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Abstract—Energy efficient communication has emerged as one
of the key areas of research due to its impact on industry and
environment. Any potential degree of freedom (DoF) available in
the system should be exploited smartly to design energy efficient
systems. This paper proposes a framework for achieving energy
efficiency for the data loss tolerant applications by exploiting the
multiuser diversity and DoFs available through the packet loss
pattern. For a real time application, there is a constraint on the
maximum number of packets to be dropped successively that
must be obeyed. We propose a channel-aware energy efficient
scheduling scheme which schedules the packets such that the
constraint on the average packet drop rate and the maximum
number of successively dropped packets is fulfilled for the case
when a finite number of unscheduled packets can be buffered.
We analyze the scheme in the large user limit and show the
energy gain due to buffering on the proposed scheme.

I. INTRODUCTION

The quality of service (QoS) requirements characterize the
behavior of the network traffic. If real time services require
strict QoS guarantees, there are few degrees of freedom
(DoF) available to exploit to improve the energy efficiency
or throughput of the system. For example, multimedia traffic
is constrained by a fixed set of parameters like average and/or
maximum tolerable packet delay. Also, there is a certain bound
on the average packet drop rate which must be obeyed to
maintain the quality of experience (QoE) of the user.

On the other side, reducing costs of transmission is one
of the most important factors for the network providers due
to increasing cost of energy. Energy efficient transmission
techniques must exploit any DoF available in the supported
services to design the systems at the physical layer.

In the literature, energy efficient scheduling has been dis-
cussed in different settings for delay limited systems [1]–[3].
Similarly, the work in [4] addresses the importance of packet
dropping mechanisms from energy point of view. The average
packet drop rate is considered to be one of the most important
parameters for system design. Only little attention is paid to
the pattern of the dropped packets. For example, consider a
scenario where the average packet drop rate θtar is quite small
but a large number of packets are dropped successively due to
deeply faded wireless channel. In spite of fulfilling an average
packet drop rate guarantee, the users will experience a jitter in
the perceived QoE (for a multimedia application). Thus, QoS

service must also be defined in terms of maximum number
of packets allowed to be dropped successively in addition to
the average packet drop probability. This additional parameter
characterizing the pattern of the dropped packets is termed
the continuity constraint parameter N [5]. The authors in [6]
discuss an optimal dropping scheme with the objective to
minimize/maximize the packet drop gap. Traditionally, such
problems are handled at upper layers of communications
through link adaptation or automatic repeat request (ARQ)
mechanisms. However, bringing this information to the phys-
ical layer design shows significant merits as the information
can effectively be used for opportunistic scheduling purpose.

The work in [5] proposes an opportunistic scheduling
scheme which exploits the DoF available through continuity
constraint and average packet drop parameters and aims at
minimizing the average system energy. The work characterizes
the effects of the parameters θtar and N on the system energy.
However, the proposed scheme does not allow buffering of
data packets which is an integral part of the resource allocation
mechanisms. This work generalizes the framework in [5] for
the case when buffering of packets is allowed for a finite num-
ber of time slots. This additional DoF poses new challenges
in terms of modeling and analysis of the problem. In addition
to the QoS parameters θtar and N , the maximum size of the
buffer provides another trade-off for energy efficiency.

The main contribution of this work is to generalize the
framework proposed in [5] and analyze it. The generalized
framework is more complex due to involvement of another
DoF but provides better results in terms of energy efficiency
as demonstrated through the numerical examples in Sec. V.

The rest of this paper is organized as follows. Section II
introduces the system model and fundamental assumptions.
We discuss and analyze the proposed scheme in Section III.
The optimization problem is formulated in Section IV. We
provide the numerical evidence of the gain of our scheme in
Section V and conclude with the main contributions of the
work in Section VI.

II. SYSTEM MODEL

This work follows the system model in [5], [7]. We consider
a multiple-access system with K users randomly placed within



a circular area. Every user is provided an average rate Rk = C
K

where C denotes the spectral efficiency of the system.
We consider an uplink scenario while the system is time-

slotted. Each user k experiences a channel gain hk(t) in
slot t. The channel gain hk(t) is the product of path loss
sk and small-scale fading fk(t). The path loss is a function
of the distance between the transmitter and the receiver and
remains constant within the time scale considered in this work.
Small-scale fading depends on the scattering environment. It
changes from slot to slot for every user and is independent and
identically distributed across both users and slots, but remains
constant during the time span of a single time slot.
ER

k (t) and Ek(t) denote the received and the transmitted
energy for each user k such that

ER
k (t) = hk(t)Ek(t). (1)

Note that the distribution of hk(t) differs from user to user.
The channel state information is assumed to be known at the
both transmitter and receiver sides.

The continuity constraint requires us to allow scheduling
of multiple users simultaneously in the same time slot. If
only a single user is scheduled per time slot, the continuity
constraint cannot be satisfied without allowing outage when
multiple users have already dropped N packets. The scheme
follows the results for the asymptotic user case analysis which
implies that there is no limit on the number of users scheduled
simultaneously. Those scheduled users are separated by super-
position coding and successive interference cancelation (SIC).
Let K denote the set of users to be scheduled and Φk be the
permutation of the scheduled user indices that sorts the channel
gains in increasing order, i.e. hΦ1 ≤ · · · ≤ hΦk

≤ · · · ≤ hΦ|K| .
Then, the energy of the scheduled user Φk with rate RΦk

, is
given by [7], [8]

EΦk
=

N0

hΦk

(
2
∑

i≤k RΦi − 2
∑

i<k RΦi

)
. (2)

where N0 denotes the noise power spectral density.

III. MODELING OF THE SCHEME FOR THE FINITE
BUFFERED DATA PACKETS

A constant arrival of a single packet with normalized size
C
K is assumed for simplicity. However, the scheme is not
restricted to this assumption as a random packet arrival process
can be modeled as a constant arrival process where multiple
arrived packets in the same time slot are merged as a single
packet with random packet size following the framework in
[2], [9]. The packet arrival occurs at the start of time slot and
the scheduling is performed afterwards taking into account
the newly queued packet. All the arriving packets are queued
sequentially, i.e., the oldest arrived packet is the head of line
(HOL). If a single packet has to be scheduled or dropped, it
has to be HOL packet.

The continuity constraint and buffer size parameters for a
user k are denoted by N and B, respectively; and assumed to
be identical for all the users. The variables i ≤ N and j ≤
B denote the number of successively dropped and buffered

packets for a user k at time t, respectively. A packet arriving at
time t is not dropped immediately if not scheduled but buffered
for B time slots and dropped then (if still not scheduled).

We use Markov decision process (MDP) to model the
scheme. The summation of the number of already successively
dropped and (already) buffered packets at time t defines the
state of a Markov process. It is denoted by p. Thus,

p = i+ j. (3)

At the start of the Markov process (p = 0), the packet is not
dropped if not scheduled as packets can be buffered for B time
slots resulting i = 0 and p = j for p ≤ B. When the buffer is
completely filled with packets, the unscheduled HOL packet
is dropped onwards. Note that dropping operation is limited to
a single packet as this is enough to make room for the newly
arrived1 packet at time t. Thus, the variable i increases and j
is fixed to B for p > B. Thus, the maximum number of states
in a Markov chain is B +N +1 where M = B +N denotes
the termination state.

Let αpq denote the transition probability from a state p to
q. Furthermore, we denote transition probabilities associated
with the scheduling, buffering and dropping decisions by the
notation α̂pq , α̃pq and α̇pq, respectively. We define αpq as

αpq = Pr(St+1 = q|St = p) =


α̂pq ∀p, q ≤ min(p,B)

α̃pq p < B, q = p+ 1

α̇pq p ≥ B, q = p+ 1

0 else

(4)

We define a scheduling threshold.
Definition 1 (Scheduling Threshold κpq): It is defined as the

minimum small scale fading value f required to make a state
transition from state p to q such that

α̂pq = Pr
(
κpq < f ≤ κp(q−1)

)
0 ≤ q ≤ min(p,B). (5)

where κp0− is defined to be infinity with S0− denoting a
dummy state before S0. The threshold definition uses fading
instead of channel gain to avoid near-far effect which gives
unfair advantage to the users near the base station.

A. The Proposed Scheme
We assume infinitely large number of users in the system.

In the large user limit, the scheduling decisions of the users
decouple and the multiuser system can be modeled as a single
user system following the work in [2], [10]. Every user makes
his own scheduling decision independent of the other users.

The purpose of the scheduling scheme is to maximize the
use of available fading conditions by scheduling as many
packets as possible. Thus, the fading is quantized in such a way
that the discrete set of state-dependent scheduling thresholds
determines the intervals for the optimal scheduling decisions.
In a state p ≥ q, the scheduler makes a state transition to state
q such that

q = argmin
q́

κpq́ < f ≤ κp(q́−1) 0 ≤ q́ ≤ min(p,B). (6)

1The newly arrived packet remains in a separate temporary buffer momen-
tarily before scheduling decision as it arrived at the start of the time slot.



For a state transition α̂pq, q ≤ min(p,B), the number of the
scheduled packets is given by

L(p, f) = min(p,B)− q + 1, (7)

where q is determined uniquely by (6). Obviously, a user
can only schedule as many packets as buffered. Thus, the
maximum scheduled packets for a state p < B are limited
to p − q + 1 (due to constant arrival model) while they are
fixed to B− q+1 for p ≥ B. Note that scheduling of packets
starts with the HOL packet and ends with the most recently
arrived packet. Equation (6) chooses q which maximizes the
scheduling of packets for a state p and fading f . To meet the
continuity constraint with probability one, κMB is set to zero
to allow transmission of the HOL packet in state M .

We deduce the following properties of scheduling from (6).
Property 1: The next state (in case of scheduling) is limited

by the minimum of p and B. If p ≤ B, q cannot exceed p,
otherwise it is limited to B.
Thus, up to min(p,B) + 1 buffered packets can be scheduled
depending on small scale fading in a state p.

Property 2: Scheduling thresholds follow the monotonic
decrease property that

κp(q+1) ≤ κpq ∀p, 0 ≤ q < min(p,B). (8)

If f ≤ κpmin(p,B), no scheduling occurs. In this case, the next
state q equals p+ 1 but a packet can be dropped or buffered
depending on the conditions in (9) and (11) below. We have

α̃pq = Pr(f ≤ κpp), p < B, q = p+ 1 (9)

= 1−
p∑

q=0

α̂pq (10)

α̇pq = Pr(f ≤ κpB), p ≥ B, q = p+ 1 (11)

= 1−
B∑

q=0

α̂pq (12)

where κpp and κpB denote the minimum thresholds to sched-
ule at least one packet. We explain (9) and (11) in detail.

• α̃pq = Pr(f ≤ κpp), p < B, q = p+ 1
If p < B, the HOL packet is buffered with the option
that it can be scheduled in one of the B − p time slots
in future.

• α̇pq = Pr(f ≤ κpB), p ≥ B, q = p+ 1
If p > B, the HOL packet has to be dropped as the buffer
is already full. The best option by continuity constraint
point of view is to drop HOL packet to make room for
the newly arrived packet.

Consider the state diagram in Fig. 1 for the case when N =
1, 2 and B = 0, 1, 2. The corresponding state transition matrix
for a system with N = 1 and B = 2 is given by

Q =


α̂00 α̃01 0 0
α̂10 α̂11 α̃12 0
α̂20 α̂21 α̂22 α̇23

α̂30 α̂31 α̂32 0

 . (13)
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Fig. 1. State transition diagrams for different buffer size and continuity
constraint parameters. The green colored states represent the buffering states
while grey state is the Mth state. The superscript notation with transition
probabilities depict the actions associated with the transitions.

It should be noted that the number of states in an MDP are
the same for the parameter sets N = 2, B = 1 and N =
1, B = 2 but the transition probability matrix Q differs and
captures the effect of each parameter on the system energy.
The parameter set N = 2, B = 1 requires optimization of 2
thresholds per state for p ≥ 1 while the parameter set N =
1, B = 2 requires 3 thresholds per state for p ≥ 2. We evaluate
the energy efficiency of both the cases numerically in Sec. V.

IV. THE OPTIMIZATION PROBLEM

The number of scheduled packets are considered as virtual
users (VU) for the analysis purpose. It is known that the
average energy consumption of the system per transmitted
information bit at the large system limit K → ∞ is then
given by [5], [7](

Eb

N0

)
sys

= log(2)

∞∫
0

2C Ph,VU(x)

x
dPh,VU(x) (14)

where Ph,VU(·) denotes the cumulative distribution function
(cdf) of the fading of the scheduled VUs. It comprises of the
small scale fading and the path loss components of the VUs.
However, in the large system limit, the state transitions depend



only on the small scale fading distribution as the path loss for
VUs follows the same distribution as the path loss of the users.

Now, we formulate the optimization problem according to
the model described in Section III.

minQ∈Ω

(
Eb

N0

)
sys

(15)

s.t. :



C1 : 0 ≤
∑min(p,B)

m=0 αpm ≤ 1 0 ≤ αpm ≤ 1,

0 ≤ p ≤ M

C2 : θr ≤ θtar Q ∈ Ω

C3 :
∑M

q=0 αpq = 1 0 ≤ p ≤ M

C4 : B +N = M B < ∞, N < ∞

(16)

where Ω denotes the set of permissible matrices for Q and θr
is the average packet drop rate for a fixed Q and given by

θr =
M−1∑
p=B

αp(p+1)πp =
M−1∑
p=B

(
1−

min(p,B)∑
m=0

αpm

)
πp . (17)

Equation (17) results by combining C1 and C3 in (16) while πp

denotes the steady state probability of the state p and follows
the property

M∑
p=0

πp = 1 . (18)

The forward transition for the state p ≥ B represents the
events of dropping the packet and the summation over the
corresponding transition probabilities αp(p+1) gives the aver-
age dropping probability. The summation in (17) starts from
state B as the unscheduled packets are buffered for p < B.
For a fixed p, the corresponding channel-dependent optimal
scheduling thresholds can be computed from the optimized
α⃗∗
p = [α∗

p0, . . . α
∗
pmin(p,B)] using (5).

The probability density function (pdf) of the small scale
fading of the scheduled VUs is given by

pf,VU(y) =

M∑
p=0

cpπpL(p, y) pf (y) (19)

where pf (y) and cp denote the small scale fading distribution
and a normalization constant while L(p, y) is given by (7).
The cdf of the VUs can be written as a sum of integrals

Pf,VU(y) =
M∑
p=0

cpπp

(
L(p, y)

y∫
κpq

pf (ξ)dξ

+

min(p,B)−q∑
b=1

b

κp(min(p,B)−b)∫
κp(min(p,B)−b+1)

pf (ξ)dξ
)

(20)

Using linear algebra (20) yields

Pf,VU(y) =
M∑
p=0

cpπp

(
L(p, y)Pf (y)

−
min(p,B)−q∑

b=0

Pf (κp(min(p,B)−b))
)

(21)

since no users are scheduled for y < κpmin(p,B). The channel
distribution for the scheduled VUs can be computed using (21)
and the path loss distribution.

A. Heuristic Optimization

The optimization problem is to compute a set of transition
probabilities that result in minimum system energy in (14). For
every state p, an optimal α⃗∗ = [α∗

p0, . . . α
∗
pmin(p,B)] needs to

be computed. The computation of optimal α⃗∗ under constraints
in (16) is a stochastic optimization problem and requires
heuristic optimization techniques like genetic algorithms, neu-
ral networks, etc., which provide acceptable solutions.

We choose Simulated Annealing (SA) to compute the solu-
tion for the optimization problem. SA is believed to help avoid-
ing local minima by probabilistically allowing a candidate
configuration to be the best known solution temporarily even if
the configuration is not the best available solution at that time.
M + 1 state MDP models the problem for finite B,N while
matrix Q represents a candidate configuration for SA. In SA,
one transition probability (that fulfills the conditions in (16))
in Q is varied randomly in a single iteration and the objective
function is computed only if the constraint C2 is satisfied.
If the solution improves the previous best solution, the new
configuration, i.e., the proposed Q, is selected as the current
best solution, discarded otherwise. However, depending on
certain probability, the new configuration can be selected as
the best solution even if it does not improve the previous
best solution. This helps to avoid local minima. After a
fixed number of iterations, a solution is computed which is
considered optimal. We omit the details of SA scheme here
due to space limitations but the reader is referred to [11] for
the details of SA algorithm.

V. NUMERICAL RESULTS

In this section, we provide some numerical examples to
demonstrate the potential gain of our scheme. K users are
uniformly distributed in a circular cell except a forbidden
region of radius δ around the access point and the path loss
follows the distribution in [7]. We assume Rayleigh fading
with mean one and the path loss is exponential with an
exponent 2. The value of C is fixed to 0.5 bits/s/Hz. We use
fast annealing cooling schedule for SA simulations.

We focus on the effects of buffering on a system constrained
by parameters θtar, N . Fig. 2 shows system energy for various
combinations of parameter sets N,B, θtar. For a fixed N , the
system becomes more energy efficient as B increases. Thus,
flexibility in latency requirements helps to combat the trans-
mission challenges emerging from the finite packet dropping
parameters. Note that energy gain by increasing parameter B
is nearly constant and independent of θtar while the gain due to
increasing N depends on θtar. For a fixed M = 3, the energy
efficiency for the parameters B = 2, N = 1 is substantially
larger than the case with parameters B = 1, N = 2 at small
θtar; but the energy efficiency for the case B = 1, N = 2
outperforms the energy efficiency for the case B = 2, N = 1
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Fig. 2. The system energy as a function of average dropping probability,
continuity constraint and buffer size parameters. The values for θlim have
been pointed with elliptical shapes for every curve.

at large θtar. Thus, it is important to realize the operating
region for the system to maximize the advantage from DoFs.

For a fixed N , the system energy saturates at some θlim =
θtar and θtar > θlim does not improve the energy efficiency
(c.f. Lemma 1 in [5])2 where θlim is the solution of (15)
without applying C2 in (16). As evident from Fig. 2, an
increase in value of B results in decrease in the value of θlim.

The parameter θtar = 0 is a special case where N becomes
irrelevant as zero average packet drop rate implies that the
system is lossless and thus, N > 0 does not help. However,
if θtar = 0, an increase in value of B does help to make the
system energy efficient as shown in Fig. 2. A system with
parameters B = 1, N = 1, θtar = 0 is almost as much energy
efficient as a system with B = 0, N = 1 and θtar ≃ 0.20, i.e.
additional freedom in average dropping rate.

To measure the relative accuracy of the computed solution
for the SA algorithm, we define a parameter ∆ by

∆ = 1− θ∗r
min(θtar, θlim)

(22)

where θ∗r is computed for a given θtar by using (17) for the
optimal solution Q∗. The small ∆ implies that the computed
solution is sufficiently exploiting the DoF inherited by the
system through parameter θtar. We observe in Fig. 3 that ∆ is
quite small for the computed solutions. As SA is a heuristic
algorithm, there is no consistent pattern in the values of ∆.
In general, for a fixed number of temperature iterations, the
computation of the solution is expected to be hard as the
number of parameters involved increases, .i.e., sparse Q and
large number of thresholds.

VI. CONCLUSIONS

This work considers a framework for achieving energy effi-
ciency by exploiting multiuser diversity. The proposed scheme
is modeled and analyzed for the loss tolerant applications
which are parameterized by average packet loss and maximum
number of successively dropped packets. The optimization
problem is modeled and formulated using Markov decision

2Please refer to [5] for the details of Lemma 1 and 2.
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Fig. 3. The accuracy measure ∆[%] as a function of buffer size and continuity
constraint parameters while θtar = 0.05 for all simulations. The number of
temperature iterations are 100 while 50 ∗ (M +1) random configurations of
Q are simulated at one temperature.

process and large system results. Specifically, this work fo-
cuses on analyzing the effect of buffer size (or allowed delay)
on the problem as compared to the work in [5] where no
buffering is allowed. The results characterize the additional
gain resulting from the DoF available through buffering of
data on the overall system energy efficiency.
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