlated with defective or unmaintainable code and it seems to highlight code worthy of review 
rather than explicitly defective code. The CC remains a good measure of the number of test cases 
necessary to thoroughly test a piece of code. 
 

4.  Compile and Run-Time Defect Detection 
Compilers differ in their defect detection capabilities, and it has been clearly beneficial to expose our 
code to a variety of compilers (e.g. Clang and different versions of gcc) during the development 
process. We are aided in this by the use of a nightly build system which builds the entire code with 
different compilers, on different platforms and in both debug and optimized builds. An automated 
reporting process notifies developers in the case of a build failure. 

Our usual compiler in this period was gcc49, and gcc plug-ins were also written which identified 
certain violations of our coding guidelines, such as proscribed inheritance structures or naming 
conventions. Additional tools that were investigated include the ‘Undefined Behaviour Sanitizer’[10], 
the ‘Address Sanitizer’ [11] and ‘Thread Sanitizer’ [12]; of these, the Undefined Behaviour Sanitizer 
was retained and is used regularly in debug builds. It gives clear error messages at run time when 
undefined behavior is detected (such as left-shift of a negative number). 

4.1.  Unit tests and Run Time Testing (RTT) 
Unit tests have long existed in our code as part of the core software, but very few subsystem 
developers have written unit tests routinely as part of their development process. One of the perceived 
barriers to comprehensive unit testing is the fact that in many cases, complex objects (e.g. a Track) are 
required as input to a given method in order to test it. Over the last year, the GoogleMock/GoogleTest 
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framework [13] has been introduced and explored as a means to overcome that complexity by 
introducing dummy or ‘mock’ objects with interfaces that allow unit tests to be written more easily.  
In the example below, a complex ‘Jet’ object is mocked to provide dummy calls to pt and eta, the two 
sections illustrating the header and implementation. 
 
#ifndef GMOCKDEMO_XAODJET_JET_H 
#define GMOCKDEMO_XAODJET_JET_H 
// GTest/GMock include(s): 
#include <gmock/gmock.h> 
#include "allNecessaryIncludes.h" 
namespace xAOD { 
   /// Mock class for xAOD::Jet 
   class Jet : public virtual IParticle { 
   public: 
      /// Constructor, setting how the object should behave: 
      Jet(); 
      MOCK_CONST_METHOD0( pt, double() ); 
      MOCK_CONST_METHOD0( eta, double() ); 
      /// The cached 4-momentum of the mock object 
      TLorentzVector m_p4; 
   }; 
} 
#endif // GMOCKDEMO_XAODJET_JET_H 
 
// Local include(s): 
#include "xAODJet/Jet.h" 
#include "utilities.h" 
namespace xAOD { 
   Jet::Jet() { 
      // Generate a random 4-momentum for the jet: 
      const double pt  = randomPt(); 
      const double eta = randomEta(); 
      const double phi = randomPhi(); 
      const double m   = randomMass(); 
      m_p4.SetPtEtaPhiM( pt, eta, phi, m ); 
      // Set up the IParticle functions to return these properties: 
      EXPECT_CALL( *this, pt() ) 
         .WillRepeatedly( testing::Invoke( [this]() -> double { 
                  return this->m_p4.Pt(); 
               } ) ); 
      EXPECT_CALL( *this, eta() ) 
         .WillRepeatedly( testing::Invoke( [this]() -> double { 
                  return this->m_p4.Eta(); 
               } ) ); 
    } 
 
} // namespace xAOD 
 

Figure 4: Code example of a mock ‘Jet’ object (simplified) 
 
The Google test framework in addition implements a simple and uniform reporting mechanism that 
can be incorporated into the build process. The initial uptake by developers has been slow, but 
continues to grow. 
‘Run Time Testing’(RTT) in our context refers to more holistic tests in which plots of physics 
quantities may be produced and compared from build to build, based upon an input reference dataset. 
The outputs are compared to detect possible changes which may impact physics results, and are used 
to qualify both infrastructure changes (operating system, processor, compiler) and detailed software 
changes. The RTT specification is an XML file in the package detailing what job is to be run and the 
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method of comparison, and is run nightly as an appendix to the build process; developers are similarly 
notified when a test fails. 
Our code repository is soon expected to move to Git [14] and code committal will include a review 
process; build and unit testing is expected to take on increased importance as part of this review. 
 

5.  Documentation and Formatting 
We encourage developers to use Doxygen [15] to document their code; this is an easy-to-use but quite 
flexible form of markup in the code, and allows automatic extraction to a searchable web interface 
which can also generate dependency and class diagrams. The documentation stays close to the code 
(as opposed to being in a separate file) so is less likely to be out-of-date. 

We have not mandated a fixed format for code in terms of indentation or brace styles, but have 
rather requested that developers maintain a consistent style within their own package. This is difficult 
to enforce so we have also made the ‘uncrustify’ tool available, which is a post-edit reformatting tool 
with an easily understood configuration file. While generally very good, we have discovered a few 
examples where this tool has produced erroneous changes and we continue to explore other options.  
 

6.  Social Issues 
Reports from the various tools mentioned here are available as web pages and linked from the 
software quality page, however these are not regularly consulted by developers. Developers are under 
time constraint to produce functional code and the extra work implied by quality issues (e.g. 
initializing all variables, providing documentation) often takes second place. Notifications of specific 
errors by email to the developers have more success, as witnessed by the reduction in the number of 
Coverity® defects (figure 3) over the last two years. It is also noticeable that the introduction of any 
new tool which promotes discussion of code quality has the effect, at least temporarily, of increasing 
the effort invested in quality issues. It is therefore important to maintain interest and promote 
discussion and awareness on a continuous basis by regular presentations to the community. 

 

7.  Summary and Plans 
Over the last two years, the ATLAS Software Quality Group has investigated various tools which 

aid developers to improve software quality. The static analysis tool Coverity® has proved to be 
extremely useful, and has resulted in many defects being found and fixed, as shown in figure 3b. Other 
static analysis tools have also been successfully introduced and some (CppCheck) continue to be 
regularly used. Our code is more stable as a result, and in this period (for example) over 670 resource 
leaks were identified and fixed. However, these tools are only useful in checking individual lines and 
sections of code; their use does not necessarily mean that the code is ‘good’. ‘Code smell’ detectors 
such as Lizard and OCLint help to identify code which should be reviewed in terms of its overall 
design. Other tools which are now in regular use include the run-time sanitizer UBSan (detecting 
undefined behavior) and uncrustify (for formatting). Unit testing in the GoogleTest framework and 
using GoogleMock objects has been successfully introduced and the usage is expected to grow.   

The ATLAS software repository will move to Git in 2017, requiring the use of routine code review 
as part of the code committal process; quality testing and metrics are expected to become an integral 
part of the review process, and we expect to continue to research and promote use of such tools in our 
environment. 
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