
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

C++ software quality in the ATLAS experiment:
tools and experience
To cite this article: S Martin-Haugh et al 2017 J. Phys.: Conf. Ser. 898 072011

View the article online for updates and enhancements.

Related content
Standard model Higgs boson searches at
ATLAS
S Rosati

-

Primary vertex reconstruction at the
ATLAS experiment
S Boutle, D Casper, B Hooberman et al.

-

Readout and Trigger for the AFP Detector
at the ATLAS Experiment at LHC
K Korcyl, M Kocian, I Lopez Paz et al.

-

This content was downloaded from IP address 130.209.115.202 on 16/01/2018 at 09:24

https://doi.org/10.1088/1742-6596/898/7/072011
http://iopscience.iop.org/article/10.1088/1742-6596/110/4/042022
http://iopscience.iop.org/article/10.1088/1742-6596/110/4/042022
http://iopscience.iop.org/article/10.1088/1742-6596/898/4/042056
http://iopscience.iop.org/article/10.1088/1742-6596/898/4/042056
http://iopscience.iop.org/article/10.1088/1742-6596/898/3/032025
http://iopscience.iop.org/article/10.1088/1742-6596/898/3/032025

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072011 doi :10.1088/1742-6596/898/7/072011

C++ software quality in the ATLAS experiment: tools and
experience

S Martin-Haugh1, S Kluth2, R Seuster3, S Snyder4, E Obreshkov5, S Roe6, P
Sherwood7 and G A Stewart8

1 STFC – Rutherford Appleton Laboratory, U.K.
2 Max Planck Institut für Physik (Werner Heisenberg Institut), Germany
3 University of Victoria, Canada
4 Brookhaven National Laboratory, U.S.A.
5 University of Texas at Arlington, U.S.A
6 CERN, Switzerland
7 University College London, U.K.
8 University of Glasgow, School of Physics and Astronomy, U.K.

E-mail: shaun.roe@cern.ch

Abstract. In this paper we explain how the C++ code quality is managed in ATLAS using a
range of tools from compile-time through to run time testing and reflect on the substantial
progress made in the last two years largely through the use of static analysis tools such as
Coverity®, an industry-standard tool which enables quality comparison with general open
source C++ code. Other available code analysis tools are also discussed, as is the role of unit
testing with an example of how the GoogleTest framework can be applied to our codebase.

1. Introduction
The ATLAS Experiment [1] has developed its offline software based on the Gaudi framework [2]; this
allows mainly C++ code components to be organized via Python job options into full simulation or
data analysis jobs. The total codebase consists of roughly 3.8 million lines of code (LOC) in C++ and
1.4 million LOC in Python, and these are largely written by physicists with varying levels of coding
experience. Currently there are approximately 420 developers spread over 140 teams, where each team
covers a specific software domain (e.g. Inner detector tracking). Developers write code with a variety
of tools and in different computing environments, are geographically distributed and generally write
software only as part of a larger project or aim.

In such an heterogeneous development environment, code quality can be problematic. In the
following discussion we introduce the tools which have been used or introduced over the last two
years which facilitate the testing and (if necessary) correction of existing code, the promotion of good
coding practices and overall to augment the awareness of coding quality issues in our C++ code.

2. Education
Our code developers come from a variety of educational backgrounds, and often they are students who
have limited C++ experience but who are required to develop code in the context of their project. All
newcomers are invited to take part in the software tutorials which take place two to three times per
year and which teach general C++ skills as well as provide an introduction to the details of our specific
framework. The tutorials are available online as TWiki [3] pages and are often followed independently
of the formal classes.

In addition to the tutorial and ‘getting started’ TWikis, there is a Software Quality page which aims
to bring together resources (some of which are presented in this paper) to encourage awareness of code
quality issues. The TWiki presents specific coding guidelines (including stylistic issues), books, web
pages and software tools. For more advanced users, links are provided to code optimization resources.

http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072011 doi :10.1088/1742-6596/898/7/072011

3. Static Analysis
Static analysis refers to analysis of the written code by a software tool to detect code which, while
perfectly legal C++, may be logically flawed or contain other defects which mean that the program is
not a reflection of the developer’s intent. A common such defect in C++ is the mismatch between
new/delete resulting in a memory leak. As compilers increase in complexity, we see that they are able
to detect and warn about an increasing number of developer errors. Independent static analysis tools
are nonetheless still able to detect a wider range of such defects. Over the last two years we have
mainly used two such tools: Coverity® [4], a proprietary tool which has become an industry standard;
and CppCheck [5], a more lightweight open source tool. Both provide similar information, although
the Coverity® tool is clearly more comprehensive in its coverage. Both tools can provide an XML
summary of the defects detected, and typically we generate a display of defect numbers per software
team in a similar format for both tools.

3.1. Coverity®
Coverity® is run centrally twice per week over the entire C++ codebase; it typically takes about 24
hours to run over all the projects, and the resulting defects are each assigned an individual
identification number and entered into a database which allows historical tracking of the defect, even
if its detailed line position in the code changes. The Coverity® static analysis program is integrated
with a database and a web interface which allows statistics to be generated, defects to be assigned to
developers and comments to be entered; it is also possible to declare a defect as a ‘false positive’ or
‘intentional’ and rank its severity, or tell Coverity® to ignore the defect. A typical defect display is
shown below. It illustrates how Coverity® displays the logic leading up to the detection of a defect.

Figure 1: Web interface displaying Coverity® defect 16510

The Coverity database has a SOAP (Simple Object Access Protocol) interface allowing the extraction
of defect information in XML format, however we have found that a simple one-line cURL command
can also perform the same task, and our scripts generally use this method. The extracted XML is

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072011 doi :10.1088/1742-6596/898/7/072011

further processed by XSLT and Python scripts to generate emails to the developers and a web display
ranking the number of defects per software team. A simple command line tool has also been
introduced which queries the Coverity® results to produce a summary for an individual package, to be
used by developers while they are in the process of editing code.

3.2. CppCheck
CppCheck is a much more lightweight program which can be run interactively over individual C++
files. It is also run centrally twice per week and typically takes about one hour to scan the entire
codebase. The results are generated as a text file (we use the XML output option) and a web page with
code highlights using the ‘pygments’ package [6], but the defects are not tracked week-to-week in the
same way that Coverity® allows. While it is more prone to false positives than Coverity®, it does
succeed in uncovering defects which Coverity® misses. The lightweight (and open source) nature of
the program also means it can be run by individual developers as part of the development process,
something which cannot be done by Coverity® due to both resource (it takes too long) and licensing
issues.

Figure 2: CppCheck generated web page

3.3. Reporting and defect history
The results from the Coverity® scan are matched to the development teams and emails are sent once
per week (typically on Monday) to the teams indicating what defects have been detected. The XML
files from each scan are used to update a ‘league table’ showing the number of defects per team in the
format shown in figure 3a. This competitive comparison was also initially seen as a motivation for the
teams to reduce the number of defects assigned to them. The absolute numbers of defects were also
recorded, and the historical trend is shown in figure 3b. Note that the switching of compiler versions
and subsequent upgrade to the Coverity® package introduced a significant disruption to our defect
detection, and during this time we relied more on CppCheck.

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072011 doi :10.1088/1742-6596/898/7/072011

Figure 3 (a) Typical ‘league table’ of defects per team, and (b) Historical trend of defects in the
project

3.4. Other tools and code metrics
Various other open-source C++ - checking tools were investigated by the software quality group,
including OCLint [7], Include-What-You-Use [8] and Lizard [9].
OCLint seems to be a promising suite, being able to detect stylistic issues and ‘code smells’ such as
long sections of cut-and-pasted code between compilation units; unfortunately it underwent a long
hiatus in its support from 2013-2016 but now looks worthy of further investigation.
Include-What-You-Use is much more focussed in its aim: it helps to tidy up ‘#include’ statements
and ensure that forward declarations are used where possible; this is beneficial in terms of compilation
times and dependencies between packages.
Lizard is a tool providing code metrics such as cyclomatic complexity (CC) and LOC per function; it
helps to identify ‘code smells’ and when applied to our code it certainly helped to find egregious
examples of unreadable code, however measures such as CC have never been unambiguously
correlated with defective or unmaintainable code and it seems to highlight code worthy of review
rather than explicitly defective code. The CC remains a good measure of the number of test cases
necessary to thoroughly test a piece of code.

4. Compile and Run-Time Defect Detection
Compilers differ in their defect detection capabilities, and it has been clearly beneficial to expose our
code to a variety of compilers (e.g. Clang and different versions of gcc) during the development
process. We are aided in this by the use of a nightly build system which builds the entire code with
different compilers, on different platforms and in both debug and optimized builds. An automated
reporting process notifies developers in the case of a build failure.

Our usual compiler in this period was gcc49, and gcc plug-ins were also written which identified
certain violations of our coding guidelines, such as proscribed inheritance structures or naming
conventions. Additional tools that were investigated include the ‘Undefined Behaviour Sanitizer’[10],
the ‘Address Sanitizer’ [11] and ‘Thread Sanitizer’ [12]; of these, the Undefined Behaviour Sanitizer
was retained and is used regularly in debug builds. It gives clear error messages at run time when
undefined behavior is detected (such as left-shift of a negative number).

4.1. Unit tests and Run Time Testing (RTT)
Unit tests have long existed in our code as part of the core software, but very few subsystem
developers have written unit tests routinely as part of their development process. One of the perceived
barriers to comprehensive unit testing is the fact that in many cases, complex objects (e.g. a Track) are
required as input to a given method in order to test it. Over the last year, the GoogleMock/GoogleTest

5

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072011 doi :10.1088/1742-6596/898/7/072011

framework [13] has been introduced and explored as a means to overcome that complexity by
introducing dummy or ‘mock’ objects with interfaces that allow unit tests to be written more easily.
In the example below, a complex ‘Jet’ object is mocked to provide dummy calls to pt and eta, the two
sections illustrating the header and implementation.

#ifndef GMOCKDEMO_XAODJET_JET_H
#define GMOCKDEMO_XAODJET_JET_H
// GTest/GMock include(s):
#include <gmock/gmock.h>
#include "allNecessaryIncludes.h"
namespace xAOD {
 /// Mock class for xAOD::Jet
 class Jet : public virtual IParticle {
 public:
 /// Constructor, setting how the object should behave:
 Jet();
 MOCK_CONST_METHOD0(pt, double());
 MOCK_CONST_METHOD0(eta, double());
 /// The cached 4-momentum of the mock object
 TLorentzVector m_p4;
 };
}
#endif // GMOCKDEMO_XAODJET_JET_H

// Local include(s):
#include "xAODJet/Jet.h"
#include "utilities.h"
namespace xAOD {
 Jet::Jet() {
 // Generate a random 4-momentum for the jet:
 const double pt = randomPt();
 const double eta = randomEta();
 const double phi = randomPhi();
 const double m = randomMass();
 m_p4.SetPtEtaPhiM(pt, eta, phi, m);
 // Set up the IParticle functions to return these properties:
 EXPECT_CALL(*this, pt())
 .WillRepeatedly(testing::Invoke([this]() -> double {
 return this->m_p4.Pt();
 }));
 EXPECT_CALL(*this, eta())
 .WillRepeatedly(testing::Invoke([this]() -> double {
 return this->m_p4.Eta();
 }));
 }

} // namespace xAOD

Figure 4: Code example of a mock ‘Jet’ object (simplified)

The Google test framework in addition implements a simple and uniform reporting mechanism that
can be incorporated into the build process. The initial uptake by developers has been slow, but
continues to grow.
‘Run Time Testing’(RTT) in our context refers to more holistic tests in which plots of physics
quantities may be produced and compared from build to build, based upon an input reference dataset.
The outputs are compared to detect possible changes which may impact physics results, and are used
to qualify both infrastructure changes (operating system, processor, compiler) and detailed software
changes. The RTT specification is an XML file in the package detailing what job is to be run and the

6

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072011 doi :10.1088/1742-6596/898/7/072011

method of comparison, and is run nightly as an appendix to the build process; developers are similarly
notified when a test fails.
Our code repository is soon expected to move to Git [14] and code committal will include a review
process; build and unit testing is expected to take on increased importance as part of this review.

5. Documentation and Formatting
We encourage developers to use Doxygen [15] to document their code; this is an easy-to-use but quite
flexible form of markup in the code, and allows automatic extraction to a searchable web interface
which can also generate dependency and class diagrams. The documentation stays close to the code
(as opposed to being in a separate file) so is less likely to be out-of-date.

We have not mandated a fixed format for code in terms of indentation or brace styles, but have
rather requested that developers maintain a consistent style within their own package. This is difficult
to enforce so we have also made the ‘uncrustify’ tool available, which is a post-edit reformatting tool
with an easily understood configuration file. While generally very good, we have discovered a few
examples where this tool has produced erroneous changes and we continue to explore other options.

6. Social Issues
Reports from the various tools mentioned here are available as web pages and linked from the
software quality page, however these are not regularly consulted by developers. Developers are under
time constraint to produce functional code and the extra work implied by quality issues (e.g.
initializing all variables, providing documentation) often takes second place. Notifications of specific
errors by email to the developers have more success, as witnessed by the reduction in the number of
Coverity® defects (figure 3) over the last two years. It is also noticeable that the introduction of any
new tool which promotes discussion of code quality has the effect, at least temporarily, of increasing
the effort invested in quality issues. It is therefore important to maintain interest and promote
discussion and awareness on a continuous basis by regular presentations to the community.

7. Summary and Plans
Over the last two years, the ATLAS Software Quality Group has investigated various tools which

aid developers to improve software quality. The static analysis tool Coverity® has proved to be
extremely useful, and has resulted in many defects being found and fixed, as shown in figure 3b. Other
static analysis tools have also been successfully introduced and some (CppCheck) continue to be
regularly used. Our code is more stable as a result, and in this period (for example) over 670 resource
leaks were identified and fixed. However, these tools are only useful in checking individual lines and
sections of code; their use does not necessarily mean that the code is ‘good’. ‘Code smell’ detectors
such as Lizard and OCLint help to identify code which should be reviewed in terms of its overall
design. Other tools which are now in regular use include the run-time sanitizer UBSan (detecting
undefined behavior) and uncrustify (for formatting). Unit testing in the GoogleTest framework and
using GoogleMock objects has been successfully introduced and the usage is expected to grow.

The ATLAS software repository will move to Git in 2017, requiring the use of routine code review
as part of the code committal process; quality testing and metrics are expected to become an integral
part of the review process, and we expect to continue to research and promote use of such tools in our
environment.

7

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072011 doi :10.1088/1742-6596/898/7/072011

References
[1] The ATLAS Collaboration 2008 Journal of Instrumentation 3 S08003
[2] Barrand G et al. 2001 Comput. Phys. Commun. 140 45-55
[3] TWiki – The Open Source Enterprise Wiki: http://www.twiki.org
[4] Software Testing and Static Analysis Tools (Synopsis): http://www.coverity.com
[5] Cppcheck – A tool for static C/C++ code analysis: http://cppcheck.sourceforge.net
[6] Pygments: http://pygments.org
[7] OCLint: http://oclint.org
[8] Include-What-You-Use: https://include-what-you-use.org
[9] Terryin/lizard, A simple code complexity analyser: https://github.com/terryyin/lizard
[10] GCC Undefined Behaviour Sanitizer: https://developers.redhat.com/blog/2014/10/16/gcc-

undefined-behavior-sanitizer-ubsan/
[11] Address Sanitizer: https://github.com/google/sanitizers/wiki/AddressSanitizer
[12] Thread Sanitizer: https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
[13] Google/Googletest: https://github.com/google/googletest
[14] Git: https://git-scm.com
[15] Doxygen: http://www.stack.nl/~dimitri/doxygen/

