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Abstract—In this paper, we consider energy efficient multiuser
scheduling. Packet loss tolerance of the applications is exploited to
minimize average system energy. There is a constraint on average
packet drop rate and maximum number of packets dropped
successively (bursty loss). A finite buffer size is assumed. We
propose a scheme which schedules the users opportunistically
according to the channel conditions, packet loss constraints
and buffer size parameters. We assume imperfect channel state
information at the transmitter side and analyze the scheme in
large user limit using stochastic optimization techniques.

First, we optimize system energy for a fixed buffer size which
results in a corresponding statistical guarantee on successive
packet drop. Then, we determine the minimum buffer size to
achieve a target (improved) energy efficiency for the same (or
better) statistical guarantee. We show that buffer size can be
traded effectively to achieve system energy efficiency for target
statistical guarantees on packet loss parameters.

Index Terms—Energy efficiency, opportunistic scheduling,
stochastic optimization, simulated annealing.

I. INTRODUCTION

Radio resource allocation in wireless networks is becoming

more complex due to stringent constraints imposed by Quality

of Service (QoS) requirements. The QoS requirements vary

from application to application in terms of average/maximum

packet delay and average packet loss rate. Energy efficiency is

another important factor in today’s wireless networks design

due to increasing cost of network operation. The radio resource

algorithms should aim at utilizing every soft QoS requirement

to improve the energy efficiency of the network, e.g., the

authors in [1] investigate power-delay tradeoff and propose

resource allocation schemes to minimize power consumption

subject to a delay QoS constraint where the delay constraint

is in terms of queue-length decay rate. Energy-performance

tradeoffs have been addressed in different settings in [2], [3].

Most of the work focuses on exploiting delay tolerance to

optimize the system energy. However, data loss tolerance is

another aspect that can be exploited to save system energy.

We consider a multiple access system where the users have

soft average packet drop constraint and a hard constraint on

the maximum number of packet allowed to be dropped suc-
cessively. This constraint is referred to as continuity constraint

[4]. The work in [4], [5] takes this constraint into account

for packet scheduling. The idea is to allow intentional (but

bounded) packet drop to save energy if application can tolerate

it without a major deterioration in quality of experience. The

authors assume a perfect channel state information (CSI) on

the transmitter and receiver sides. A channel threshold based

scheduling scheme is introduced and analyzed. However, per-

fect CSI condition is hard to achieve in practical networks

due to limitation on feedback information. This paper extends

the work for imperfect CSI case and addresses the resulting

effects on the system energy and scheduling process. The

effect of imperfect channel information is modeled through

a corresponding packet drop probability.

We have two reasons for packet drop in our problem

settings:

1) Intentional packet drop at the transmitter depending on

the application loss tolerance to save energy if applica-

tions’s loss tolerance permits.

2) Packet drop due to imperfect CSI at the transmitter side

which implies that channel state is worse than the esti-

mated one and results in packet loss after transmission.

The scheduling algorithm design for the packet loss tolerant

application should take the packet loss due to imperfect

CSI into account and adapt its intentional packet drop rate

accordingly to maintain a bounded average packet drop rate.

The main contribution of this work is to evaluate this effect

through packet level channel model. Moreover, we extend the

results to the (more practical) case of statistical guarantees on

continuity constraint as compared to hard guarantees in [5].

The rest of the paper is structured as follows. Section II

introduces the system model and preliminaries. We model

the proposed scheme using Markov chain in Section III. The

optimization problem is formulated in Section IV. We evaluate

the scheme numerically in Section V and conclude with the

main contributions in Section VI.

II. SYSTEM MODEL AND PRELIMINARIES

We follow the system model used in [4], [6] and consider a

multiple-access system with K users randomly placed within

a certain area. Every scheduled user requires an average rate

Rk = C
K where C denotes the system spectral efficiency.

A. Propagation Channel Model

We consider an uplink scenario where time is slotted such

that each user k experiences a channel gain hk(t) in a time slot

t. The channel gain hk(t) comprises of path loss component sk
and small-scale fading fk(t) such that hk(t) = skfk(t). The



path loss is a function of the distance between the transmitter

and the receiver and remains constant within the time scale

considered in this work. Small-scale fading depends on the

scattering environment. It changes from slot to slot for every

user and is independent and identically distributed (i.i.d) across

both users and slots, but remains constant during the time span

of a single time slot. The multi-access channel is described by

the input (X) and output (Y) relation as

Yk(t) =
K∑

k=1

√
hk(t)Xk(t) + Z(t) (1)

where Z represents additive i.i.d. complex Gaussian random

variable with zero mean and unit variance. The distribution of

hk(t) differs from user to user.

B. Packet level channel Model

The CSI is assumed to be known at the transmitter, but it is

not perfect. As a result of imperfect CSI, the transmitter is not

able to compute correct power level for the assigned rate. This

could result in packet loss. We model the effect of imperfect

CSI by a probability νd that a resulting transmission is not

successful. Furthermore, we assume if the estimated channel

was not good enough to support the rate, all the packets

transmitted in a single transmission are lost. The information

about the dropping of the packet(s) is conveyed by the receiver

to the transmitter through a perfect feedback channel. This is

termed as packet level channel modeling in the literature. We

assume that the feedback arrives at the transmitter by the next

scheduling instance. The unsuccessfully transmitted packet(s)

is buffered for (possible) retransmission if the buffer has the

capacity to store it for the next time slot, dropped otherwise.

C. Statistical Guarantees on Continuity Constraint

The model considered in [5] assumes that continuity con-

straint can be met with probability one. It is not practicable

to assume that a packet can be transmitted with probability

one when N packets have been dropped successively; where

N is termed as continuity constraint parameter. We extend our

framework in the direction of providing statistical guarantees

on continuity constraint, i.e., a user violates the continuity

constraint with a probability γ. If channel conditions are not

good after dropping N packets successively, the user is still

allowed to drop a finite amount of packets corresponding to

γ. We define the event of violation of continuity constraint as

the number of time slots a packet is dropped after successively

dropping N packets already.

We allow multiple users to be scheduled in a single time

slot to minimize γ. If only a single user is scheduled per time

slot, all the users other than the scheduled one may have to

drop the packets (intentionally) which results in increase in

γ rapidly. We have no control over the packets dropped due

to channel impairments, but packet scheduler can be designed

such that γ is bounded by facilitating maximum scheduling of

the users who already have dropped N packets successively.

The analysis of the scheme is based on asymptotic user

case which implies that there is no limit on the number of

users scheduled simultaneously. We use superposition coding

and successive interference cancelation (SIC) mechanism for

successful transmission of data streams of simultaneously

scheduled users. Let K denote the set of users to be scheduled

and Φk be the permutation of the scheduled user indices that

sorts the channel gains in increasing order, i.e. hΦ1 ≤ · · · ≤
hΦk

≤ · · · ≤ hΦ|K| . Then, the energy of the scheduled user

Φk with rate RΦk
, is given by [6], [7]

EΦk
=

Z0

hΦk

(
2
∑

i≤k RΦi − 2
∑

i<k RΦi

)
. (2)

where Z0 denotes the noise power spectral density.

III. ANALYSIS OF THE SCHEDULING SCHEME

In this section, we briefly review the scheduling scheme

presented in [5] for perfect CSI scenario. Then, we model the

scheme for the imperfect CSI case and analyze the effect on

the scheduling decisions and average system energy.

A. Review of the Scheme with Perfect CSI

We consider a constant arrival of a single packet in the

buffer of each user in each time slot for simplicity. However,

this model can be extended to the random arrival case where

multiple packets arriving in the same time slot are treated as a

single packet [4]. Every arriving packet is queued in the user’s

buffer after arrival.

The design of the scheme is based on the asymptotic case

when K → ∞. In this case, multiuser scheduling problem

can be broken into a single user scheduling problem such

that every user takes the scheduling decision independent of

the other users [4]. The scheduling decisions for every user

in each time slot are based on the instantaneous channel

condition and the scheduling thresholds; which are optimized

by taking into consideration the continuity constraint param-

eter N , maximum buffer size B, average packet dropping

probability θtar and user’s small scale fading distribution. The

number of thresholds equals the number of buffered packets

and the scheduler decides how many packets are scheduled

in a single time slot based on the channel conditions. If no

packet is scheduled, all the packets (including the recently

arrived packet) are buffered if buffer size allows. If the buffer

is full, the oldest packet in the buffer is dropped. When the

user has dropped N packets successively, the head of line

(HOL) packet has to be scheduled regardless of the channel

conditions.

B. Finite State Markov Chain Model

We extend the results for the scheduling scheme proposed

in [5] to the case of imperfect CSI. As explained in Section

II-B, the effect of imperfect CSI is modeled through packet

level description such that νd denotes packet drop probability

and νs = 1−νd is the probability of a successful transmission.

We model the scheme discussed in Sec. III-A using a finite

state Markov chain (FSMC). Let i ≤ B and j ≤ N denote

the number of packets buffered and dropped successively at

time t. Then, state p at time t is defined by the summation



i+ j. At the start of the process, p equals zero. If a packet is

not scheduled, it is buffered and i = 1 (while j = 0), thereby

the system makes transition to next state q = 1. Remember

p(t + 1) = q(t) in FSMC. When the buffer is full, an event

of not scheduling a packet results in a packet drop, thereby j
starts increasing and i = B remains fixed until there is a room

in the buffer for unscheduled packets due to scheduling of

previously buffered packets. The event of dropping/buffering

of the packet results in forward state transition to next state

q = p+1. The size of FSMC is determined by the buffer size

and continuity constraint parameters such that M = B +N .

We did not consider the event of packet drop due to

imperfect CSI in the state space description yet. As we assume

that feedback for the successful/unsuccessful transmission

(ACK/NACK) arrives by the end of time slot, the system

buffers the scheduled packet(s) by the end of time slot. If the

transmitter receives an ACK, the packets are dropped from

the buffer as they have been received successfully. In case of

a NACK, the buffered packets are treated in the same way as

intentional packet dropping, i.e. buffer if there is a room or

drop otherwise. In contrast to the case of ACK, dropping a

packet in case of a NACK occurs solely due to insufficient

buffer capacity and affects system performance similar to

intentional packet drop scenario. The packet drop due to

imperfect CSI needs to be modeled in the system separately

due to its different effect on system energy. Intentional packet

dropping (without transmission) does not cost any energy to

the system while packets dropped due to imperfect CSI result

in waste of energy without transmitting any data successfully.

In an FSMC model, we define αpq as

αpq = Pr(St+1 = q|St = p) =

⎧⎪⎨
⎪⎩
α̂pq ∀p, q ≤ min(p,B)

α̃pq ∀p, q = p+ 1

0 else

(3)

where

αpq = Transition probability from state p to q.

α̂pq = Transition probability from state p to q

when scheduling of one or more packets occurs.

α̃pq = Transition probability from state p to q

when no packet is scheduled.

αpq is a function of α̂pq and α̃pq .

To define α̂pq and α̃pq , we define a scheduling threshold.

Definition 1 (Scheduling Threshold κpq): It is defined as the

minimum small scale fading value f required to make a state

transition from state p to q such that

α̂pq = Pr
(
κpq < f ≤ κp(q−1)

)
0 ≤ q ≤ min(p,B). (4)

where κp0− is defined to be infinity with S0− denoting a

dummy state before S0.

From scheduling point of view, it is advantageous to schedule

more packets for good fading states. Therefore, the scheduling

thresholds quantize the fading vector to optimize the number

of scheduled packets according to the fading. In a state p ≥ q,

the scheduler makes a state transition to state q such that [5]

q = argmin
q́

κpq́ < f ≤ κp(q́−1) 0 ≤ q́ ≤ min(p,B). (5)

For a state transition from state p to q, the number of the

scheduled packets is given by

L(p, f) = min(p,B)− q + 1, (6)

where q is determined uniquely by (5). Note that the number of

scheduled packets cannot exceed min(p,B) because of finite

capacity of buffer. We denote min(p,B) by μ in the rest of

this article for convenience. The probability of not scheduling

any packet for transmission is given by

α̃pq = Pr(f ≤ κpμ), 0 ≤ p < M, q = p+ 1 (7)

= 1−
μ∑

q=0

α̂pq . (8)

where κpμ denotes the minimum thresholds to schedule at least

one packet.

C. Modeling γ in FSMC

Ideally one would like to schedule a packet with probability

one when p = M . As explained earlier, it is not practical to

apply ’water filling’ principle on any arbitrary channel due

to power limitations of the transmitter. Thus, a packet is not

scheduled if fading is worse than a minimum value even in

state M which contributes to γ in addition to packet dropping

due to imperfect CSI. To handle the event of unscheduled

or/and lost HOL packet in state M , we define a self transition

αMM where no packet is scheduled in contrast to other self

state transitions.

According to our FSMC model,

γ = αMMπM =
(
α̃MM + νd

B∑
q=0

α̂Mq

)
πM (9)

=
(
1− νs

B∑
q=0

α̂Mq

)
πM (10)

where πM is steady state transition probability for state M .

Thus, αpq for any states p, q is modified as

αpq = νsα̂pq, 0 ≤ p ≤ M, 0 ≤ q ≤ μ (11)

αpq = α̃pq + νd

μ∑
m=0

α̂pm, 0 ≤ p < M, q = p+ 1(12)

Example 1: Let us explain FSMC model with the help of

an example with B = 2, N = 1 as in Fig. 1. For this example,

we evaluate the transition probability matrix Q.

For state 0, α00 is the probability that a packet is scheduled

for transmission and received successfully.

α00 = νsα̂00 (13)

Transition from state 0 to 1 is the result of un-scheduled; and

scheduled but unsuccessful transmission events. Thus,

α01 = α̃01 + νdα̂00 (14)
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Fig. 1. State transition diagram of the scheme for the case B = 2, N = 1.
αMM represents state transition probability related to γ.

Similarly, for state 1,

α1q = νsα̂1q q = 0, 1 (15)

α12 = α̃12 + νd(α̂10 + α̂11) (16)

Following the same line of arguments, the matrix Q can be

written as a summation of two matrices such that

Q = Qs +Qc (17)

where

Q =

⎛
⎜⎜⎝

α00 α01 0 0
α10 α11 α12 0
α20 α21 α22 α23

α30 α31 α32 α33

⎞
⎟⎟⎠ (18)

Qs =

⎛
⎜⎜⎝

νsα̂00 α̃01 0 0
νsα̂10 νsα̂11 α̃12 0
νsα̂20 νsα̂21 νsα̂22 α̃23

νsα̂30 νsα̂31 νsα̂32 α̃33

⎞
⎟⎟⎠ (19)

and

Qc = νd

⎛
⎜⎜⎜⎝

0
∑0

q=0 α̂0q 0 0

0 0
∑1

q=0 α̂1q 0

0 0 0
∑2

q=0 α̂2q

0 0 0
∑2

q=0 α̂3q

⎞
⎟⎟⎟⎠ .

(20)

Qc captures the effect of imperfect CSI while Qs is optimized

scheduling decision matrix. Note that this model implies that it

is not possible to achieve continuity constraint with probability

one if νd > 0 and only statistical guarantees can be provided.

IV. MATHEMATICAL FORMULATION OF THE PROBLEM

The objective of the optimization problem is to minimize

the system energy for a soft average packet drop rate constraint

and statistical guarantee on continuity constraint. We formulate

the optimization problem using the FSMC model. Each sched-

uled packet is treated as a virtual user for the analysis purpose.

The average system energy per transmitted information bit at

the large system limit K → ∞ is given by [6]

Eb

N0
= log(2)

∞∫
0

2C Ph,VU(x)

x
dPh,VU(x) (21)

where Ph,VU(·) denotes the cumulative distribution function

(cdf) of the fading of the scheduled virtual users (VUs). In

the large system limit, the state transitions depend only on the

small scale fading distribution as the path loss for VUs follows

the same distribution as the path loss of the users. Thus, the

optimization problem1 is formulated as

minQ∈Ω
Eb

N0
(22)

s.t. :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C1 : 0 ≤ ∑μ
m=0 αpm ≤ 1 0 ≤ αpm ≤ 1,

0 ≤ p ≤ M

C2 : θr ≤ θtar Q ∈ Ω

C3 :
∑M

q=0 αpq = 1 0 ≤ p ≤ M

C4 : B +N = M B < ∞, N < ∞

(23)

where Ω denotes the set of permissible matrices for Q and θr
is the average packet drop rate for a fixed Q and given by

θr =
M−1∑
p=B

αp(p+1)πp + αMMπM (24)

=
M∑

p=B

(
1− νs

B∑
m=0

α̂pm

)
πp . (25)

Equation (25) is a result of combining C1 and C3 in (23).

The forward transition for the states B ≤ p < M and self

state transition αMM represent the events of packet drop and

the summation over the corresponding transition probabilities

gives the average dropping probability in (25). The summation

starts from state B as the unscheduled packets are buffered for

p < B. For a fixed p, the corresponding channel-dependent

optimal scheduling thresholds can be computed from the opti-

mized �α∗
p = [α∗

p0, . . . α
∗
pμ] using (4). The violation probability

on continuity constraint γ for fixed B and N parameters is

computed from Q∗ using (10). Let us denote γ for this special

case by γm where the maximum energy efficiency can be

achieved for fixed B,N, θtar parameters and relaxing γ further

does not help to improve energy efficiency due to coupling of

γ with N and θtar.
If the statistical guarantees has to be improved further, we

apply an upper bound on γ such that γ ≤ ε where ε is

a small constant representing the target statistical guarantee.

This constraint appears as an additional constraint in (23) such

that

C5 : γ ≤ ε 0 ≤ ε ≤ θtar (26)

because θr =
∑M−1

p=B αp(p+1)πp + γ. Consequently, the im-

proved γ is achieved at the increased energy cost. Theoretically

ε is upper bounded by θtar; but γm upper bounds ε (tightly)

at a value lower than θtar due to the reasons explained above.

The probability density function (pdf) of the small scale

fading of the scheduled VUs is given by

pf,VU(y) =
M∑
p=0

cpπpL(p, y) pf (y) (27)

1This section follows the work in [5] closely, but developments of the next
section require its inclusion for completeness and clarity of the discussion.



where pf (y) and cp denote the small scale fading distribution

and a normalization constant respectively while L(p, y) is

given by (6). The derivation of the cdf of VUs can be found

in [5]. The channel distribution for the scheduled VUs can be

computed using fading and the path loss distributions which

in turns is used to compute system energy in (21).

A. Trading Buffer for Improved Guarantees on γ

We would like to achieve ε ≤ γm at improved energy by

increasing the value of B for a fixed N . Let us denote the op-

timal solution of the programming problem in previous section

by Q∗(B, θtar, ε) as a function of B, θtar and target violation

probability on continuity constraint ε. Let Eb

N0
(Q∗(B, θtar, ε))

be the corresponding system energy and ΔE represents the

target energy gain. Now, the optimization is performed over

B ∈ Φ where Φ is a set of possible buffer sizes. For every

candidate B ∈ Φ, optimization in (22) and (23) is performed

again with inclusion of C5. The aim of the optimization is

to find minimum value of B which gives energy less than(
Eb

N0
(Q∗(B, θtar, ε))−ΔE

)
at ε:

Find B∗ ∈ Φ s.t. γ(Q∗(B∗, θtar)) ≤ ε and (28)
Eb

N0
(Q∗(B∗, θtar, ε))− Eb

N0
(Q∗(B, θtar, ε)) ≥ ΔE, B ∈ Φ

The suitable value of B is highly dependent on the application.

For example, wireless sensor networks would prefer large B
due to battery requirements whereas multimedia applications

prefer small B due to stringent delay requirements on data

delivery.

B. Stochastic Optimization

The optimization problem formulated in (22) and (23) is

not convex and belongs to class of problems called stochastic

optimization problems. There are a few heuristic techniques

in literature to solve such problems like genetic algorithm, Q-

learning, neural networks, etc. We use Simulated Annealing

(SA) algorithm to solve the problem. As the name suggests,

the algorithm originates from statistical mechanics area and

has been found quite useful to solve different combinatorial

optimization problems like traveling salesman.

In SA algorithm, a random configuration in terms of transi-

tion probability matrix Q is presented in each step and system

energy as an objective function is evaluated only if Q fulfills

all the constraints in (23). If system energy improves the pre-

vious best solution, the candidate configuration is selected as

the best available solution. However, a candidate configuration

can be treated as best solution with a certain temperature

dependent probability even if the new solution is worse than

the best known solution. This step is called muting and helps

the system to avoid local minima. The muting step occurs

frequently at the start of the process as temperature is selected

very high and decrease as temperature is decreased gradually.

Thus, the term temperature determines the rate of muting

process. In literature, different cooling temperature schedules

have been employed according to the problem requirements.

In this work, we employ the following cooling schedule, called

TABLE I
γm AND SYSTEM ENERGY

N γm Eb/N0

1 0.09 -3.63 dB
2 0.032 -3.63 dB
3 0.014 -3.61 dB

fast annealing (FA) [8]. In FA, it is sufficient to decrease the

temperature linearly in each step b such that,

Tb =
T0

csa ∗ b+ 1
(29)

where T0 is a suitable starting temperature and csa is a

constant which depends on the requirements of the problem.

We skip details of the SA scheme due to space limitations. The

interested reader is referred to [9] for details of the algorithm.

V. NUMERICAL RESULTS

We assume that the users are placed uniformly at random in

a circular cell except for a forbidden region around the access

point of radius δ = 0.01. The path loss exponent equals 2 and

the path loss distribution follows the model in [6]. All the users

experience independent small-scale fading with exponential

distribution with mean one. Spectral efficiency is 0.5 bits/s/Hz

for all simulations. In SA algorithm, 100 temperature values

are simulated according to FA temperature schedule while

50(M + 1) random configuration of transition probability

matrix are generated for a single temperature iteration.

To compute γm, we perform optimization in (23) without

applying constraint in (26) and the best2 solution matrix Q∗ is

obtained. The value of γ computed via (10) for Q∗ gives us γm
and upper bounds ε. Table I shows numerical values of system

energy and γm for different N and fixed B = 0, θtar = 0.3
values while νd equals 0.02. Based on numerical results in

Table I, we evaluate the tradeoffs addressed in Section IV-A.

Fig. 2 demonstrates the effect of imposing constraint ε ≤ γm
on system performance when θtar = 0.3. We evaluate C5
alongwith C1 − C4 in (23) for the candidate Q before eval-

uation of (21) in SA algorithm. We observe in Fig. 2(a) that

decreasing ε has an associated energy cost and the solution

becomes suboptimal by energy point of view. Also, γ can

never approach zero as long as νd > 0 and packet dropping

due to imperfect CSI cannot be completely eliminated. For

a given set of parameters and fixed νd, the minimum value

of achievable ε is denoted by γ0 which lower bounds ε such

that γ0 ≤ ε ≤ γm. The greater the value of νd, the greater is

γ0. For instance, increasing νd from 0.02 to 0.1 for the case

N = 2 raises γm from 0.001 to 0.002 while system energy

increases for all values of ε as well. We observe that bounds

on ε (in the form of γ0 and γm) become tighter as N increases

for the fixed θtar. This is due to the fact that allowing large

N increases degrees of freedom (DoF) for the system and the

effect of parameter ε on system energy is minimized.

2We avoid using term energy optimal here as SA is a heuristic algorithm
and solution cannot be proven optimal.
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Fig. 2. System energy and packet drop behavior as a function of ε. θtar is fixed to 0.3 for all simulations.

Correspondingly, Fig. 2(b) demonstrates that achieved av-

erage packet drop rate θr (calculated via (25)) approaches

θtar for large ε and remains almost identical thereafter. This

implies that all the extra energy cost is contributed by strict

guarantees on continuity constraint. When ε is very small, the

energy optimal Q∗ provides a θr which is much less that θtar
and severely sub optimal. We conclude that a strict statistical

guarantee on continuity constraint has a severe plenty in terms

of energy and even other DoF (like relaxed θtar) cannot be

utilized efficiently.

Fig. 2(c) demonstrates the energy gain achieved by increas-

ing buffer size as described in Section IV-A. First, we observe

that increasing the value of B for a fixed N increases γm, i.e.

more flexibility in ε. Secondly, an energy gain by increasing

B for all ε and a fixed N is evident. It depends on the system

design that which B needs to be employed for a particular

performance guarantee. Let us discuss the case for parameters

N = 1, θtar = 0.3, ε = 0.01. The system with B = 0 provides

system energy of almost −2 dB as shown in Fig. 2(a). If we

want the same performance at reduced energy, B = 1 provides

a gain of ΔE = 1.9 dB. If ΔE > 1.9 dB, B > 1 is required.

For the same set of parameters, B = 2 provides ΔE equal to

3.1 dB. A similar comparison can be drawn for N = 2 and

B > 0.

A comparison of the curves for the cases N = 2, B = 1
and N = 1, B = 2 (with same M = 3) shows that increasing

DOF in any parameter (B,N) is energy efficient as compared

to the case N = 1, B = 1 but the effect differs widely

in many ways, e.g., value of γm for both cases. Similarly,

increasing B to reduce system energy affects system cost

while increasing N costs performance loss in terms of jitter.

Thus, system’s energy, packet loss and latency requirements



determine the parameters required to achieve performance in

terms of statistical guarantee on continuity constraint.

VI. CONCLUSIONS

We consider energy efficient multiuser scheduling over

fading channels for packet loss tolerant applications. Packet

loss is modeled by an average packet drop rate and continuity
constraint on successive dropping of packets. The proposed

scheme is analyzed for imperfect CSI case using packet level

channel model where the effect of imperfect CSI is modeled by

fixed packet drop and success probabilities. We formulate the

optimization problem for achieving minimum system energy

for a target statistical guarantee on continuity constraint.

Through stochastic optimization framework, we characterize

the limits on achievable statistical guarantees on continuity

constraint. We evaluate the effect of buffer size on the problem

settings and validate numerically that buffer size can be traded

to achieve better energy efficiency for a given statistical guar-

antee on continuity constraint and average packet drop rate. We

conclude that application’s energy and latency requirements

are important to determine preferable buffer size to achieve

system performance in terms of protection to bursty packet

loss.
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