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Abstract—We address the problem of energy efficient schedul-
ing for the loss tolerant applications by exploiting the multiuser
diversity. The proposed scheduling scheme allows dropping of a
certain predefined proportion of data packets on the transmitter
side. However, there is a hard constraint on the maximum
number of successively dropped packets. The scheduler exploits
average data loss tolerance to reduce the average system energy
expenditure while fulfills the hard constraint on successively
dropped packets. We analyze the scheme using asymptotically
large user limit. The numerical results illustrate the energy
efficiency of the scheme as a function of the average packet drop
probability and the maximum permitted successively dropped
packets parameters.

I. INTRODUCTION

Energy efficiency is increasingly getting more attention in

the design of modern communication networks. It is important

to fulfill the quality of service (QoS) requirements for the

users in terms of guaranteed throughput, delay and violation

probabilities. However, it is equally important to use every soft

requirement on QoS to minimize the cost of transmission.

A lot of literature focuses on energy efficient communica-

tion for the delay constrained applications [1], [2]. However,

not much work focuses on exploiting the loss tolerance of the

application in the scheduling process at the physical layer. It is

important to identify the packets which require large energy for

transmission and drop them. Though, some researchers have

considered similar problems in different settings. Reference

[3] discusses a scheduler which differentiates traffic based on

the loss and delay tolerance of the user in traditional internet.

In [4], the authors address the problem of optimal dropping

of packets. They obtain optimal dropping scheme when the

size of the packet grows asymptotically large. Reference [5]

proposes an algorithm for improving the energy-delay trade-

off for the case of dropping a non zero fraction of the packets.

We propose a scheduling scheme which exploits the loss

tolerance of the application to improve the system energy ef-

ficiency. Loss tolerance is characterized by the average packet

loss probability θtar for a user and her ability to keep the

quality of experience acceptable after n or fewer successively

dropped packets. This constraint on the successively dropped

packets is referred to as continuity constraint in this work.

Average packet loss is a degree of freedom that allows the

system to drop certain packets to save energy. However, if

more than n packets are dropped successively, it becomes

difficult to maintain the quality of experience by using com-

plex signal processing and error concealment techniques at

the receiver, e.g., Hybrid automatic repeat request (HARQ)

scheme with incremental redundancy requires transmission of

additional data if a packet is not decoded at the receiver in

its first transmission. If the subsequent packet containing the

incremental data is dropped to save the energy, it makes the

already transmitted packet useless as well and the energy spent

on the first transmission gets wasted. Although, higher layer

processing can be employed to identify and avoid dropping of

such packets, this will not be energy optimal for the resource

allocation at physical layer.

Wireless sensor networks (WSN) are an other example of

such applications where successive dropping of more than

a ceratin number of packets at the sensor nodes may result

in inaccurate estimation of the measured data at the fusion

node. Similarly, voice and multimedia applications can tolerate

loss up to a certain limit but dropping of successive packets

affects the quality of experience severely. Thus, it is not

sufficient to guarantee average packet loss alone. To the best

of our knowledge, not much literature deals with the problem

of energy efficient scheduling which fulfills both continuity

constraint and the average packet loss. In our work, the

optimization problem is to choose the set of packets to be

dropped such that the constraints on average and successive

packet dropping are met and the average system energy is

minimized.

The rest of this paper is organized as follows. Section

II describes the system model. We discuss the proposed

scheduling scheme and its large system analysis in Section

III and IV, respectively. Special cases for extremely large n
and θtar values are discussed in Section V. We present the

numerical results in Section VI and conclude with the main

contributions of the work in Section VII.

II. SYSTEM MODEL

We consider a multiple-access system with K users ran-

domly placed within a certain area. Every user is provided an

average rate R = Γ
K where Γ denotes the spectral efficiency

of the system. Γ is normalized by the number of channels M
to get spectral efficiency per channel C.



We consider a time-slotted system. Arrivals occur at the

start of the time slot; and the scheduling and transmission is

completed before the end of the time slot. An uplink scenario

is considered.

Each user k experiences a channel gain hk(t) in slot t.
The channel gain hk(t) is the product of path gain sk and

small-scale fading fk(t) i.e. hk(t) = skfk(t). Path loss

and small-scale fading are assumed to be independent. The

path loss is a function of the distance between the transmit-

ter and the receiver and remains constant within the time

scale considered in this work. Small-scale fading depends

on the scattering environment. It changes from slot to slot

for every user and is independent and identically distributed

across both users and slots; but remains constant within

each single transmission. This model is often referred to

as block fading. For a multi-band system of M channels,

small-scale fading over the best channel is represented by,

fk(t) = max(f
(1)
k (t), f

(2)
k (t), . . . , f

(M)
k (t)).

ER
k (t) and Ek(t) denote the received and the transmitted

energy for each user k such that

ER
k (t) = hk(t)Ek(t). (1)

Note that the distribution of hk(t) differs from user to user.

The channel state information is assumed to be known at the

transmitter side.

The continuity constraint requires us to allow scheduling of

multiple users simultaneously in the same time slot. If only a

single user is scheduled per time slot, this constraint cannot be

satisfied when multiple users have already dropped n packets.

The scheme follows the results for the asymptotic user case

analysis and therefore, there is no limit on the number of

users scheduled simultaneously. Those scheduled users are

separated by superposition coding. Let Km be the set of

users to be scheduled in frequency band m. Let Φ
(m)
k be

the permutation of the scheduled user indices for frequency

band m that sorts the channel gains in increasing order, i.e.

h
(m)
Φ1

≤ · · · ≤ h
(m)
Φk

≤ · · · ≤ h
(m)
Φ|Km| . Then, the energy of the

user Φ
(m)
k with rate R

(m)
Φk

, as scheduled by the scheduler is

given by [6], [7]

E
(m)
Φk

=
N0

h
(m)
Φk

[
2
∑

i≤k R
(m)
Φi − 2

∑
i<k R

(m)
Φi

]
. (2)

where N0 denotes the noise power spectral density. The energy

assignment using superposition coding results in the minimum

total transmit energy for the scheduled users.

III. MODELING OF THE SCHEDULING SCHEME

We assume that a single packet arrives in each time slot.

However, this restriction can be removed by modeling a

random arrival process with a constant arrival process with

random size [8]. Both of the representations are equivalent as a

result of the system level averaging over large number of users

in the system. No arrival is modeled by a transmission with

zero size and makes no contribution in the system energy. We

assume a delay limited system with no delay tolerance where

every packet has to be scheduled or dropped immediately after

its arrival. The scheduling decision should take into account

the instantaneous channel conditions, average loss tolerance of

the application and the history of packet dropping decisions in

the previous time slots to avoid dropping a packet if already

n packets have been dropped successively. The motivation

behind the idea is that we should drop packets in bad channel

conditions and exploit good channel conditions for scheduling

while respecting the continuity constraint.

We introduce a small-scale fading dependent dropping
threshold for the scheduling decision of every packet. We use

small-scale fading instead of channel gain in the computation

of dropping threshold to avoid the phenomenon of near-
far effect where the users near the base station have better

channel gains as compared to the users at the edge of the

cell. Scheduling based on small-scale fading gives every user

equal opportunities to schedule or drop the packet. If channel

conditions are better than the dropping threshold, the packet

is scheduled and dropped otherwise. To compute the optimal

set of dropping thresholds, we use Markov Decision Process

(MDP) theory. We define some terms first.

Definition 1 (State): It is defined as the number of already

successively dropped packets for a user k at the arrival time

of a packet and denoted by pk.

As the state depends on the number of successively dropped

packets only and the system is completely symmetric with

respect to the users with the same state, we drop the subscript

k and denote it by p simply.

Definition 2 (Dropping Threshold): It is defined as the

minimum fading value required for the transmission of a

packet for a user with state p. It is denoted by κp.

Maximum number of successive packets allowed to be

dropped are modeled by n Markov states.

We model and analyze the scheduler in the large user limit.

When we have asymptotically large population of the users in

the system, the system state model represents the state space

of a single user and each user takes her scheduling decisions

independent of the other users. Such decoupling principle has

been applied in [9], [10] to solve different communication

problems.

The state transition mechanism of the scheduler is described

as follows. By definition, the number of successively dropped

packets determine the state of the process at time t. The state

transitions are determined by the state p and the small-scale

fading. If a packet is scheduled for transmission, the scheduler

returns back to state zero. If it is dropped, the state at time

t + 1 is p + 1. Thus, the state transition probability αpq is

written as

αpq = Pr{St+1 = q|St = p} (3)

=

⎧⎪⎨
⎪⎩
1− Pf (κp) ∀p, q = 0

Pf (κp) ∀p, q = p+ 1

0 else

(4)

where Pf (.) denotes the cumulative distribution function (cdf)

of the small-scale fading. We are not allowed to drop more
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Fig. 1. State diagram for the scheduler with the continuity constraint modeled
by a finite state MDP.

than n packets successively. Therefore, κn is set to zero to

fulfill the condition and terminate the process. The resulting

state transition diagram has been shown in Fig. 1.

IV. LARGE SYSTEM ANALYSIS AND OPTIMIZATION

We analyze the proposed scheduling scheme in the large

user limit. We treat each transmitted packet as a separate user

for the analysis purpose and call it a virtual user (VU). Then,

the average energy consumption of the system per transmitted

information bit at the large system limit K → ∞ is given by

[7] (
Eb

N0

)
sys

= log(2)

∞∫
0

2C Ph,VU(x)

x
dPh,VU(x) (5)

where Ph,VU(·) denotes the cdf of the channel gains of the

scheduled packets which is composed of the small-scale fading

and the path loss.

The transition probability vector �α = [α00, α10 . . . αn0]
captures the complete information for the state transition

mechanism. The optimization problem is to compute the

energy optimal transition probability vector �α∗ which meets

the average drop and continuity constraints. The problem is

formulated as:

min
�α∈Ω

(
Eb

N0

)
sys

(6)

subject to :

{
0 ≤ αp0 ≤ 1 p ≤ n

θr ≤ θtar 0 ≤ αp0 ≤ 1
(7)

where Ω denotes the set of permissible vectors for �α and θr
is the average dropping probability for a fixed �α and given by

θr =

n−1∑
p=0

αp(p+1)πp =

n−1∑
p=0

(1− αp0)πp . (8)

πp denotes the steady state probability of the state p and

follows the property that

n∑
p=0

πp = 1 . (9)

All the forward transitions belong to the events of dropping the

packet and the summation over the corresponding transition

probabilities αp(p+1) gives the average dropping probabil-

ity. The corresponding channel-dependent optimal dropping

thresholds can be computed from the optimized �α∗ using (4).

We evaluate probability distribution function (pdf) of the

channel gain ph,VU(x) of the scheduled users (packets) using

MDP. The scheduling decisions are affected by the small-scale

fading distribution only. Thus, the resulting pdf of the small-

scale fading of the scheduled VU is given by

pf,VU(y) =

⎧⎨
⎩

n∑
p=0

cp πp pf (y) y > κp

0 else

(10)

where pf (y) and cp denote the small-scale fading distribution

and a constant to normalize the pdf. Equation (10) specifies

that a packet is scheduled only if y > κp.

Using (10), the cdf of the scheduled users is given by

Pf,VU(y) =
n∑

p=0

ciπp

(
Pf (y)− Pf (κp)

)
. (11)

The cdf of channel gain Ph,VU(y) is computed1 using (11)

and path loss distribution.

The dropping thresholds are optimized such that the ex-

pected system energy cost in each state is minimized. A

decision to schedule a packet means that cost of transmission

in the current state p is lower than the expected cost of

transmission in one of the future n− p states. The constraint

on average dropping probability is a soft one and fulfilled

on long term basis. The aim of the scheduler is to drop the

packets when channel conditions are not good and exploit

multiuser diversity to transmit the packets energy efficiently.

But the construction of the dropping thresholds should take

into account the fact that at least a single packet must be

transmitted to avoid successive dropping of more than n
packets. If the channel conditions in state n are bad, the event

of the forced transmission will be severely suboptimal and its

cost will be relatively high. The scheduler aims to compute

the balance point where it is beneficial to take the risk of such

potentially costly decisions by efficiently designing dropping

thresholds depending on the design parameters n and θtar.

A. Optimization by Simulated Annealing

Optimization of thresholds belongs to a class of stochastic

optimization problem where computation of exact solution is

quite complex and time consuming, e.g., Traveling salesman

problem, Knapsack problem. In literature, many acceptable

solutions to such problems have been proposed using algo-

rithms such as genetic algorithm, random search, etc. We

employ simulated annealing (SA) algorithm for optimization

of thresholds2. The advantage of this algorithm is that it

accepts a solution with a small probability even if it is worse

than the already computed best solution. This step is called

muting and helps to avoid local minima. Muting depends on

a so called temperature term. At the start of the process, the

temperature is very high and muting occurs quite frequently.

1The closed form expression is evaluated following the techniques presented
in [11]. The derivation is omitted here due space limitations.

2The choice is solely based on the wide acceptance of SA to solve such
problems. The other techniques like genetic algorithm can be applied as well.



The temperature decreases as the process progresses and so

as the muting. This is called cooling. There are many cooling

schedules used in literature, e.g., Boltzmann annealing (BA)

and Fast annealing (FA) temperature cooling schedules etc.

We employ FA in this work [12]. In FA, it is sufficient to

decrease the temperature linearly in each step b such that,

Tb =
T0

csa ∗ b+ 1
(12)

where T0 is a suitable starting temperature and csa is a constant

adjusted according to the requirements of the problem. We

skip the details of the algorithm and the interested reader is

referred to [8], [13] for the details.

System energy in (5) is the objective function for SA. In

our problem, a fixed vector �α defines a specific configuration.

In every iteration, one of the transition probability from the

vector �α is varied and the average packet dropping constraint

in (7) is checked. If the constraint is met, the configuration is

evaluated using (5). At the end of sufficiently large iterative

process, we get a solution �α∗ which is believed to be near

optimal in most of the cases.

V. SPECIAL CASES

We investigate the impact of extreme values of the average

dropping probability and continuity constraint parameters on

the system energy.

A. Extreme Values of Continuity Constraint Parameter

We consider two trivial cases for the extreme values of the

continuity constraint parameter n.

1) n = 0: For this case, the system becomes a lossless

system regardless of θtar and the MDP reduces to a

single state with the dropping threshold equals to zero.

2) n = ∞: It implies that there is no limit on the number

of successively dropped packets and average dropping

probability is the only constraint to be fulfilled. This

condition simplifies the model and the MDP reduces

to a single state process where θtar corresponds to the

probability of dropping a packet such that

α̃00 = Pf (κ0) = θtar. (13)

α̃00 denotes the probability of dropping a packet in state

zero and κ0 is the corresponding dropping threshold. If

small-scale fading is less than κ0, the packet is dropped

and scheduled otherwise. The scheduler returns back to

state zero regardless of packet scheduling or dropping.

B. Extreme values of Average Dropping Parameter

We specifically treat the cases when target average dropping

probability θtar is relatively large or small as compared to

the continuity constraint parameter n. The characterization of

these cases is one of the main contributions of this paper.

We first consider the case of large θtar as compared to the

continuity constraint parameter n. To gain motivation for this

case, suppose we have no average packet dropping constraint

but only continuity constraint. In this case, SA provides us the

unconstrained3 (without the average packet drop constraint in

(7)) optimized transition probability vector �α∗. We evaluate

(8) from �α∗ to get the resulting average dropping probability

θ∗r . The θ∗r value for this special case is termed as limiting
average dropping probability and denoted by θlim. For a fixed

n, we will not be able to achieve further energy efficiency

by dropping more packets for any θtar > θlim. From these

arguments we obtain the following lemma.

Lemma 1: For a fixed continuity constraint parameter n,

there exists a finite θlim such that for all θtar > θlim, the same

maximum energy efficiency is achieved as for more restrictive

θlim.

We explain this result with the help of an example. Let

us assume a system with n = 1 and M = 1. The uncon-

strained optimization gives us an optimized transition proba-

bility α∗
01 = 0.21 and the corresponding value for θlim = θ∗r

is obtained from (8). The threshold κ0 corresponding to α∗
01

determines the minimum channel conditions where it is better

to drop a packet and move to state one. In other words, the

cost of transmitting a packet in current channel conditions is

larger than the expected cost of transmitting a packet in state

one. Remember that a packet must be transmitted in state one

due to the continuity constraint and there is an associated risk

of a forced transmission in a potential bad channel. Thus, the

optimized α∗
01 corresponds to the optimized threshold which

allows the user to take this risk.

For this specific example, the intuitive question is why

allowing θtar > θlim does not contribute to the energy

efficiency when a user can benefit by dropping more packets?

This is explained as follows. The larger θtar means that the

user can drop more packets; but it can drop only in state

zero as it is prohibitive to do so in state one (because of

n = 1). When a user drops more packets in state zero and

moves into state one frequently, she increases the risk that the

channel in state one will be poor. The increased probability

of the forced transmissions on (potentially) bad channels in

state one enhances the average energy expenditure instead;

and energy efficiency is affected adversely. Therefore, when

we optimize the thresholds for θtar > θlim and a fixed n, the

optimizer always provides us the set of thresholds obtained for

θtar = θlim and rejects all the �α after evaluation which result

in θr > θlim.

The energy consumption is a function of the continuity

parameter n and the average dropping probability constraint

θtar, i.e., Eb/N0(θtar, n). The larger n and the lower θtar
results in smaller Eb/N0. However, at small θtar the average

dropping probability becomes more critical constraint as com-

pared to the continuity constraint. The relationship between

target dropping probability θtar and continuity parameter n is

characterized in the following lemma.

Lemma 2: The reduction of the energy consumption

Eb/N0 by increasing the continuity constraint parameter n

3The term unconstrained is only a relative one, referring to the absence of
any constraint on average packet drop when n is modeled by the number of
states in a finite state MDP. In true mathematical sense, the problem is still
constrained due to presence of the continuity constraint.



TABLE I
LIMITING DROPPING PROBABILITY AND SYSTEM ENERGY

n κ0 κ1 κ2 κ3 κ4 θ∗r = θlim Eb/N0

1 0.24 0 - - - 0.18 -1.42dB
2 0.54 0.23 0 - - 0.34 -3.05dB
3 0.76 0.59 0.21 0 - 0.45 -4.07dB
4 0.97 0.79 0.49 0.30 0 0.53 -4.80dB

decreases with decreasing target dropping probability θtar and

becomes negligible at small θtar.
This result is motivated by the fact that for small dropping

probability θtar, it is hardly feasible to drop more than one

packet successively for a user even if the continuity constraint

parameter n allows her to do that. For small average dropping

probabilities, dropping of more successive packets requires

that no (or a few) packet can be dropped any more in the

time scale where averaging is performed.

For example, let us assume an averaging window size of 100

and θtar = 0.02. This implies that a user can drop packets

(on the average) in 2 time slots in a window of 100 time

slots. For n = 1, the user can drop packets in any two time

slots with the worst channels but they cannot be adjacent. For

n = 2, she is allowed to drop the packets even if the time

slots with the worst channels happen to be the adjacent ones.

But the probability of this event is extremely small and has

negligible effects as compared to the system with n = 1. A

further increase in the value of parameter n would not be

beneficial for the system. Both of the lemmas will be further

justified by the numerical examples in Section VI.

VI. NUMERICAL RESULTS

We consider a multi-access channel with M bands and

assume statistically independent fading on these channels.

Every user senses M channels and selects her best channel as

a candidate for transmission. The users are placed uniformly

at random in a cell except for a forbidden region around the

access point of radius δ = 0.01. The path loss exponent

α equals 2 and the path loss distribution follows the model

described in [7]. All the users experience small-scale fading

with exponential distribution with mean one on each of the

M channels.

Table I shows the limiting dropping probability and as-

sociated system energy for the fixed n when we perform

optimization without the average packet drop constraint in (7).

The system parameters are M = 1 and C = 0.5 bits/s/Hz.

We will show in the following numerical example that energy

efficiency cannot be improved by allowing θtar > θlim for a

fixed n.

Fig. 2 shows the optimized system energy for different

target average dropping probabilities and continuity constraint

parameters. We plot the results for the special case n = ∞
for reference. For small θtar, energy expenditures are almost

identical for different values of n and the effect of the conti-

nuity constraint is negligible. This confirms Lemma 2 that the

continuity constraint parameter n does not have a big impact

on the energy efficiency in this region. As θtar increases, an

increase in n does contribute to increase the energy efficiency
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Fig. 2. The system energy as a function of average dropping probability
and continuity constraint parameters. The system parameters are M = 1 and
C = 0.5 bits/s/Hz.

of the system. An other important observation is the optimized

energy at θtar > θlim. From Table I, θlim equals 0.18 for n = 1
and the corresponding energy expenditure is −1.42 dB. We

observe in Fig. 2 that the optimization solution provided by SA

and the optimized energy remains the same for θtar = 0.2 and

θtar = 0.25. This justifies Lemma 1 that allowing θtar > θlim
does not benefit the energy efficiency of the system for a fixed

n. Therefore, QoS should always be defined by taking into

account both of the parameters jointly.

As we explained in Section IV-A, SA is believed to provide

a solution that is acceptable in most of the situations. The SA

algorithm uses FA temperature schedule where we simulate

100 temperature values. At each temperature, we evaluate

10 random configurations of every transition probability in

�α. For θtar < θlim, the system is likely to be more energy

efficient if θ∗r for the solution approaches θtar closely to

benefit from dropping more packets. It does not imply that

every configuration which results in larger θr is more energy

efficient. Some of them are not energy optimal and rejected by

the optimizer. Therefore, Δ is only a relative quality measure

for the computed solution and defined in terms of θ∗r for the

solution as

Δ = 1− θ∗r
θtar

. (14)

Δ in expressed in percentage. We observe in Fig. 3 that Δ is

quite small for all the cases and the results are acceptable.

However, there are more random configurations (transition

probabilities) involved in the combinatorial optimization at

large n which makes optimization procedure increasingly

complex and SA algorithm may require more time to achieve

accuracy. For example, Δ is about 13 percent for the case when

n = 4 and θtar = 0.1. When we increase the temperature

iterations from 100 to 200, Δ reduces to 4 percent and the

optimal system energy decreases correspondingly.

The proposed scheme is based and analyzed in large user

limit and holds for large number of users always. However, it
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is important to show the convergence of the scheme for the

finite number of users to claim it to be practical. If the number

of users in the system is not large enough, the scheduled sum

rate varies greatly from slot to slot and the system energy

does not converge to the average system energy. Moreover, the

decoupling principle for the users does not hold for the small

number of users as explained in Section III. Fig. 4 illustrates

the convergence behaviour of the scheme using Monte Carlo

simulations. For a fixed number of users and a fixed path loss,

we compute variance of system energy for 200 independent

small-scale fading realizations. Energy requirement for every

scheduled user is computed by (2). Fig. 4 shows that the

variance is quite small for a few hundred users and decreases

further as the number of users increases. The convergence is

faster for the small spectral efficiencies. For the large spectral

efficiency values, it requires more scheduled users in each

time slot to converge to the average system energy for the

asymptotic case. This result provides numerical evidence that

the scheme remains practicable for a reasonably small number

of users.

VII. CONCLUSION

We proposed a scheduling scheme which exploits the loss

tolerance of the application to minimize the system transmit

energy over the fading channels. The average and successive

packet loss tolerance are the core parameters which jointly

define the loss tolerance behaviour of an application. We

conclude that average loss tolerance helps to use the radio

resources opportunistically and drop the packets which require

large expected energy. The successive packet drop parameter

poses an additional constraint on resource allocation and needs

to be incorporated in the scheduling process. We propose and

analyze the scheduler which fulfills both of the constraints

and schedule the packets energy efficiently. We show that

exploiting loss characteristics of the application for radio

resource allocation at physical layer helps to minimize the
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Fig. 4. The finite user convergence of the scheme as a function of number
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system energy expenditures.
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