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Fluvial dissolved organic carbon composition varies spatially and seasonally in a 1 
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 7 

Abstract 8 

Assessing whether land use, from activities such as wind farm construction and tree-felling, 9 

impacts on terrestrial C delivery to rivers has focused on quantifying the loss of dissolved 10 

organic carbon (DOC), and not the composition changes. Here we explore how land use 11 

influences DOC composition by considering fluvial DOC concentration, [DOC], and 12 

spectrophotometric composition of a river draining a peat-rich catchment. We find that in this 13 

5.7 km2 catchment differences occur in both the concentration and composition of the DOC in 14 

its sub-catchments. This is attributed to differences in how land was used: one tributary (D-15 

WF) drains an area with wind farm construction and forestry in the headwaters, and one 16 

tributary (D-FF) drains an area with felled plantation trees. Generally, [DOC] in both streams 17 

showed similar seasonal variation and autumn maxima. However, the felled catchment had 18 

greater mean [DOC] than the wind farm catchment. The SUVA254 and E4/E6 indicated DOC in 19 

both streams had similar aromaticity and fulvic:humic acid for most of the time, but SUVA410 20 

and E2/E4 indicated less DOC humification in the felled catchment. This may be due to young 21 

DOC from the breakdown of residual branches and roots, or more humification in soils in the 22 

wind farm area. During the dry months, DOC composition showed more spatial variation: the 23 

D-WF DOC had smaller SUVA254 (less total aromatic material) and SUVA410 (fewer humic 24 

substances). The decreased E2/E4 in both streams indicated the total aromatic carbon 25 

decreased more than humic substances content. Moreover, the larger E4/E6 for D-WF in 26 

summer indicated that the humic substances were richer in fulvic acids than humic acids. Soil 27 

disturbance associated with forestry-felling likely contributed to the higher [DOC] and release 28 

of less-humified material in D-FF. This research indicates drivers of different DOC 29 

concentration and composition can exist even in small catchments. 30 

 31 

Highlights 32 

• The influence of land use on the concentration and composition of fluvial DOC in a peat-33 

rich catchment was investigated. 34 

• There was greater fluvial [DOC] in the felled catchment than in the wind farm catchment. 35 

• Fluvial DOC was similarly aromatic, but more humified in the wind farm catchment. 36 

• In the dry months, DOC became more humified in the felled catchment, indicating DOC 37 

might be from different peat layers. 38 
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1. Introduction 45 

Peatlands are a significant terrestrial carbon store and a principal source of dissolved 46 

organic carbon (DOC) to the fluvial systems (Wallage et al., 2006). In the past decade it has 47 

been observed that DOC concentrations, [DOC], in surface waters have increased in Europe 48 

and North America, attributed primarily to reduced acid deposition no longer suppressing 49 

terrestrial DOC production (Monteith et al., 2007), and supporting increased DOC mobility 50 

(Clark et al., 2005). However, land use change can also release C from peat soils. Afforestation 51 

can lead to higher [DOC] for peat-covered catchments, and forestry effects on [DOC] appear 52 

largest following felling (Neal et al., 1998). On peaty-mineral soils, timber-felling generally 53 

causes an increase in [DOC] in stream water which may persist for a few years, particularly at 54 

a local scale (e.g. Neal et al. 2004). In Europe large areas of peat have been drained to 55 

improve grazing, lowering the water tables and stimulating DOC production (Holden et al., 56 

2004). However, little is known about how the composition of DOC in fluvial systems may 57 

reflect land use, and if this composition varies considerably, but this is also important to 58 

understand the fate of DOC in a fluvial system. 59 

DOC consists of a variety of molecules considered to range in size and structure, from 60 

simple acids and sugars to complex humic substances (HS) (Thurman, 1985). Traditionally, 61 

HS are thought to comprise the dominant fractions of dissolved organic matter (DOM), and 62 

are heterogeneous mixtures formed by humification, the process where the biochemical and 63 

chemical reactions occur along with the decay and transformation of plant and microbial 64 

materials (Kastner and Hofrichter, 2001). Further, it is thought there are two main sources of 65 

aquatic HS: 1) land-derived material from soil and plants (allochthonous substances) and 2) 66 

from biological activities within aquatic systems (autochthonous substances) (Frimmel, 2005). 67 

In peat land drainage systems the terrestrial source typically dominates (Tipping et al., 2010).  68 

HS have never been separated into pure components (Hautala et al., 2000; Muscolo et 69 

al., 2013), but have been generally divided into two main fractions based on chemical 70 

extraction processes: humic acids (HAs) and fulvic acids (FAs) (International Humic 71 

Substances Society; Frimmel, 2005; Muscolo et al., 2013). HAs are categorized as the fraction 72 

that is not soluble in water under acidic conditions (pH < 2) but are soluble at higher pH values. 73 

Generally HAs have a larger molecular weight and contain more carbon with fewer oxygen-74 

containing functional groups (Stevenson, 1994; Weng et al., 2006; Gungor and Bekbolet, 2010; 75 

Tang et al., 2014). They have a greater proportion of hydrophobic (mainly aromatic) moieties 76 

(Piccolo, 2001; Šmejkalová and Piccolo, 2008), and are more stable as they have more 77 

conjugated bond systems. Therefore, HAs are more complex and microbially-resistant than 78 

FAs. The structural difference suggests HAs to be more humified and aromatic than FAs. 79 

These properties allow the use of spectrophotometric methods to infer structural 80 

characteristics, as aquatic DOM strongly absorbs light in the UV-visible wavelength range, 81 

with compositional differences influencing absorbance at specific wavelengths (Korshin et al., 82 

1997; Helms et al., 2008; Selberg et al., 2011; Peacock et al., 2014).  83 

The scientific community is now considering whether HS exist and if this terminology 84 

appropriately captures the degradation processes prevalent in soil that may also shape fluvial 85 

DOC (Lehmann and Kleber, 2015). This is an exciting consideration and it may herald a new 86 

approach to interpreting DOC composition. However spectrophotometric characterization has 87 

been informed by molecular composition consideration (e.g. Weishaar et al., 2003) and it is 88 



this approach we use here, drawing on the large body of research that has interpreted DOM 89 

composition (see Table 1), and from this environmental understanding of controls on 90 

composition (e.g. Mao et al., 2017). This approach to considering HS should still offer a 91 

framework for future reinterpretation if it is considered too simple.  92 

Spectroscopic approaches are based on the following understanding. Conjugated double 93 

bond systems in aromatic materials will lead to strong absorption in the near UV (200 - 380 94 

nm), while other electron structures do not absorb in this range of the UV spectrum (Weishaar 95 

et al., 2003). The measurement termed specific UV absorbance (SUVA254), calculated by 96 

dividing the absorbance of a water sample at 254 nm by its DOC concentration, is considered 97 

to be strongly-related to DOC aromaticity (Weishaar et al., 2003), particularly the proportion 98 

of the total carbon in aromatic rings (Zbytniewski and Buszewski, 2005). It should also be 99 

noted here that although non-humic substances are generally not aromatic, the amino acids 100 

phenylalanine, tryptophan and tyrosine do have aromatic rings and UV absorption peaks in 101 

the region 200 - 300 nm, thus SUVA254 characterizes all aromatic C.  102 

The visible wavelengths 400 nm and 665 nm are considered to provide DOM 103 

compositional information (Chen et al., 1977; Hongve and Åkesson, 1996; Hautala et al., 104 

2000). Peak absorption above 400 nm indicates more-complex conjugated and aromatic 105 

structures (such as HS, including both HAs and FAs), and reflects organic materials resulting 106 

from the humification process. Peak absorbance above 600 nm is indicative of even more 107 

complex conjugated associations, and strongly-humified materials with a high degree of 108 

aromatic, condensed groups (Zbytniewski and Buszewski, 2005; Albrecht et al., 2011), such 109 

as HAs.  110 

The ratios between absorbance at different wavelengths can provide qualitative 111 

information about the aqueous DOC composition. For example, HS are thought to generate 112 

most of the brown colour in DOC samples (Hautala et al., 2000; Frimmel, 2005) and have 113 

strong UV-visible absorption at about 400 nm (resulting in yellow-brown colours). Therefore, 114 

SUVA410 (Abs410 divided by [DOC]) is used to reveal the changes in proportion of HS which 115 

contain complex aromatic structures. In addition, the ratio between absorbance at 254 nm and 116 

410 nm (E2/E4) reflects the intensity of UV-absorbing aromatic rings to HS colour (Zepp and 117 

Schlotzhauer, 1981; Selberg et al., 2011; Graham et al., 2012), and so provides some insight 118 

about proportions of HS in total aromatic carbon. Waters which contain a greater proportion 119 

of HS have lower E2/E4 values (Graham et al., 2012). Additionally, HAs and FAs absorb light 120 

in different amounts at 465nm and 665nm, thus, the ratio between absorbance at 465 nm and 121 

665 nm (E4/E6) is used to infer differences in the proportion of humic and fulvic acids between 122 

samples (Thurman, 1985; Hautala et al., 2000; Spencer et al., 2007; Moody et al., 2013). A 123 

lower E4/E6 reflects a larger proportion of HAs, a higher degree of aromatic condensation and 124 

a higher level of organic material humification (Zbytniewski and Buszewski, 2005). Between 125 

aquatic humic and fulvic acid samples, E4/E6 has been observed to be higher for fulvic acids 126 

and lower for humic acids (Thurman, 1985). Fig.1 demonstrates how optical parameters can 127 

be used for understanding DOC composition.  128 



 129 

As most fluvial DOC comes from the catchment soils, differences in fluvial DOC 130 

concentration and composition may reflect differences in the catchment soil reservoir, 131 

including how the land is managed. For example, [DOC] was observed to increase 132 

immediately during peat bog harvesting as a result of the ecosystem disturbance, but 133 

decrease afterwards, considered to reflect the reduced content of stored DOM in the soil 134 

(Glatzel et al., 2003). In a degraded peat, higher SUVA285 (a similar approach to SUVA254), 135 

together with a red shift in fluorescence spectra (another approach to considering DOC 136 

composition, Miano and Senesi, 1992), in extracted DOC indicated increased aromaticity and 137 

humification (Kalbitz et al., 1999).  138 

A land use change prevalent today is the disturbance of peat soils for the construction of 139 

wind farms, potentially impacting water quality (Drew et al., 2013). For example, a small but 140 

significant negative impact of construction on water chemistry (pH, alkalinity and ANC only) 141 

has been observed during and after wind farm construction in the upper part of a Scottish 142 

catchment (Millidine et al., 2015). Soil disturbance to the depth of bedrock and extensive 143 

deforestation can be required for wind farm construction and thus these activities may be 144 

expected to increase [DOC]. Indeed short-term increases have been observed (e.g. Grieve & 145 

Gilvear 2008; Waldron et al. 2009). Whether this also induces compositional changes in DOC 146 

is unknown. The DOC composition reflects its origin (microbial production, vegetation and soil 147 

leaching), and unveils carbon cycling processes in the peat (Fellman et al., 2008; Gandois et 148 

al., 2013; Glatzel et al., 2003). For example, in peat, soil organisms, primarily bacteria and 149 

fungi, metabolize the non-coloured, small-molecular-weight non-humic substances in 150 

preference to the coloured, larger and more biologically-resistant HS (Dawson et al., 2001; 151 

Hope et al., 1994; Thomas, 1997; Thurman, 1985; Wallage et al., 2006). A change in balance 152 

in these processes could affect the DOC composition.  153 

Fluvial export of DOC is a key lateral transport process in the global carbon cycle, with 154 

uncertainty as to how much is exported to the ocean versus transformed to CO2 where it can 155 

be degassed to the atmosphere en route (e.g., Long et al. 2015). This transformation will be 156 

compositionally dependent and as such it is important to consider the processes that control 157 

fluvial DOC composition and its stability seasonally. In a peaty catchment, where part of the 158 

catchment has been used for wind farm construction and another part of the catchment felled, 159 

we assessed if land use differences influenced the concentration and composition of DOC in 160 

Fig. 1. The relationship between total aromatic C, simple aromatic C, HS, HAs and FAs. The 

four optical parameters can be used to indicate the composition of DOC.  



catchment drainage. Over one annual cycle we measured fluvial [DOC] and characterized its 161 

composition using UV-spectrophotometry to explore: 1) if land use caused any difference in 162 

[DOC] of catchment drainage and 2) if this released DOC differed in composition. This 163 

understanding explores the influence of land use on DOC export. The insight gained may 164 

ultimately inform understanding of the fate of DOC in streams.  165 

 166 

2. Materials and methods 167 

2.1.  Study sites and sampling strategy 168 

2.1.1.  Drumtee 169 

Drumtee Water (55°41’16’’N, 4°23’37’’W) is a third order 5.7 km2 catchment in central 170 

Scotland, UK, draining the edge of the Whitelee wind farm, which is Europe’s second largest 171 

and the UK’s largest onshore wind farm. The land use in Drumtee is rough grazing and 172 

maximum elevation within the catchment is 260 m. Whitelee is located mostly on peat-rich 173 

soils, with an average peat depth of 190 cm ± 134 cm. Peat is defined as soil where the 174 

uppermost soil horizon has > 60% organic matter and exceeds 50 cm in thickness (Soil Survey 175 

in Scotland, 1984; SNH 2014). Historic imagery of the catchment (see for example Google 176 

EarthTM) suggests a mosaic of historical drainage, but the most recent disturbance of a large 177 

scale across the site was for wind farm construction and felling. Wind farm construction 178 

activities took place from October 2006 and the original 140 turbines became fully operational 179 

in 2009. By 2013, the wind farm had been extended with a further 75 turbines. The wind farm 180 

disturbance comprised mostly forest clearance, peat excavation, access road construction 181 

(thus drainage), and turbines and associated infrastructure erection. The main disturbance in 182 

the Drumtee Water was forest-felling and some excavation and road construction for the eight 183 

turbines that lie within the catchment footprint (Fig. 2A). 184 



 185 

Fig. 2. Map of Drumtee Water catchment indicating different land uses (A) and soil type (B). 186 

Drumtee is draining part of the western edge of Whitelee Wind Farm, and consists of two sub-187 

catchments (separated by the dashed black line in both A and B). Each of the sub-catchments 188 

contains one main stream (D-WF in the north and D-FF in the south). There is a similar 189 

dominance of peat coverage in each catchment, but land uses differ, with D-FF dominated by 190 

deforestation while D-WF hosts more turbines. There are six turbines in D-WF (and another 191 

one very close, which could have affected drainage in D-WF) and two in D-FF. One small 192 

tributary from Stream D-WF originates in felled forestry. Sampling sites are presented by black 193 

dots and labelled by number (A).  194 

There are two sub-catchments in Drumtee Water. The stream D-WF in the north sub-195 

catchment (3.9 km2) mainly drains an area with six turbines in the headwater and intact 196 

commercial forestry, although one tributary originates in the felled area and another transits 197 

through it. The stream D-FF in the south sub-catchment (1.8 km2) mainly drains felled forest 198 

with only two turbines (Fig. 2A). The soils in Drumtee Water are mainly blanket peat, 199 

comprising 74 % of the area of D-WF and 88 % of D-FF. A further 8 % of each catchment is 200 

peaty gley area, and the remainder is composed of humic gleys, mineral alluvial soils, non-201 

calcareous gleys and peaty podzols (Fig. 2B). Across the study area the slope is gentle, < 6˚ 202 

generally except for the river channels where it can be up to 10˚, and this topography is similar 203 

between sub-catchments. The similar soil type and topography, but different land uses, 204 



between the two sub-catchments allows the impact of land use on stream DOC to be explored.  205 

Eight sites were sampled on Stream D-WF and seven sites on Stream D-FF (Fig. 2A). 206 

The confluence site is an ‘anchor’ site, having been monitored approximately monthly for water 207 

quality since June 2006 (Murray, 2012; Phin, 2015; Waldron et al., 2009). Discharge at the 208 

confluence site was recorded at half-hourly intervals by an ISCO flow logger, and this was 209 

used to generate a hydrograph, except for the period 25/06/2014 – 20/08/2014. Here 210 

discharge monitored at the closest Scottish Environment Protection Agency (SEPA) gauging 211 

station Newmilns (station reference: NS 53252 37188) was used to reconstruct the hydrograph 212 

from the relationship between Newmilns and Drumtee (Coleman, 2017). The discharge data 213 

shows our sampling was carried out during base flow and wet periods (Fig. 3).  214 

 215 

Fig. 3. Discharge from February 17, 2014 to February 17, 2015 at the long-term sampling 216 

point just downstream of the confluence of two streams. Sampling dates are indicated by spots. 217 

July and September 2014 sampling represented the lowest flows (red spots), and December 218 

2014 sampling represented the highest flow. 219 

 220 

2.1.2.  Sampling  221 

Samples were collected approximately every four weeks from February 2014 to February 222 

2015 from the 15 sampling points along Streams D-WF and D-FF in Drumtee (Fig. 2B). All 223 

samples were collected within six hours. 330 ml drinking water bottles (PETE, polyethylene 224 

terephthalate) were used for field sample containers. Of many different bottles tested these 225 

had negligible UV-absorbance material release. Bottles were rinsed with deionized water in 226 

the lab and with stream water in the field three times each before collecting samples. Field 227 

samples were kept in a cool box and on return to the laboratory they were stored in the cold 228 

room at 4°C until filtering that same day. Samples were filtered using a Whatman GF/F 0.7 μm 229 

filter paper, which had been pre-combusted at 450°C for 8 h and rinsed with deionized water, 230 

previously tested to generate a negligible UV absorbance blank after 125 ml rinse. Filtered 231 

samples were stored in the cold room to minimize bacterial decomposition and were analyzed 232 

as soon as possible, typically within three days. This timeline was acceptable as we tested the 233 



impact of storage length on DOC UV absorbance and found < 0.01cm-1 difference (n = 7, SD 234 

= 0.008 cm-1) was observed among filtered samples before and after being stored for a month. 235 

No difference in [DOC] was observed in samples stored for up to 30 days if the samples had 236 

been filtered (Gulliver et al., 2010).  237 

 238 

2.2.  [DOC] and UV-visible absorbance measurements 239 

[DOC] was measured on a Thermalox TOC analyser which combusted organic carbon at 240 

680°C to CO2, which was subsequently detected by a non-dispersive infra-red sensor. Before 241 

combustion, dissolved inorganic carbon (DIC) was removed by acidifying samples with 0.01M 242 

H2SO4 to pH 3.9 using a Mettler DL 20 Autotitrator, and degassing for 20 min in an ultrasonic 243 

bath. Triplicate measurements were made of each sample, with the mean [DOC] accepted 244 

when the coefficient of variance was < 2%.  245 

UV-visible absorbance of filtered field samples was measured at the following 246 

wavelengths using a Hitachi U-1100 spectrophotometer: 254 nm, 340 nm, 410 nm, 465 nm, 247 

665 nm and 800 nm. Water samples were placed in a 10 mm quartz cuvette. All samples were 248 

warmed to room temperature prior to measurement as otherwise the low temperature can 249 

affect accuracy. Deionized water was used as blank and its absorbance (usually close to zero) 250 

was subtracted from the field sample absorbance.   251 

Fe3+ absorbs UV light and therefore the accuracy of SUVA254 and E2/E4 can be 252 

compromised by dissolved iron (Weishaar et al., 2003; Peacock et al., 2014). Thus, we made 253 

a correction for iron interference in UV absorbance measurements by spiking samples with a 254 

known amount of Fe3+ and measuring its influence on absorbance. Inorganic salt 255 

NH4Fe(SO4)2
.12H2O was dissolved in deionized water to prepare 100 mg l-1 Fe3+ solution. 256 

Deionized water and filtered DOC samples collected from Stream D-WF and D-FF were mixed 257 

with 5 ml 0.01M HCl and sufficient sample from 100 mg l-1 Fe3+ solution, to make up 50 ml 258 

solutions with 0.001 M HCl and 0 mg l-1, 1 mg l-1, 2 mg l-1, 3 mg l-1, 4 mg l-1 and 5 mg l-1 Fe3+ 259 

amendment. Deionized water with the same Fe3+ amendment (0 – 5 mg l-1) and HCl (0.001 M) 260 

amendment was regarded as a blank. Two replicates were made of each [Fe3+] solution. The 261 

total Fe concentration of each solution was measured using a Perkin-Elmer AAnalyst 100 262 

Atomic Absorption Spectrophotometer, and Fe standard solutions with concentrations from 1 263 

– 6 mg l-1 were prepared using 1000 mg l-1 Fe stock. UV absorbance at 254nm and 410nm of 264 

each solution was measured using a Hitachi U-1100 spectrophotometer. The [Fe3+]-265 

absorbance measurements generated a relationship, from which field sample absorbance was 266 

corrected for Fe3+ interference following measurement of [Fe].  267 

 268 

2.3.  Statistical analysis and data treatment 269 

Sub-catchment temporal variation was considered by calculating the mean and the 270 

standard deviation (SD) of all stream sampling points for each sampling trip. This was 271 

undertaken to provide more confidence that the variation in a sub-catchment composition was 272 

captured in a single point average. This approach has a degree of pseudoreplication. However, 273 

approximately 50% of sampling points did not receive water from upstream and so were 274 

independent of one another, and all sites received new water and so we used this field 275 

sampling strategy to generate details, as has been done with many other catchment studies 276 

(e.g. Yates et al., 2016). From this pooled data, one-way analysis of variance (ANOVA) was 277 



applied to investigate if there were significant differences between the two streams for all 278 

optical parameters. Before any ANOVA analysis, the Anderson-Darling method was applied to 279 

examine the normality of each dataset in both D-WF and D-FF groups. All datasets in this 280 

study were normally distributed. All normality and ANOVA analyses were conducted using 281 

Minitab® 17 statistical software. A p value < 0.05 was considered as significantly different. 282 

For the data analysis, not all sites were grouped by sub-catchment. In stream D-WF, there 283 

was one tributary, D-WF4 which had [DOC] and composition more similar to D-FF group (Fig. 284 

S1). This site, unlike others in D-WF, had its source within, and mostly drained the felled area. 285 

As this research explores if land-use affects DOM composition, it was considered more 286 

appropriate to pool this data with the D-FF samples. Doing this reduced the standard deviation 287 

of D-WF dataset, but did not cause obvious changes in those of D-FF group (Fig. S2, Table 288 

S1). The results and discussion hereafter treat D-WF4 as part of the D-FF catchment. 289 

 290 

3. Results 291 

3.1.  Seasonal DOC concentration in two streams 292 

Across the catchment and annual cycle, [DOC] ranged from 6.6 to 86.3 mg l-1 (Fig. 4, Fig. 293 

S1). All [DOC] showed little variation between sites within either stream. The range in [DOC] 294 

in both streams was large, with D-FF having greater [DOC], ranging from 14.1 – 86.3 mg l-1 295 

compared to from 6.6 – 49.0 mg l-1 for D-WF. Generally, [DOC] in the two streams shared the 296 

same seasonal pattern with the highest concentrations in the summer and the lowest 297 

concentration in winter. There were obvious [DOC] decreases in the catchment from June to 298 

July (D-WF: from 48.5 ± 2.8 to 21.4 ± 3.0 mg l-1; D-FF: 77.3 ± 7.0 to 62.7 ± 17.9 mg l-1) and 299 

from August to September (D-WF: from 49.0 ± 4.0 to 28.7 ± 3.1 mg l-1; D-FF: from 81.6 ± 9.5 300 

to 67.6 ± 13.5 mg l-1), which as discharge evidences were the drier periods in 2014 (Fig. 4).  301 

 302 

Fig. 4. Stream D-WF and D-FF mean [DOC] from February 2014 to February 2015. Each 303 

sample point is the mean ± SD of all stream sampling points on that day. July and September 304 

samples are represented by empty symbols.   305 



3.2.  Fe3+ interference 306 

In the control samples, UV absorbance at 410 nm (Abs410) was negligible (0 - 0.001 cm-1) 307 

for all [Fe3+] amended solutions, but at 254nm (Abs254) positively increased as [Fe3+] increased 308 

from 0 – 5 mg l-1 (Fig. 5A). Similarly, Abs254 increased linearly with increasing total Fe3+ 309 

concentration (Fig. 5B) in the matrix whole water samples from Drumtee catchment. The 310 

absorbance difference between streams reflects different starting [DOC], but the slopes of 311 

these relationships are very similar (D-WF: 0.054; D-FF: 0.064) reflecting the [Fe3+] 312 

contribution. The gradients of the D-WF and D-FF [Fe3+]-Abs254 were thus used to correct 313 

Abs254 of field samples, using the measured sample [Fe3+] to guide the correction. Abs254 of 314 

samples from all sites across both tributaries ranged from 0.27 – 3.51 cm-1 and [Fe3+] from 315 

0.11 – 6.14 mg l-1 during the study period (data not presented). The Fe3+ interference in the 316 

two tributaries was from 0.01 – 0.39 cm-1, comprising 2.1 – 15.9 % of the un-corrected Abs254. 317 

After correction Abs254 in the two tributaries ranged from 0.26 – 3.18 cm-1. 318 

 319 

 320 

Fig. 5. The effect of Fe3+ concentration (0 – 5 mg l-1) on Abs254 and Abs410 of blank control 321 

waters (A), and only on Abs254 of D-FF and D-WF stream waters (B). In the blank solutions, a 322 

positive relation between Abs254 and [Fe3+] was observed, while Abs410 was constantly 323 

negligible across all amended blank solutions. Closely parallel lines were generated in the 324 

[Fe3+] amended stream waters, indicating a similar linear relationship between [Fe3+] and 325 

Abs254. Equations were used for further UV absorbance correction.    326 

3.3.  DOC quality: aromaticity; HS proportion; HA: FA 327 

SUVA254 in the Drumtee catchment ranged from 2.8 to 4.6 l mg-1 m-1 and the average (3.7 328 

± 0.32 l mg-1 m-1) was within the range of diverse surface freshwater SUVA254 (Table 1), but is 329 

towards the higher end of the range, indicating the fluvial DOC was rich in aromatic carbon. 330 

Generally, DOC in the two streams had similar aromaticity with little variation throughout the 331 

year (p > 0.05) (Fig. 6A). However, the D-WF DOC aromaticity decreased noticeably from 3.9 332 

± 0.0 to 2.8 ± 0.3 l mg-1 m-1 in July 2014 (the dry period) when there was a slight increase (from 333 

3.7 ± 0.1 up to 3.8 ± 0.3 l mg-1 m-1) in D-FF. D-WF DOC SUVA254 increased to 4.5 ± 0.3 l mg-1 334 

m-1 in January 2015 after a period of the highest flow, but did not change in D-FF. Most of time 335 

D-WF had a higher SUVA410 (0.50 ± 0.05 l mg-1 m-1) than D-FF (0.45 ± 0.05 l mg-1 m-1) (p < 336 

0.05) (Fig. 6B). Higher SUVA410 in D-WF may indicate a larger amount of more-complex 337 



aromatic materials. Generally, there is no clear seasonal pattern in either stream, but similar 338 

to SUVA254, there was a decrease in D-WF in the July sampling (from 0.53 ± 0.01 to 0.39 ± 339 

0.07 l mg-1 m-1) and an increase in D-FF (from 0.45 ± 0.03 to 0.49 ± 0.06 l mg-1 m-1). In this 340 

month the standard deviations of the data overlapped between D-WF and D-FF. Generally in 341 

July in both streams the inter-stream profile in SUVA shows least synchronicity, i.e. the 342 

similarity in SUVA254, and the relative difference in SUVA410 between catchments, are not 343 

present.  344 



 345 

Fig. 6. D-WF and D-FF water from February 2014 to February 2015: mean (A) SUVA254, an indicator of aromaticity, (B) SUVA410, an indicator of 346 

more complex aromatic rings from the humification, (C) E2/E4, an indicator of HS proportion, and (D) E4/E6, an indicator of FA:HA. SUVA254 and 347 

E4/E6 were variable in D-WF but more stable in D-FF. July and September samples are represented by empty symbols. Similar patterns between 348 

the two streams were generally observed in SUVA, but most clearly in E2/E4. Higher SUVA410 and smaller E2/E4 in D-WF indicate the DOC is 349 

more humic, as the result of having a larger proportion of HS.350 



E2/E4 ranged from 6.68 – 8.62 in the catchment with an average of 7.4 ± 0.5 in D-WF and 351 

8.2 ± 0.6 in D-FF, which indicates HS in Drumtee water is dominated by terrestrial sources 352 

(Table 1). Spatial variation in E2/E4 between the two streams was apparent and significant (p 353 

< 0.05): E2/E4 in D-FF is constantly larger than in D-WF (Fig. 6C), suggesting the DOC in D-354 

FF had a smaller proportion of HS. Seasonally DOC in both streams showed similarly constant 355 

E2/E4 patterns from Feb. – Nov. 2014, followed by an increase in the winter coincident with 356 

increased discharge and a large storm event. In September, a dry month, E2/E4 decreases 357 

were observed in both streams, suggesting the HS proportion increased.  358 

The FA:HA in HS is represented by E4/E6 (Fig. 6D), and this was more variable in D-WF 359 

over the year (from 5.3 – 9.4, mean 7.4 ± 1.0) than D-FF, which was more constant (6.7 – 7.3, 360 

mean 7.0 ± 0.2). The ratios were not significantly different between the streams (p > 0.05), 361 

suggesting at most times of the year, FA:HA was similar in the HS pools. However, unlike D-362 

FF, the relative proportion of FA and HA in D-WF was fairly sensitive to hydrological conditions 363 

(Fig. 6D), as the ratio increased in July and September (the dry months) but decreased in 364 

January (a wet month).  365 



Measurements Other studied DOM Field ranges Authors Drumtee 

SUVA254 (l mg-1 m-1) 

Positively related to 

DOC aromaticity  

OM isolates from ocean to dark water 0.6 – 5.3 

(Weishaar et al., 2003) 

D-WF: 3.7 ± 0.4 

D-FF: 3.6 ± 0.2 

(p > 0.05) 

 

Similar aromaticity 

between streams 

Aquatic isolated FAs  0.6 – 3.9 

Aquatic isolated HAs 5.1 – 5.3 

New Zealand peat pore water 1.9 – 3.5 
(Moore and Clarkson, 

2007) 

Yukon river 2.2 – 3.6 (Wickland et al., 2012) 

SUVA285 deforested peatland pore water 3.5 – 6.1 (Gandois et al. 2013) 

Peatland well water 3.65 ± 0.04 
(Olefeldt et al., 2013) 

Peatland ditch water 4.58 ± 0.89 

Pore water from blanket bog 4.00 ± 0.47 (Peacock et al., 2014) 

Bog lake 4.58 ± 1.16 (Selberg et al., 2011) 

Stream water from a peatland headwater  4.6 (Goulsbra et al., 2016) 

SUVA410 (l mg-1 m-1) 

Positively related to 

more complex 

aromatic C 

Discharge from surface soil in peat ~0.35 

(Lou et al., 2014) D-WF: 0.50 ± 0.05 

D-FF: 0.45 ± 0.04 

(p < 0.05) 

 

D-WF DOC contains more 

complex aromatic C 

Discharge from -10 cm water depth in peat ~0.39 

Discharge from -20 cm water depth in peat ~0.5 

Streams and drains before peat drain-

blocking 
0.54 

(Worrall et al., 2007) 
Streams and drains after peat drain-

blocking 
0.67 

   

E2/E4 

Inversely related to 

HS proportion 

Terrestrial DOM 4 – 11 (Selberg et al., 2011) D-WF: 7.4 ± 0.5 

D-FF: 8.2 ± 0.6 

(p < 0.05) 

 

D-WF DOC contains more 

HS than D-FF 

Ditch water from blanket bog 6.42 ± 0.73 
(Peacock et al., 2014) 

Pore water from blanket bog 6.77 ± 0.45 

Downstream water from a peaty catchment 15.5 (Graham et al., 2012) 

   

E4/E6  HAs extracted from soils ≤ 5.0 (Kononova, 1966) D-WF: 7.4 ± 1.0 



Positively related to 

FA:HA 

FAs extracted from soils 6.0 – 8.5 D-FF: 7.0 ± 0.2 

(p > 0.05) 

 

Similar HA:FA between 

streams 

HAs extracted from soils 2 – 5 
(Thurman, 1985) 

FAs extracted from soils 8 – 10 

Blanket peat headwater in England 2.8 – 7.3 

(Worrall et al., 2002) Blanket peat headwater in England 

excluding storm events  
~5 – 6 

Stream water from a peatland headwater 6.5 (Goulsbra et al., 2016) 

Ditch water from blanket bog 5.99 ± 3.76 
(Peacock et al., 2014) 

Pore water from blanket bog 7.37 ± 4.04 

Table 1 A summary of the application of the spectrophotometric characterization used in this study, interpretation of each parameter, field ranges 366 

in other research and the key findings of two Drumtee streams. ANOVA was applied for testing the significance of variance between two streams 367 

and it shows the mean values of SUVA254 and E4/E6 were not statistically different between D-WF and D-FF with a p > 0.05.368 



4. Discussion 369 

4.1.  Spatial and temporal variation of DOC quantity 370 

The seasonal pattern of changing [DOC] has been observed previously in this catchment 371 

(Murray, 2012; Waldron et al., 2009) and in other temperate blanket peatland systems (e.g. 372 

Worrall et al. 2006; Dawson et al. 2011), with highest [DOC] in late summer. The concentration 373 

maximum in summer is likely to be caused by greater terrestrial productivity and lower water 374 

table promoting DOC production (Freeman et al., 2001), with pore water DOC flushed into 375 

streams when the water table rises (Tipping et al., 2007).  376 

The [DOC] range across the catchment was large from 7.5 – 86.3 mg l-1. Although only 377 

one year of study, the ‘anchor’ sampling point showed a similar range (8.6 – 60.4 mg l-1) to 378 

observed in 2007 – 2010 (7.7 – 57.1 mg l-1) (Murray, 2012). The similarity in [DOC] (and 379 

composition), for the different sampling points within a sub-catchment on a given date (Fig. 380 

S1), suggests no net loss. This is observed in both sub-catchments, and suggests that 381 

difference in catchment size is not a strong control on [DOC] – if transit times varied we would 382 

perhaps see differences longitudinally. 383 

The [DOC] range is comparable to other studied peatland catchments in UK but is close 384 

to the higher end of the range. For example different peatland sites across Scotland were 385 

observed to have [DOC] from approximately 2 to 88 mg l-1 (Billett et al., 2006; Dawson et al., 386 

2011, 2004; Grieve and Gilvear, 2008), and smaller for some peatland catchments in England 387 

and Wales, ranging from around 1 to 60 mg l-1 (Goulsbra et al., 2016; Jones et al., 2016; 388 

Moody and Worrall, 2016; Pawson et al., 2012; Worrall et al., 2007). Six years after wind farm 389 

construction was complete, Drumtee catchment still has high [DOC]. This may be due to wind 390 

farm-related peat disturbance, or a DOC driver unrelated to the wind farm given the 391 

concentration has stayed relatively constant with time. However, with two different landscapes 392 

(turbines emplacement vs. felled forestry), we can further explore whether wind farm 393 

construction-related land use difference has influenced exported DOC.  394 

The two streams drain from mainly dystrophic blanket peat with similar peat coverage, so 395 

it is not likely the [DOC] difference was an effect of soil difference (the proportion of peatland 396 

in a catchment is considered a key control on aquatic DOC loading, Kortelainen, 1993; 397 

Mattsson et al., 2005). Both deforestation (Zerva and Mencuccini, 2005; Schelker et al., 2014) 398 

and wind farm development (Mitchell et al., 2010) cause disturbance to soil. Peat excavation 399 

and vegetation removal that has occurred in the turbine-covered area could leave an exposed 400 

surface more susceptible to C losses (e.g., Glatzel et al., 2003), but [DOC] in Stream D-WF 401 

are lower than D-FF. Clear-felling and mulching leaves large residues of tree litter and dying 402 

tree roots, which are easily decomposed (Zerva and Mencuccini, 2005). Meanwhile the 403 

removal of forest canopy can increase soil and surface temperatures (Hoffmann et al., 2003; 404 

Jauhiainen et al., 2012), and the decomposition of branches often releases a flush of nutrients 405 

to the soils (Kreutzweiser et al., 2008). This can enhance peat and wood litter decomposition 406 

(Gandois et al., 2013), important in peat due to the low nutrient content (Nieminen, 2004). 407 

Therefore surface soil in deforested areas can have a large carbon flux associated with root 408 

turnover and exudation (Hansson et al., 2010). In this dystrophic blanket peat-dominated area, 409 

these conditions very likely stimulate microbial activity, thereby altering rates of peat 410 

decomposition and generation of new DOC from felled material. Thus, it appears possible that 411 

the high [DOC] in D-FF is a result of drainage for commercial forestry and now deforestation 412 



residue breakdown. This may suggest that deforestation can cause higher [DOC] than the 413 

excavation disturbance associated with the wind farm turbine, cabling and road emplacement. 414 

4.2.  Spatial and temporal variation of DOC quality 415 

The Drumtee DOC had SUVA254 in the range of other fluvial environments (0.6 – 5.3 l mg-416 
1 m-1 for organic matter isolates from oceans to dark water; 2.9 – 3.9 l mg-1 m-1 for most aquatic 417 

FAs, Weishaar et al. 2003; Table 1) and towards the higher end of the range. It is also similar 418 

to pore waters from blanket bog (4.00 ± 0.47 l mg-1 m-1, Peacock et al. 2014; Table 1) but less 419 

than the SUVA254 of water from a bog lake (4.58 ± 1.16 l mg-1 m-1, Selberg et al. 2011; Table 420 

1). This indicates DOC in the catchment is rich in complex heterogeneous aromatic OM 421 

(Selberg et al., 2011), although less aromatic than some bog lakes, and the source of DOM in 422 

both streams is largely derived from soil pore water.  423 

SUVA254 varied little between sites except for July and September in 2014 and January in 424 

2015, showing that the DOC was mostly of similar aromaticity between sites and throughout 425 

the year. The lack of difference suggests soil aromaticity between sub-catchments is broadly 426 

similar. This understanding is refined by the SUVA410. In July, September and December 427 

SUVA410 was similar between catchments, but for most of the year, SUVA410 was higher in D-428 

WF (p < 0.05). This may indicate more of the DOC contains complex aromatic materials 429 

(mainly HS), formed from the DOC humification process.  430 

The lower E2/E4 composition in D-WF is consistent with more DOC humification and thus 431 

a greater proportion of HS (HAs and FAs) (Kalbitz et al., 1999). Further the similarity in E4/E6 432 

between two streams at most times of year (Fig. 6D) suggests a similar proportion of HA in 433 

their humic substance pool. These parameters collectively suggest, the greater content of HS 434 

in D-WF, although with a similar proportion of HAs, shows the DOC was more humic, and thus 435 

likely to be more resistant to decomposition than D-FF (Fig. 7).   436 

 437 

Fig. 7. Schematics showing the different proportions of HS in DOC produced from the two 438 

streams with the relative areas hypothesised to represent broadly the proportional composition 439 



of the DOC pool.  440 

The more aromatic DOC in D-WF can arise as either less humic material is entering D-441 

FF or more HS are entering D-WF. There are two mechanisms for this. Firstly, more non-HS 442 

were produced in D-FF catchment as a result of deforestation. Leachates from fresh litter are 443 

usually dominated by low-molecular-weight (LMW) carbohydrates, while those from humified 444 

organic soils, such as peat, often have a significant contribution from highly aromatic high-445 

molecular-weight (HMW) humic and fulvic acids (Kalbitz et al., 2003; Wickland et al., 2007; 446 

Olefeldt et al., 2013). The decomposition of tree branches and dying roots in felled area may 447 

have produced ‘young’ DOC consisting of more non-humic substances. There are no 448 

measurements of water table changes in this study, but due to the reduction in 449 

evapotranspiration, the depth to water tables beneath clear-felled stands can be comparatively 450 

higher and the soil can have a higher water content (Adams et al., 1991; Smethurst and 451 

Sadanandan Nambiar, 1995; Zerva and Mencuccini, 2005). Thus, younger DOC with more 452 

non-humic substances from the upper soil layer may become an important source of stream 453 

DOM. Secondly, the wind farm construction disturbance (mainly peat excavation and 454 

potentially drainage) may have lowered the water table for a period of time, exposing deeper 455 

DOC to an aerobic environment. This may result in the reduction of phenolic compounds in 456 

response to oxygenation and trigger an ‘enzymic-latch’ mechanism, which accelerates further 457 

DOC humification, and produces ‘older’ and more resistant DOC, even after the water table 458 

rises (Freeman et al., 2001; Worrall and Burt, 2005). Increased humification is suggested by 459 

the larger SUVA410 (observed except during the dry months) and smaller E2/E4 in D-WF. It is 460 

not possible to tell which mechanism is more likely, or if both happened simultaneously.    461 

Apart from the seasonal changes, DOC composition changed in the dry periods. Here 462 

lower stream discharge indicated a reduced contribution from soil water, particularly upper 463 

soils, so deeper soil waters and groundwater may contribute more to fluvial DOM and thus 464 

DOC may become more aromatic. Increases in coloured and aromatic DOC were previously 465 

observed in peatland soil water under lower water tables (Lou et al., 2014). This interpretation 466 

is supported in our study by a decreased E2/E4 in D-FF in the dry September 2015 (Fig. 6C), 467 

which may indicate more HS content (humification increases with increased soil age and 468 

depth). 469 

However, we also found in drier months that DOC derived from deeper peat exported to 470 

D-WF was less aromatic (decreased SUVA254 and SUVA410, Fig. 6A, B). In a tropical deforested 471 

peatland SUVA285 of pore water DOC increased from the surface to 30 cm depth, then 472 

decreased to 180 cm, and this was interpreted to represent aromatic molecules accumulation 473 

around 30 cm depth (Gandois et al., 2013). SUVA285 was used here instead of SUVA254 as the 474 

high DOC concentration induced saturation of the spectrophotometer at 254 nm, but as based 475 

on similar principles and within the 200-300 nm range, they are comparable. In D-WF, the 476 

water table may have dropped below where aromatic materials accumulated in the dry period, 477 

but less so in D-FF as the tree mulch and reduced evaporation would support a higher water 478 

table. Further, the spectrophotometric composition of DOC in D-FF is more constant (e.g. 479 

SUVA254) suggesting that fluvial DOC in D-WF is more sensitive to rainfall and soil water depth. 480 

Finally, the compositional differences may suggest drainage from mineral soil layers may be 481 

more important in D-WF: there are more humic and non-calcareous gley along Stream D-WF 482 

(indicated in Fig.2B), and in these layers more DOC is less-humified.  483 



5. Conclusion 484 

This research shows that even with a small catchment there can be considerable 485 

differences in fluvial DOC concentration and composition within different tributaries of one 486 

drainage system. Whilst concentration varies seasonally, reflecting the integration of 487 

catchment production and export, this is not synchronous with pronounced seasonal changes 488 

in DOC composition within-sub catchments. Rather the changes that occur reflect less water 489 

being delivered from the surface soils as the catchment becomes drier and sources of organic 490 

C change. The higher concentration and ‘fresher’ composition in stream DOC draining the 491 

felled forestry suggests that this activity causes more widespread disturbance than 492 

preparation of land for turbine emplacement. Although the sub-catchment hosting the wind 493 

farm is subject to disturbance, there is not the residue of younger C in the catchment and so 494 

the DOC released here is ‘older’ and when from deeper peat has a composition of material 495 

that has already undergone decomposition. As a result of their low nutrient content and 496 

sensitivity to water table level, organic-rich soils such as peat can be more sensitive to forest 497 

activities (e.g. clear-felling) than mineral soils and this could affect the DOC pool. Further, for 498 

many years after the roots can still act as a source of DOC (Hansson et al., 2010). An 499 

interesting next step would be to consider if these compositional differences affect the fate of 500 

C in the fluvial system. 501 
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This document contains information to support the approach to the grouping of sites in sub-
catchments (point 1) and to increase confidence that the observations in the year of study are 
representative of a longer-term response (point 2): 
 
1. The concentration and compositional time series for all sites from February 2014 to 
February 2015 are presented (Fig. S1) and the data are then pooled for each sub-catchment 
to allow comparison of the mean sub-catchment composition when D-WF4 is grouped with 
other D-WF sampling points (group 1), or with the D-FF sampling points (group 2) (Fig. S2).  
 
Fig. S1 shows that for all sampling occasions, [DOC], SUVAs and E ratios for D-WF4 are more 
similar to D-FF site profiles. Fig. S2 shows that when D-WF4 is considered within the 
population of the other D-WF sites, the standard deviation in the population considerably 
increases (compare the SD errors bars between group 1 and group 2 for D-WF, Table S1 
also), suggesting more variation within a population. However, addition of D-WF4 to D-FF 
hardly changes the population variation. This supports an interpretation that the D-WF4 DOM 
pool is more similar composition to D-FF sites, and not the D-WF sites. Further, from the 
catchment land use map (Fig. 2), it is clear that the D-WF4 tributary is draining mostly land 
that has been deforested (more similar to D-FF catchment land use than D-WF). Thus, to 
allow most insight into how DOM compositional changes may be influenced by land use, these 
two considerations suggest it is appropriate that D-WF4 is grouped with D-FF. 

 

 

 



 

 

 
Fig. S1. DOC concentration, SUVA and E ratios of all samples collected from Drumtee 
streams during Feb. 2014 – Feb. 2015. The D-WF group is coloured in blue, and D-FF in red. 
Site D-WF4 is represented by the green symbol, and is clearly more similar to D-FF than D-
WF. 
 
 



 

 

 

 



 

Fig. S2. The comparisons between different grouping methods. Grouping_1 has no change 
applied to the data division. Grouping_2 represents the method used in the study: D-WF4 is 
pooled with D-FF sites. By applying method 2, the SDs decreased in [DOC] for the observation 
period, and were similar, or smaller in UV-vis parameters for most months. No clear change 
is observed in D-FF after merging with D-WF4.   



 

Parameter 
Grouping 
Method 

17/02/17 18/03/17 10/04/17 12/05/17 11/06/17 14/07/17 18/08/17 08/09/17 14/10/17 12/11/17 16/12/17 13/01/17 10/02/17 

[DOC] 
1 2.5 4.1 5.3 5.7 8.0 16.2 8.7 11.9 9.7 6.0 4.8 2.3 2.3 

2 0.8 2.1 2.4 2.3 2.8 3.0 4.0 3.1 3.7 2.8 3.2 0.7 1.0 

SUVA254 
1 0.1 0.1 0.2 0.1 0.1 0.5 0.1 0.2 0.3 0.1 0.2 0.6 0.4 

2 0.1 0.1 0.2 0.1 0.0 0.3 0.1 0.2 0.3 0.1 0.1 0.3 0.1 

SUVA410 
1 0.03 0.04 0.04 0.03 0.03 0.07 0.03 0.05 0.06 0.03 0.07 0.05 0.03 

2 0.03 0.04 0.03 0.02 0.01 0.07 0.02 0.05 0.04 0.02 0.08 0.02 0.02 

E2/E4 
1 0.36 0.52 0.37 0.34 0.27 0.55 0.50 0.57 0.36 0.33 0.28 0.54 0.51 

2 0.32 0.52 0.24 0.22 0.15 0.39 0.24 0.46 0.24 0.18 0.29 0.39 0.22 

E4/E6 
1 0.98 1.04 0.39 0.76 0.26 1.25 0.32 0.93 0.51 0.49 1.07 0.84 0.70 

2 1.07 1.01 0.41 0.81 0.28 1.22 0.35 0.64 0.54 0.51 1.15 0.78 0.76 

 
Table S1. Standard deviations of all parameters measured for D-WF samples. The grouping methods 1 and 2 are the same as described in Fig. S2. Smaller 
SDs are coloured in red. By applying method 2, the SDs decreased in [DOC] for the year, and were similar or smaller in UV-vis parameters for most months. 
SDs for D-FF samples are not presented, as no clear change is observed between different grouping methods. 



2. In the course of other research, fluvial samples from two study sampling points (D-WF1 and 
D-FF1) were collected approximately 7-16 months after this study ended (Fig. S3). Not all 
sites were sampled and samples were collected quarterly than monthly, and so the data 
cannot be incorporated into the core manuscript analysis.  
 
However, [DOC] and spectroscopic compositional characteristics for these samples collected 
later from the two sampling points are almost always within the ranges observed during the 
earlier study year, and show differences between sub-catchments similar to the year-long 
study (e.g. [DOC], SUVA254, E2/E4). This suggests the fluvial DOC pools sampled later have 
similar compositional and concentration characteristics to earlier and still maintain differences.  
 
If this is the case, it supports the interpretation that although land use is complicated and has 
changed the influence it imparts may be detected over an extended period (disturbance first 
started in 2006-9 in this catchment and sampling was 2 years thereafter). 

 

 
 

 
Fig. S3. A longer time series (2014 – 2016) for sample points D-WF1 and D-FF1 only (later 
data does not exist for the other points). The blue shaded area and red dashed lines represent 
respectively the maximum and minimum value for each parameter for D-WF1 and D-FF1 
during Feb. 2014 – Feb. 2015. With the exception of one SUVA410, and one E4/E6, the samples 
collected later during 2015 and 2016 share the same composition as before, and within-
catchment differences still exist. 



Weather Land Use Monthly Mean 
[DOC]

DOC 
Aromaticity

DOC 
Humification

Inter-stream 
Comparison Not-dry

Windfarm Lower Similar Larger

Deforestation Higher Similar Smaller

Change from the 
previous month

Dry (only
July & Sept.)

Windfarm Decreases Decreases Decreases

Deforestation Decreases No change Increases

Felled 
forestry

Windfarm
Sampling 

points

Humic gley Mineral alluvial soil Non-calcareous gley
Peat Peaty gley Peaty podzol

1 Km0

Soil type


