
 

 
 
 
 
 

Butt, M. M., Kansanen, K. and Muller, R. R. (2011) Individual Packet Deadline 

Constrained Scheduling For Multiuser Systems. In: 2011 IEEE 73rd Vehicular 

Technology Conference (VTC Spring), Budapest, Hungary, 15-18 May 2011, ISBN 

9781424483310. 

 

   

There may be differences between this version and the published version. You are 

advised to consult the publisher’s version if you wish to cite from it. 
 
 
 

http://eprints.gla.ac.uk/155262/  
      

 
 
 
 
 

 
Deposited on: 15 January 2018 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/155262/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


Individual Packet Deadline Constrained
Opportunistic Scheduling For a Multiuser System

M. Majid Butt, Kimmo Kansanen, Ralf R. Müller

Institute of Electronics and Telecommunications
Norwegian University of Science and Technology, Trondheim, Norway

Email: majid.butt@iet.ntnu.no

Abstract— In this work an opportunistic scheduling scheme is
presented and analyzed for a multiuser system. The objective
of the proposed scheme is to minimize the system transmit
energy in the presence of a hard deadline delay constraint for
the individual packets. In the large system limit, the scheme is
modeled and analyzed in the scenario when arriving packets
have associated deadlines which vary from packet to packet. We
introduce transmission thresholds that depend on channel quality
and number of time slots left before a packet reaches its hard
deadline. These thresholds are optimized such that they reflect the
interaction of deadline delay and channel variation, and result in
a minimum system energy. The results demonstrate the saving
in energy for a system where the applications have individual
packet deadline delay constraints.

I. INTRODUCTION

In modern wireless systems, delay guarantees for data
communications are becoming more and more important.
These guarantees take the form of either average delay or
strict deadline for transmission. For example, multimedia
applications require strict deadline guarantees as compared
to some of the data transfer applications where soft average
delay requirements are sufficient to be fulfilled. On the other
hand, with the amount of multimedia traffic added in a modern
communication network, provision of hard deadline is getting
tougher. From a service provider’s point of view, this task
needs to be accomplished with minimal energy resources.

In [1], Knopp and Humblet proposed a scheme which maxi-
mizes the information capacity by scheduling the user with the
highest channel quality. In [2], Proportional Fair Scheduling
(PFS) was proposed to provide fairness guarantees to all the
users. Neely discussed an optimal scheduler when inter–arrival
and inter–transmission time have some asymmetry property in
[3]. Reference [4], [5] discuss formulation of data transmission
for deadline constrained systems and propose energy efficient
schedulers.

In [6] Sequential Deadline Dependent Partial buffer
Scheduling (SDDPS) scheme has been proposed for a deadline
constrained multiuser system with a constant arrival process.
SDDPS has been analyzed for random arrivals in [7] for the
case when all the arriving packets have identical deadlines.
This work generalizes the results in [6], [7] for the case when
the arriving packets have individual, non–identical deadlines.
The main contribution of this work is modeling and analysis

of opportunistic scheduler for the non–identical deadline case.
We prove that to each system with non–identical deadlines,
there exists an equivalent system with identical deadlines in
the large system limit.

The rest of the paper is organized as follows. In Section II,
system model for this work is described. Section III introduces
a state space description for the proposed scheduling scheme.
In Section IV, the large system analysis of the scheme is
presented. Section V shows numerical results for the proposed
scheme and Section VI concludes with the summary of the
main contributions of this paper.

II. SYSTEM MODEL

We consider a multiple–access system with K users ran-
domly placed within a certain geographical area. Each user
requires an average rate R equals to Γ

K where Γ denotes the
spectral efficiency of the system measured in bits/s/Hz. We
assume a time–slotted system. In each time slot, arrivals are
random and we model them as constant arrivals with variable
size [7]. We consider an uplink scenario but the results can be
generalized to the downlink as well.

Each user experiences a distance dependent path loss and
an environment-dependent fading. The channel gain gk(t) is
the product of path loss sk and short–term fading fk(t) i.e.
gk(t) = skfk(t). Path loss and short–term fading are assumed
to be independent. The path loss is a function of the distance
between the transmitter and the receiver and remains constant
within the time-scales considered in this work. For a multi-
band system of M channels, each user decides to transmit
on its best channel. Short–term fading over the best channel
is represented by fk(t) = max(f (1)

k (t), f (2)
k (t), . . . , f (M)

k (t)).
Short–term fading depends on the scattering environment and
varies from slot to slot for every user. It is independent and
identically distributed across both users and slots, but remains
constant within each time slot.

ER
k (t) and Ek(t) represent the received and the transmitted

energy for each user k such that

ER
k (t) = gk(t)Ek(t). (1)

Note that the distribution of gk(t) differs from user to user.
Let N0 denote the noise power spectral density. We allow

scheduling of multiple users in the same frequency band.



Simultaneously scheduled users are separated by superposition
coding. Channel state information is assumed to be known at
both the transmitter and the receiver side.

Let ∆m be the set of users to be scheduled in frequency
band m. π

(m)
k denotes the permutation of the scheduled user

indices for frequency band m that sorts the channel gains in
increasing order, i.e. g

(m)
π1 ≤ · · · ≤ g

(m)
πk ≤ · · · ≤ d

(m)
π|∆m| .

Then, the energy of the user π
(m)
k with rate R

(m)
πk , as scheduled

by the scheduler to guarantee an error free communication, is
given by [8], [9]

E(m)
πk

=
N0

g
(m)
πk

[
2
P

i≤k R(m)
πi − 2

P
i<k R(m)

πi

]
. (2)

Eq. (2) represents the minimum total transmit energy as-
signment for the scheduled users.

III. SDDPS WITH PACKETS DEPENDENT DEADLINES

We model the SDDPS scheduler by a Markov process.
The maximum possible deadline of an arriving packet in the
buffer is denoted by n. Then, we define the deadline of an
arriving packet q < n with respect to n. i.e. the deadline of a
packet with deadline of 0 ≤ a < n time slots less than n is
represented by q = n−a where a is termed as deadline offset.
We denote probability of arrival of a packet with deadline q by
pq. We assume infinite size buffer for simplicity of analysis.

We model the arrival of a packet with deadline q = n−a by
a packet that already has spent a time slots in the buffer. By
this initial offsetting, we model a system with non-identical
packet deadlines equivalent to a system with identical packet
deadlines. We define some terms used in the work.

Definition 1 (Deadline Distance): The deadline distance
ν ∈ {1 . . . n} for a packet is defined as the number of time
slots remaining before it reaches its hard deadline.
Note that deadline distance for an arriving packet equals q.

Definition 2 (Backlog State): Backlog state i in a Markov
chain is defined as the minimum of the deadline distance for
the packets waiting to be scheduled in the buffer.

i = min
(
ν1, ν2...νj

)
(3)

where νj represents the deadline distance of the jth packet in
the buffer. For simplicity, we denote backlog state by a state.

Definition 3 (Transmission threshold:): A transmission
threshold κi→j is defined as the minimum short–term fading
value allowing for the transition Ti→j from state i to state j.

We consider the case when arriving packets have non-
identical individual hard deadlines. In SDDPS, a group of
users having better fading than the transmission threshold
are scheduled for transmission simultaneously. All the state
transitions have associated thresholds. Each user compares
the current short-term fading fk with the threshold κi→j for
every state j ≥ i sequentially. The thresholds are computed
such that the transmission threshold is minimum for the state
closest to the deadline. If fk > κi→i, all the packets with
deadline distance νi are scheduled for transmission and the
threshold of the next higher state is compared with fk. The

transmission threshold for the state i−1 will be greater than the
transmission threshold of the state i as the packet in this state
has deadline distance ν one more than the deadline distance
of the scheduled packet. Similarly, the thresholds of all the
states j ≥ i are compared sequentially with fk until fk is
less than the threshold κi→j+1 of a state. The last state in
which a packet is scheduled is termed as ending state j(t). The
scheduler moves to state j(t) from a state i(t) by scheduling
packets in the L intermediate states and therefore, ending state
j(t) is given by

j(t) = i(t) + L(y, i)− 1 (4)

The state i(t + 1) is determined after the arrival of a new
packet at time t + 1. Depending on the deadline of the next
arriving packet, the scheduler stays in state j(t) or moves into
state q(t + 1) such that

i(t + 1) =

{
j(t) if q(t + 1) ≥ j(t)
q(t + 1) if q(t + 1) < j(t)

(5)

where q(t+1) denotes the deadline offset of the arriving packet
at time t+1. If fk is less than the thresholds of all the states,
no packet is scheduled. Then, the scheduler moves into state
i(t + 1) according to the Eq. (5) where j(t) = i(t) − 1. The
deadline distance ν of all the remaining un–scheduled packets
in the buffer is decremented by one in each time slot.

We model the special case when no packet arrives in a
time slot by considering arrival of a packet with zero size and
deadline n. This assumption keeps our state space description
consistent for no arrival case as well. When a packet with zero
size is scheduled for transmission, no rate is allocated.

State transition is a two step process. The scheduler sched-
ules packets in L(y, i) states, allocates rate for the actual data
and then moves into state i(t + 1) according to Eq. (5). Note
that the scheduler schedules packets in L(y, i) states without
the knowledge that arriving packets have identical or non-
identical deadlines. It is a packet based scheduling algorithm
and the transmission thresholds depend only on the fading
distribution and number of time slots left before the deadline.

State transition diagram of the SDDPS scheduler with
packets having non-identical deadlines is shown in Fig. 1.

For identical deadline case, State Transition Matrix (STM)
is given by [6]

Pid
SDDPS =




α11 α12 · · · α1n

. . . . . . . . . . . .
0 · · · α(n−1)(n−1) α(n−1)n

0 · · · αn(n−1) αnn


 . (6)

where αij is defined as

αij = Pr(κj < f ≤ κj+1). (7)

The termination condition κi→n+1 is defined as ∞. We set
κ1→1 to zero to ensure the transmission of the packet reaching
its deadline.

To compute STM for the non–identical deadline case, we
evaluate the effect of non-identical deadlines on state space
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Fig. 1. State diagram for the transition states for the SDDPS scheduler.

representation. In the first step, we compute the value of j as
described in Eq. (7) for the identical deadline case and remains
the same for non–identical deadline case. However, STM for
non-identical case is modified by the deadline distribution as
well. In the second step, for a given pair of i, j, we compute
the offset produced by this distribution by evaluating the offset
matrix Snid given by

Snid =




∑n
µ=1 pµ 0 · · · 0
p1

∑n
µ=2 pµ · · · 0

. . . . . . . . . . . .
p1 · · · pn−1

∑n
µ=n pµ


 . (8)

where probability Snid(q, j) is defined as

Snid(q, j) =





0 if q > j∑n
µ=j pµ if q = j

pq if q < j

(9)

Diagonal elements in Eq. (8) represent the sum of probabilities
of deadline distribution which keeps i(t + 1) = j(t) while
non zero non diagonal elements represent the probability when
i(t + 1) = q(t + 1) as explained in Eq. (5). We can represent
STM for non identical case as a product of Eq. (6) and Eq.
(8) such that

Pnid
SDDPS = Pid

SDDPSS
nid (10)

One obvious difference between the STMs for the systems
having arrived packets with identical deadlines and the systems
having arrived packets with non–identical deadlines is the
transition probabilities when no packet is scheduled. If all the
arriving packets have identical deadline of n time slots, the
only possible state is i− 1. However, if the deadlines are non
identical, depending on the deadline of the arriving packet, the
scheduler moves into any of the states j < i.

Example: We explain it with the help of an example when
n = 2. If all the packets have identical deadline, Pid

SDDPS is
given by

Pid
SDDPS =

(
α11 α12

α21 α22

)
. (11)

If the packets have non-identical deadlines of n1 = 1 and
n2 = 2, n equals 2 and resulting Pnid

SDDPS is given by

Pnid
SDDPS =

(
α11 + p1α12 p2α12

α21 + p1α22 p2α22

)
. (12)

Note that Eq. (12) is reduced to Eq. (11) if all the arriving
packets have identical deadline of 2.

IV. ASYMPTOTIC ANALYSIS OF SDDPS FOR
NON–IDENTICAL DEADLINE CASE

In this section, we analyze SDDPS in the large system
limit. In Section V, numerical results show that as number
of users increases, the results follow the asymptotic results
closely. We use the large system results from [9]. We model
a user that sends L packets at a time as L users with identical
fading that transmit a single packet and call them virtual users.
For analysis purpose, we use the term scheduled virtual users
(SVU) for the scheduled packets in this section. The average
energy consumption of the system per transmitted information
bit at the large system limit K →∞ is then given by

(
Eb

N0

)

sys

= log(2)

∞∫

0

2R Pd,SVU(x)

x
dPd,SVU(x) (13)

where Pd,SVU(·) is the the cumulative distribution function
(cdf) of the fading of the SVUs.

Pd,SVU(x) is composed of the short-term fading and the
long-term fading of the SVUs. In the large system limit, the
long-term fading of the SVUs follows the same distribution
as the long-term fading of all users because long-term and
short-term fading are mutually statistically independent and
state transitions depend only on the short-term fading. The
probability density function (pdf) of the short-term fading of
the scheduled virtual users is given by

pf,SVU(y) =
n∑

i=1

πi pf,SVU(y|i) (14)

where πi denotes the limiting probability of state i and the
channel distribution of the users in state i is given by

pf,SVU(y|i) = cnid
i L(y, i) pmax{f}(y) (15)

with pmax{f}(y) and cnid
i denote the short–term fading of the

best of the channels for a multi-channel system and a constant
to normalize the conditional pdf.

We represent the channel distribution of SVUs in terms
of weighted sum of rate allocation for probabilistic state
transitions. Note that scheduled rate is only a function of
fading and state as shown in Eq. (7), but deadline distribution
of the arriving packets randomizes the state transition and
corresponding rate allocation function. For a given fading f ,
rate is probabilistically allocated to the states i ≤ r ≤ j and
weighted by the probability of ending up in state r. Note that
probability of ending in state r can directly be computed from
Eq. (9) for given i, j. We can write pf,SVU(y|i) as

pf,SVU(y|i) = cnid
i E(µt)

(
(j − i + 1)

n∑

l=j

pl

+
j−1∑

r=i

(r − i + 1)pr

)
pmax{f}(y) (16)



where j is uniquely defined by Eq. (7) and rate of arrival in
each scheduled state is E(µt).

We give a more intuitive description of the effect of non-
identical deadlines on system behaviour. Note that arrival of a
new packet always takes place in state n for the case when all
the packets have identical deadlines. For a two state system
with n = 2, if a packet is not scheduled at time t, it moves
into state 1 with probability one. In non–identical deadline
case, the probability of arrival in state two is p2. If a packet is
not scheduled in state 2, it moves into state 1 with probability
p2, making rate of arrival p2 for state 1. However, there is an
additional direct source of arrival in state 1 with probability p1

at time t + 1 (due to deadline offset). Therefore, cumulative
buffer content of state 1 is summation of p1 and p2 while
buffer content of state 2 is p2. Recall that arrival with non–
identical deadlines results in insertion of the arriving packet
with deadline less than n in state q. The resulting content
size for the states with small deadline distances is greater as
compared to the states with large deadline distances. For a
state r, this effect is modeled in Eq. (17) by considering an
equivalent arrival process whose arrival rate is a summation
of the arrival probability pl over r ≤ l ≤ n. For a given i, j
pair, due to non-identical deadline of the arriving packets, the
random content size in L(y, i) scheduled states is given by

L(y, i) =
j∑

r=i

n∑

l=r

pl (17)

Consequently, using Eq. (17) in Eq. (15), the channel dis-
tribution of the scheduled users for the non–identical deadline
case can be written in terms of rate allocation function for a
fixed state transition and random content, and given by

pf,SVU(y|i) = cnid
i E(µt)

j∑

r=i

n∑

l=r

pl pmax{f}(y) (18)

where cnid
i is a normalization constant.

Lemma 1: The representations of distribution of scheduled
virtual users in Eq. (16) and Eq. (18) are equivalent.
Proof of equivalence is omitted due to space limitations.

Note that there is an important difference between modeling
of random arrival as constant arrival with random size in
[7] and modeling packet arriving with non identical dead-
lines. In the limiting case, the content of every scheduled
state converges to the rate of arrival process E(µt) for the
modeling of random arrivals. However, contents of states
are non uniform for non-identical packet deadline case and
increase for the states closer to deadline. Random content
size description helps in understanding the energy behaviour
of the system when deadline constraints are non-identical for
individual packets.

Corresponding channel distribution of the SVUs for the
identical deadline case is given by

pf,SVU(y|i) = cid
i E(µt)

(
j − i + 1

)
pmax{f}(y) (19)

where cid
i is a normalization constant.

Although, non–identical deadline case has been modeled as
an extension of identical deadline case, state space description
and channel distributions are not equivalent due to different
STMs. However, as SDDPS scheduler treats every packet indi-
vidually based on its deadline distance, transmission thresholds
optimized for the systems with identical deadlines remain
optimal for the systems with non-identical deadlines as well.

A. Optimization of Transmission Thresholds

The optimization technique for the thresholds has been
presented in [6] when all the arriving packets have identical
deadlines. From analysis in Section IV, we conclude that
the transmission thresholds depend only on the fading and
current state (Eq. (7)), and remain the same as for the identical
deadline case. In this section, we present the optimization
procedure briefly for the completeness of discussion.

In SDDPS, for a single packet, a decision to wait in the
buffer and wait for the next time slot has two effects. It gives
the user a chance to transmit on the best channel out of n
opportunities available before the deadline. On the other hand,
a forced transmission is costly. Transmission thresholds are
designed to reflect these two effects.

As SDDPS treats each packet individually, regardless of
state i, a packet with deadline distance νj requires the same
transmission threshold for its transmission. For a packet with
deadline distance νj , we have

κj = κi→j ∀i, j (20)

Eq. (20) helps us to reduce number of transmission thresh-
olds from O(n2) to O(n). For a deadline of n time slots,
we require n−1 optimized transmission threshold. We denote
κi→j by κj in rest of this work.

The optimized threshold vector is found using a recursive
procedure explained in the following:

1) Start the optimization procedure for n = 2 such that the
optimization is a scalar problem and we only need to
find the threshold κn since κ1 = 0.

2) Given the optimized threshold vector for n, i.e.
~κ opt(n) = [κopt

n (n), κopt
n−1(n), . . . , κopt

2 (n), 0], we find
the threshold vector for buffer length n + 1 by the
heuristic postulate ~κ(n + 1) = [κn(n + 1), ~κopt(n)]
and optimize over κn(n + 1). Again, this is a scalar
optimization problem.

Numerical results in [6], [7] provide evidence that trans-
mission thresholds optimized using constraint in Eq. (20)
and recursive procedure give comparable performance to the
performance obtained by optimizing O(n2) thresholds using
more complex algorithms like simulated annealing.

V. NUMERICAL RESULTS

We consider a multi-access channel with M bands and
it is assumed that fading on these channels is statistically
independent. Every user senses M channels and selects its
best channel as a candidate for the transmission. We consider
M = 10 in our numerical results. We consider a system where
users are placed uniformly at random in a cell except for a



TABLE I
RECURSIVE THRESHOLD COMPUTATION AT C = 0.5bits/s/Hz

n κn κn−1 κn−2 κn−3

2 2.5 0 NA NA
3 3.0 2.5 0 NA
4 3.3 3.0 2.5 0

forbidden region around the access point of radius δ = 0.01.
The path loss exponent α equals 2 and path loss distribution
follows the model described in [9]. All the users experience
fast fading with exponential distribution with mean one on
each of the M channels.

The table I summarizes the threshold value vector ~κ for
different values of n. The results are identical to the results in
[6] where all the arriving packets have identical deadlines.

We show the convergence result of non-identical arrival case
for the finite user population in Fig. 2. The figure shows the
convergence of variance of the system energy for identical
and non–identical deadline cases. We use Eq. (2) to evaluate
system energy for finite number of users K. To compute the
system energy for a specific number of users, 250 fading
values have been used for a single path loss. The arrival
process is Bernoulli with parr = 0.7. The curves with p1 = 0
and p1 = 1 represent the identical deadline case when all the
arriving packets have deadline 2 and 1, respectively. p1 = 0.2
represents the case when 20% of the packets arrive with
n = 1 and 80% with n = 2. For all the cases, variance of
the computed average system energy decreases as the number
of users increases. The system energy for the system with a
smaller deadline delay constraint converges faster as compared
the distribution with a larger deadline delay. Hence, as ratio
of p1 decreases, it requires more number of users to converge.

Fig. 3 demonstrates the delay–energy trade off for a single
channel system when the arriving packets have non–identical
deadlines. We evaluate system performance at different spec-
tral efficiencies. As the proportion of the packets with tight
deadline constraint increases, average system energy increases
correspondingly. However, this effect is more pronounced at
small spectral efficiencies.

VI. CONCLUSIONS

In this paper, we propose and analyze an opportunistic
multiuser scheduling scheme for hard deadline delay con-
strained systems. The scheme is discussed in the realistic
scenario when each arriving packet has individual deadline
constraint. In the large system limit, the scheme is modeled
and analyzed. We model the system having packets with non-
identical deadlines by offsetting their position in the buffer and
show the difference in channel distributions of identical and
non identical cases. The energy–delay tradeoff demonstrates
the saving in energy for the delay tolerant applications. As
the proportion of the packets with tight deadline constraint
increases, the system transmit energy increases proportionally
to reflect the loss due to forced deadline.
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