
 
 
 
 
 
Bělín, J.  and Tyc, T. (2018) Talbot effect for gratings with diagonal 

symmetry. Journal of Optics, 20(2), 025604. 

 (doi:10.1088/2040-8986/aa9e1c) 

 

 

This is the author’s final accepted version. 
 

There may be differences between this version and the published version. 

You are advised to consult the publisher’s version if you wish to cite from 

it. 

 
http://eprints.gla.ac.uk/155380/  

                    
 
 
 
 
 

 
Deposited on: 16 January 2018 

 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk  

http://dx.doi.org/10.1088/2040-8986/aa9e1c
http://eprints.gla.ac.uk/155380/
http://eprints.gla.ac.uk/


Talbot effect for gratings with diagonal symmetry
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We show that the phenomenon of self-imaging of infinite periodic gratings, known as Talbot effect,
is related not only to the dimensions of an elementary cell of the grating but is also closely connected
with its structure. This is demonstrated in a particular class of gratings for which the self-imaging
distance differs from the Talbot length as it is usually defined. This phenomenon can be explained
by a destructive interference of several fractional Talbot images at the self-imaging distance.
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I. INTRODUCTION

Talbot effect, also referred to as self-imaging or lens-
less imaging, is a phenomenon manifested by a periodic
repetition of planar field distributions in certain types
of wave fields. This phenomenon is finding its applica-
tions not only in optics, but also in a variety of research
fields, such as acoustics [1], electron microscopy [2], plas-
monics [3], X-ray diffraction and imaging [4], non-linear
dynamics [5] and Bose-Einstein condensates [6]. In op-
tics, self-imaging is being explored particularly in image
processing [7], in the production of spatial-frequency fil-
ters [8], photolitography [9] and in optical metrology [10].
The fractal structure of the Talbot effect [11] and its de-
scription in a phase-space [12] have also been studied. In
this paper, we describe the connection of Talbot effect
with the geometry of the grating and show that a special
kind of symmetry of certain gratings can lead to a reduc-
tion of the Talbot length. Although a similar topic has
already been discussed in Ref. [13], our analysis provides
a more physical insight. Moreover, derivations included
in this work show that the contraction of the self-imaging
distance can be explained very easily applying properties
of the so-called generalised quadratic Gauss sums, which
modulate both the phase and amplitude of the corre-
sponding Talbot image components.

The paper is organized as follows: In Sec. II we re-
call the definition of Talbot length and it applications
to general gratings, in Sec. III we analyze the wave at
an arbitrary distance beyond the grating that is a ra-
tional multiple of the Talbot length. In Sec. IV we in-
torduce gratings with a special symmetry which we call
X-gratings, and analyze the Talbot length for them. In
Sec. V we present our experimental results of Talbot im-
ages and conclude in Sec. VI.

∗Electronic address: j.belin.1@research.gla.ac.uk
†Electronic address: tomtyc@physics.muni.cz

II. TALBOT LENGTH OF A 2D GRATING

In this section we calculate the Talbot length at which
self-imaging of a periodic two-dimensional (2D) grating
occurs. Consider a rectangular grating with elementary

cell basis vectors ~a = (a, 0, 0)T,~b = (0, b, 0)T. Let the
grating be placed in the plane z = 0 and illuminated by
monochromatic plane wave with wavelength λ propagat-
ing along the z-axis. The complex transmission function
of the grating t(x, y) has translational symmetry that can
be expressed as

t(x, y) = t(x+ma, y + nb) , m, n ∈ N, (1)

which can be expressed as a convolution of the function
t0(x, y) describing one elementary cell of the grating (i.e.,
t0(x, y) is nonzero only for 0 ≤ x < a, 0 ≤ y < b) and the
two-dimensional Dirac comb:

t(x, y) =

∫∫
R2

t0(x− ξ, y − η)×

×
∞∑

m,n=−∞
δ (x−ma) δ (y − nb) dξ dη, (2)

To propagate this beam, we employ the standard Fourier
method: we decompose the initial wave into plane wave
components, propagate each of them separately and then
compose them again. The Fourier transform t̃(kx, ky) of
the wave (2) is

t̃(kx, ky) =
(2π)2

ab
t̃0(kx, ky)×

×
∞∑

m,n=−∞
δ

(
kx −m

2π

a

)
δ

(
ky − n

2π

b

)
, (3)

where t̃0(kx, ky) is the Fourier transform of t0(x, y). This
forest of δ-functions corresponds to a grid of bright peaks
in the Fourier plane. The transversal part of the wave
vector of the (m,n) plane-wave component in Eq. (3)

is then k⊥ = 2π
√
m2/a2 + n2/b2 and the correspond-

ing longitudinal component kz is given, in the paraxial
approximation, by

kz =
√
k2 − k2⊥ ≈ k−

k2⊥
2k

= k−πλ m
2b2 + n2a2

a2b2
, (4)
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where k = 2π/λ. Now, suppose that the ratio a2/b2 is
a rational number. This is equivalent to saying that the
grating parameters a and b satisfy

a2 = g2A , b2 = g2B, (5)

where the numbers A,B ∈ N are coprime and g is a
common factor with the dimension of length. With the
help of Eqns. (4) and (5) we can now express the phase of
the (m,n) plane-wave component at a distance z beyond
the grating as

kz − 2π
λz

2g2AB
(m2B + n2A) . (6)

The first term is an unimportant global phase that is
the same for all the plane-wave components. The second
term is the important one. If, for some z, it happens to
be an integer multiple of 2π for all m and n, then the
wave at that distance z will be the same as the wave at
z = 0, i.e., immediately beyond the grating. In other
words, self-imaging occurs. Since A,B are coprime, this
happens when the fraction in Eq. (6) is an integer. The
smallest non-zero integer value, unity, then corresponds
to the Talbot length [14], for which we get

zT =
2g2AB

λ
. (7)

This is equal to the smallest common multiple of the Tal-
bot lengths 2g2A/λ and 2g2B/λ of two one-dimensional
gratings with grating parameters a and b, respectively.

However, as we will see in the following, in some situ-
ations self-imaging may occur even at distances smaller
that the Talbot length. To analyse this possibility, in
the next section we calculate the diffraction pattern at a
rational multiple of the Talbot length.

III. WAVEFUNCTION OF FRACTIONAL
TALBOT EFFECT

In this section we will describe the fractional Talbot
effect. We will be interested in the diffraction pattern
beyond a periodic grating at a rational multiple of the
Talbot length, i.e., at the distance

zf =
zT

4AB

P

Q
, P,Q ∈ N (8)

To express the wavefunction, it is useful to introduce two
pairs of coprime numbers (Px, Qx) and (Py, Qy) defined
by

APx
Qx

=
BPy
Qy

=
P

Q
, (9)

where the integers A,B are defined by equation (5). By
the calculation shown in Appendix we then obtain the

wavefunction in the following form:

u(x, y; zf ) =

2Qx−1∑
m=0

2Qy−1∑
n=0

t

(
x− a m

2Qx
, y − b n

2Qy

)
×

× −i√
4QxQy

S (2Qx, Px, 2m)S (2Qy, Py, 2n) , (10)

where symbol S(Q,P,m) is defined by the formula

S(Q,P,m) =
1√
P

P−1∑
j=0

exp

{
iπ
Q

P

(
j − m

2Q

)2
}

(11)

This is an analytical expression of the wavefunction corre-
sponding to the two-dimensional fractional Talbot effect.
It tells us that in each plane z = zf the wave corre-
sponds to a superposition of 4QxQy images of the orig-
inal grating, spatially shifted in the x and y directions
with respect to each other and modulated by the sums
S(2Qx, Px, 2m) and S(2Qy, Py, 2n). Explicit values of
these sums can be derived from the properties of gener-
alised quadratic Gauss sums, which have been published
in many publications, see e.g. [15]. An important prop-
erty of the sums S(Q,P,m) arises from these properties,
namely if QP +m is an even number [15], they are peri-
odic in both P and m with the period 2Q, i.e.,

S(Q,P,m) = S(Q,P + 2Q,m) = S(Q,P,m+ 2Q). (12)

Applying this to the sums S (2Qx, Px, 2m) and
S (2Qy, Py, 2n) in Eq. (10), we see that the diffraction
pattern is periodic in the z direction—the Talbot effect.

IV. X -GRATINGS

Now we are coming to the key finding of this paper.
We will reveal an interesting purely two-dimensional phe-
nomenon connected with one particular type of gratings,
which we call X -gratings due to the structure of a grat-
ing cell which looks like a letter ”X”. These gratings
can in general be described by an arbitrary transmission
function t(x, y) with the following property:

t (x, y) = t

(
x− a

2
, y − b

2

)
6= t
(
x− a

2
, y
)

= t

(
x, y − b

2

)
(13)

We can interpret this property as follows: if we shift the
grating in both the x and y directions by half of the corre-
sponding grating parameter, we will get again the initial
pattern. On the other hand, shifting in either x or y di-
rection alone leads to a pattern different from the initial
one. At the same time, these two shifts (in either x or
y direction) are equivalent. In fact, X -gratings can be
regarded to be generalised hexagonal arrays, which oc-
cur in nature frequently (honeycomb, graphene, ice etc.)
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due to their efficiency: honeycombs require less wax to
construct and gain lots of strength under compression.
Moreover, many materials with a hexagonal structure are
intensively studied [16–20].

As examples of X -gratings, we introduce two patterns:
one created by regular triangles and one composed of
stars as shown in Fig. 1. Figs. 2 and 3 then illustrate the
property (13).

(a) (b)

FIG. 1: Examples of X -gratings.

FIG. 2: Example of an X -grating with |A−B| = 2.
Pictures follow equation (13).

FIG. 3: Example of an X -grating with |A−B| = 0.
Pictures follow equation (13).

In the particular case shown in Fig. 2, the grating pa-
rameters are related to each other as b =

√
3a, and the

parameters of Eq. (5) are A = 1 and B = 3. Therefore
the Talbot length, according to equation (7), is equal to

zT = 2
b2

λ
= 2

3a2

λ
. (14)

Now, let us take a look at the wave function at a distance
zT/4. The corresponding parameters are Qx = Qy =
Q = 1, Px = P = 3 and Py = 1. In order to evaluate
the wave function at this distance, we need the following
values of sums S(2Qx, Px, 2m) and S(2Qy, Py, 2n):

S(2, 3, 0) = i , S(2, 3, 2) = 1 ,

S(2, 1, 0) = 1 , S(2, 1, 2) = i . (15)

From Eq. (10) we then get

u
(
x, y;

zT
4

)
=
−i

2
[it(x, y) + t(x− a/2, y)

− t(x, y − b/2) + it(x− a/2, y − b/2)] = t (x, y) , (16)

where we have used the property (13). We see a sur-
prising fact—self-imaging occurs already at the distance
zSI ≡ zT/4, i.e., the grating behaves as if it were half-
periodic. This is caused by the mutual cancellation of
the middle two terms in Eq. (16), or, physically speaking,
by destructive interference of the two fractional Talbot
images and constructive interference of the other two.

This may also seem strange at first sight because if we
insert the distance zSI into the phase (6), the second term
will not be equal to an integer multiple of 2π in general,
so it is not obvious why self-imaging should be observed.
A closer inspection reveals that the structure of an el-
ementary cell of an X -grating causes a modulation of
the Fourier image of this grating by a goniometric func-
tion such that some bright peaks vanish. The remaining
bright peaks then correspond to plane waves which intef-
ere in phase at the distance zSI.

The above discussed result does not hold for all X -
gratings, but the shortest self-imaging distance zSI de-
pends on the values of the sums S(2Qx, Px, 2m) and
S(2Qy, Py, 2n). To specify it, it is natural to assume
that zSI corresponds to the minimal possible values of
parameters Qx and Qy (since the wave is a superposition
of 4QxQy images of the original grating). Therefore we
set Qx = Qy = 1 at the distance zSI. The parameter Q
in Eq. (9) must then be equal to unity as well because P
and Q are coprime. Equation (9) also yields APx = BPy;
from the fact that A and B are coprime it then follows
that Px = NB and Py = NA, where N is a natural
number. Finally, the distance zSI can be obtained from
Eq. (8) (with Q = 1 and P = APx = BPy = NAB) as

zSI = N
zT
4
. (17)

The number N could be estimated from explicit values
of sums S(2, NB, 2m) and S(2, NA, 2n). This analy-
sis reveals that the ratio zSI/zT is determined by the
value of |A−B| mod 4 due to the periodicity of S [since
S(2, P, 2m) = S(2, P + 4, 2m)]. However, in the follow-
ing we provide a simpler way of finding the self-imaging
distance zSI by employing geometrical and physical argu-
ments. We discuss the four possibilities for |A−B| mod
4 separately:

• |A − B| mod 4 = 0: according to Eq. (10), an
exact image of the grating but shifted by a half of
the grating parameter in both x and y directions
is created at a half of the Talbot length. However,
according to condition (13) the image shifted in this
way is exactly the same as an unshifted one, so
zSI = zT/2 and therefore N = 2 in Eq. (17). In
the specific case of A = B, it is possible to choose
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another orthogonal basis (~a′,~b′) for these gratings,
rotated by angle π/4 with respect to the original

basis (~a,~b). By doing this, we realise that a′ =

b′ = a/
√

2 and zT is equal to the Talbot distance
calculated from the new grating periods a′ and b′.
This is the case of the grating shown in Fig. 1 (b).

• |A−B| mod 4 is either 1 or 3: then either A or B
is an even number and the second one is odd num-
ber. As we have mentioned, the Talbot length for
two-dimensional grating corresponds to the small-
est common multiple of Talbot lengths of the two
corresponding 1D gratings oriented in the x and y
directions. This means that in half of the Talbot
length we obtain an image shifted by aA/2 in x-
direction and by bB/2 in y-direction, but since one
of the parameters A,B is an even number, we get
(applying periodicity) an unshifted image in one di-
rection and shifted image in the second one. There-
fore in this case zSI = zT and N = 4 in Eq. (17).

• |A − B| mod 4 = 2: this is the most interest-
ing case. To find the wavefunction at the distance
zT /4, the sums S(2, B, 0), S(2, B, 2), S(2, A, 0) and
S(2, A, 2) must be evaluated. The case of A = 3
andB = 1 was discussed earlier and we showed that
self-imaging can be observed at distance zT /4. One
can show that this is a general result for all grat-
ings with |A − B| mod 4 = 2 by realising that the
sums S(2, P,m) are periodic in P with a period 4
and therefore sums S(2, P,m) = S(2, P mod 4,m).
For this reason we can substitute A mod 4 and
B mod 4 instead of A and B, respectively, into the
above sums. But A and B are coprime, which,
together with the condition |A − B| mod 4 = 2,
implies that they are both odd numbers. There are
only two possible values, 1 and 3, for the remainder
after dividing an odd number by 4. This reduces
the situation to the above discussed special case of
A = 3 and B = 1 and the self-imaging distance
is therefore zSI = zT /4 and therefore N = 1 in
Eq. (17).

The ratio zSI/zT toghether with corresponding value
of parameter N (defined in Eq. (17)) is summarised in
Table I, which is the main result of this paper.

TABLE I: Self-Imaging distances for X -gratings

|A−B| mod 4 N zSI/zT

0 2 1/2

1 4 1

2 1 1/4

3 4 1

Gratings with hexagonal symmetry have b =
√

3a,
A = 1 and B = 3 and therefore they belong to the most
interesting category of |A−B|mod 4 = 2. One example is

(a) (b)

FIG. 4: Another example of X -grating with hexagonal
symmetry: (a) Its elementary cell and (b) a larger

section.

the grating of Figs. 1(a) and 2, another example is shown
in Fig. 4. The self-imaging distance is then zSI = zT/4.

Interestingly, the same results could be obtained by
choosing a non-orthogonal basis of the grating vectors as
shown in the paper of Winthrop and Worthington [13].
They derived a formula defining the distances q of all
possible self-imaging two-dimensional arrays

q =
νa′b′RaRbM sin2 γ

λ
, (18)

where ν,M are integers, a′, b′ are lengths of the new lat-
tice vectors, γ is the angle between them, and Ra, Rb
are integers with no common factor chosen such that
Raa

′ = Rbb
′. For example, considering X -grating shown

in Fig. 4, using a′ = a, b′ = a, ν = 1, M = 1, Ra = 1,
Rb = 1, γ = π/3, we arrive at q = zSI, which confirms
our result. At the same time, our computations provide
new, more geometric and physical view on the relation-
ship between the self-imaging distance and the symmetry
of grating expressed by equation (13).

V. EXPERIMENT

We have also verified our theoretical predictions ex-
perimentally. An unpolarised diode laser beam of λ =
532 nm was focused by an aspherical lens onto one end of
a single-mode optical fibre, and the light exiting the other
end (having been spatialy filtered by the fibre this way)
was collimated by a plano-convex lens of f = 500 mm.
The grating was placed immediately behind the lens and
the diffraction pattern was recorded by a CMOS camera
(without objective lens) at a variable distance z behind
the grating.

We tested the agreement between theory and exper-
iment on two X -gratings with hexagonal symmetry de-
scribed in the previous section. These gratings have been
manufactured by direct laser lithography; the pattern is
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written in a thin chromium layer which has been de-
posited on a 2 mm thick glass substrate of area 4×4 cm2.
The first grating consisted of regular hexagons arranged
in a frame with six-fold symmetry (Fig. 4). The sides
of the transparent part had a length 0.45 mm and the
edges between two hexagons were 0.1 mm thick. The
corresponding parameters were a = 0.88 mm, b = 1.52
mm and the Talbot length was zT

.
= 8734 mm. The

self-imaging distance then was zSI = zT/4
.
= 2184 mm.

The second grating consisted of regular triangles ar-
ranged in a frame with six-fold symmetry (Figs. 1(a)
and 2). The sides of the triangles had the length of
0.654 mm and the bars between neighbouring triangles
were 0.2 mm thick. The corresponding parameters were
a = 1 mm, b = 1.73 mm and the Talbot length was
zT

.
= 11278 mm. The self-imaging distance then was

zSI = zT/4
.
= 2820 mm.

The experimental results are presented in Figs. 5, 6
and 7. Fig. 5 shows experimentally obtained Talbot im-
ages of gratings 4 and 1(a) at distance z = zSI, Figs. 6
and 7 are presented alongside with the theoretically pre-
dicted Talbot images for several distances from the grat-
ings. Theoretically predicted Talbot images have been
computed in Matlab with a sufficient resolution by com-
bining the multiple shifted images using Eq. (10).

Although the experimentally obtained images are very
similar to the theoretically predicted ones, we see some
additional irregular streaky patterns in the experimental
results. These reflect the difference between our theoret-
ical assumptions and the experimental reality. Our anal-
ysis included the paraxial approximation as well as the
assumptions about the grating extending to infinity and
about unlimited spatial frequencies. These conditions are
satisfied only approximately in a real experiment. (Some
effects related to spatial frequency limitations have been
discussed in ref. [11].) Moreover, our gratings were de-
posited on a normal glass substrate, so there are slight
random phase variations across them; this is probably
the most important reason for the imperfections in the
experimental results.

VI. CONCLUSION

We have analysed Talbot effect for gratings with a spe-
cial symmetry properties, the so-called X -gratings. We
have shown that the self-imaging distance in general dif-
fers from the Talbot distance calculated based on the
basis orthogonal grating vectors. This feature can be un-
derstood by a destructive interference between two copies
of the shifted gratings originating from the fractional Tal-
bot effect, and constuctive interference between the two
unshifted ones. This demonstrates that the symmetry of
the grating elementary cell has a strong influence on the
optical properties and can lead to unexpected interesting
phenomena. Although the self-imaging distance zSI can
also be obtained by using a non-orthogonal grating vec-
tors [13], our approach based on geometrical properties of

(a) z = 2190 mm
.
= zSI

(b) z = 2830 mm
.
= zSI

FIG. 5: Experimental results for X -gratings composed
of a) regular hexagons and b) regular triangles obtained
at distance z

.
= zSI = zT/4. These results are in a good

agreement with our theoretical prediction.

lattice cells and generalised quadratic Gauss sums reveals
how the symmetry of the grating leads to reduction of the
self-imaging distance. Finally, we have demonstrated the
theoretically described phenomena experimentally, find-
ing a good agreement.

Acknowledgements

We thank Siew Shawn Yohanes and Aaron Danner
from National University of Singapore for manufactur-
ing the gratings for our experiments.



6

(a) Experiment; z = 729 mm
.
= 1

3
zSI

(b) Theory; z = 1
3
zSI

(c) Experiment; z = 162 mm
.
= 2

27
zSI

(d) Theory; z = 2
27

zSI

FIG. 6: Comparison of observed and theoretically
predicted Talbot images at several distances from the
grating composed of regular hexagons. It is obvious

that the observed images correspond to those
numerically computed very well.

(a) Experiment; z = 939 mm
.
= 1

3
zSI

(b) Theory; z = 1
3
zSI

(c) Experiment; z = 162 mm
.
= 1

13
zSI

(d) Theory; z = 1
13

zSI

FIG. 7: Comparison of observed and theoretically
predicted Talbot images in several distances from the

grating composed of regular triangles. As in the
previous cases, experimentally obtained and numerically

computed images are almost indistinguishable.
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Appendix: Fractional Talbot effect

Now we will describe the wavefunction in any rational
fraction of the Talbot length: the fractional Talbot effect.
Just for the sake of clarity, we make the computation for
one-dimensional case (generalisation for two-dimensional
one is straightforward). Let a one-dimensional infinite
periodic grating be described by the complex transmis-
sion function t(ξ). If we assume a plane-wave illumina-
tion, one can determine the wave u(x; z) by a convolu-
tion of the grating function and one-dimanesional Fresnel
propagator [21]

F1D(x; z) =
e−i

π
4

√
λz

ei
k
2z x

2

. (19)

Note that this propagator corresponds to a paraxial
approximation of a cylindrical wave. Considering this
propagator, we get the following expression for the wave-
function:

u(x; z) =
e−i

π
4

√
λz

∫
R
t(ξ)ei

k
2z (x−ξ)

2

dξ. (20)

The grating function t(ξ) can be expressed as another
convolution of function of one grating cell t0(ξ′), which
is defined on the interval [−a2 ; a2 ], and the Dirac comb,
which periodically replicates the single cell:

t(ξ) = [t0 ∗D] (ξ) =

∞∑
m=−∞

∫ a
2

− a2
t0(ξ′)δ (ξ − ξ′ −ma) dξ′.

(21)
If we insert this result to the integral (20) and ex-

change the order of summation and integrations, we get
a formula in which integral over the size of one single cell
occurs:

u(x; z) =
e−i

π
4

√
λz

∞∑
m=−∞

∫ a
2

− a2
dξ′ t0(ξ′)×

×
∫
R

dξ δ (ξ − ξ′ −ma) ei
k
2z (x−ξ)

2

=

=
e−i

π
4

√
λz

∫ a
2

− a2
dξ′ t0(ξ′)

∞∑
m=−∞

e
i ka

2

2z

(
x−ξ′
a −m

)2

. (22)

To solve this integral, we need to evaluate the sum in
equation (22). Let us choose the distance z such that
the fraction ka2/2z is a rational number multiplied by
2π (the reason of this choice arises from following com-
putations):

ka2

2z
=
Q

P
2π ⇒ z =

a2

λ

P

2Q
= zT

P

4Q
, P,Q ∈ N

(23)
For simplicity, numbers P,Q can be considered to be

coprime. Inserting this expression to the sum in equation
(22) we obtain the following sum:

∞∑
m=−∞

e
i2πQP

(
x−ξ′
a −m

)2

= e
i2πQP

(
x−ξ′
a

)2

×

×
∞∑

m=−∞
e
i2πQP

(
m2−2 x−ξ

′
a m

)
. (24)

The sum on the right-hand side in equation (24) can be
rewritten in terms of P sums given by remainders after
division of m by number P , i.e. m = lP + j.

It is obvious that indices l and j have become new sum-

mation indices. Using the identity ei2πQPl
2

= ei2πQ2l = 1
we obtain an important intermediate result:

e
i2πQP

(
x−ξ′
a

)2 ∞∑
m=−∞

e
i2πQP

(
m2−2 x−ξ

′
a m

)

=

P−1∑
j=0

e
i2πQP

(
j− x−ξ

′
a

)2 ∞∑
l=−∞

e−i4πQl
x−ξ′
a =

=

P−1∑
j=0

e
i2πQP

(
j− x−ξ

′
a

)2
(
a

2Q

) ∞∑
n=−∞

δ

(
x− ξ′ − n a

2Q

)
.

(25)

The last step remains: insert this formula to the equa-
tion (22). The infinite sum of delta-distributions turns
into a finite sum after integration, because only 2Q terms
of the sum actually lie in the interval

[
−a2 ; a2

]
. How-

ever, the argument of the delta-function in equation (25)
should not exceed the range where the elementary cell
is defined. Therefore, we introduce a shift x → x − n0a
such that the argument of the delta function is in range[
−a2 ; a2

]
for all 2Q terms of the sum. Applying this pro-

cedure and defining the sum S(2Q,P, 2n) as

S(2Q,P, 2n) ≡ 1√
P

P−1∑
j=0

ei2π
Q
P (j− n

2Q )
2

(26)

we get

u

(
x; zT

P

4Q

)
=

e−i
π
4

√
2Q

2Q−1∑
n=0

t0

(
x− n0a− a

n

2Q

)
×

× S(2Q,P, 2n). (27)

This expression can be simplified if function of one
elementary cell t0(x) is replaced by the grating function
t(x). By doing this, the final result is obtained:

u

(
x; zT

P

4Q

)
=

e−i
π
4

√
2Q

2Q−1∑
n=0

t

(
x− a n

2Q

)
S(2Q,P, 2n).

(28)

This equation describes a wavefunction correspond-
ing to the one-dimensional fractional Talbot effect.
Two-dimensional generalization of this formula can be
achieved analogously and the result corresponds to equa-
tion (10).
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