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Biocatalytic Self-Assembly Cascades 

Jugal Kishore Sahoo,*[a, e] Charalampos G. Pappas,[a, b] Ivan Ramos Sasselli,[a] Yousef M. Abul-Haija [a] 

and Rein V. Ulijn*[a, b, c, d] 

Abstract: The properties of supramolecular materials are dictated by 

both kinetic and thermodynamic aspects, providing opportunities to 

dynamically regulate morphology and function. In here, we 

demonstrate time dependent regulation of supramolecular self-

assembly by connected, kinetically competing enzymatic reactions. 

Starting from Fmoc-tyrosine phosphate and phenylalanine amide in 

the presence of an amidase and phosphatase, four distinct self-

assembling molecules may be formed which each give rise to distinct 

morphologies (spheres, fibers, tubes/tapes and sheets). By varying 

the sequence or ratio in which the enzymes are added to mixtures of 

precursors, these structures can be (transiently) accessed and 

interconverted. The approach provides insights into dynamic self-

assembly using competing pathways that may aid the design of soft 

nanostructures with tunable dynamic properties and life times.  

Supramolecular self-assembly[1a-e] provides a powerful approach 

for the discovery and development of functional nanostructures. 

The emphasis in this area is increasingly focused on non-

equilibrium aspects of structure formation, including chemically 

fueled assembly,[2]spatial control of assembly in 

patterns,[3]mechano-responsive pathway selection [4] or 

(bio-)catalytic self-assembly.[5]Supramolecular order is dictated 

not only bymolecular design but also by the pathway of 

assembly,[6-9]which may be controlled by (temporary) changes in 

environment, such as pH[9], solvent composition, [10-12] catalyst 

concentrations[8], by modifications in molecular (linker) design.[13] 

Biocatalytic self-assembly i.e. the enzymatic activation of 

precursors of supramolecular building blocks, provides an 

attractive approach to controlling the kinetics of supramolecular 

structure formation under constant, physiological 

conditions.[8,14]Biocatalytic self-assembly may proceed under 

thermodynamic control, where the assembled product is 

reversibly formed and thermodynamically favored,[16] orit may 

proceed under kinetic control, where the product remains trapped 

in local minima in the energy landscape[8] or exists transiently as 

a result of competing assembly and dis-assembly pathways.[2a] 

The use of multiple enzymes in competing assembly and dis-

assembly reactions has previously been demonstrated, giving 

rise to dynamic regulation of fiber formation.[15a-c] 

In here, we demonstrate that distinct supramolecular structures 

can be accessed from a single pool of precursors that serve as 

substrates for connected biocatalytic pathways, where the 

product of the first enzymatic reaction is consumed by the second 

one and vice versa. Very recently, Bing Xu’s group demonstrated 

dynamic regulation of fiber formation using a 

phosphatase/esterase pair to influence cancer cell fate.[15d] 

Specifically, the system involves two different enzymes that 

catalyze competing reactions (Figure 1): alkaline phosphatase 

(ALP) and an amidase (thermolysin). The former 

dephosphorylates tyrosine phosphate, as previously 

demonstrated in biocatalytic self-assembly[14] while the later 

catalyzes(reversible)amide hydrolysis and condensation.[16] The 

reactants, which are precursors of aromatic peptide 

amphiphiles,[17]were selected for their previously reported 

differences in nanoscale morphology upon self-assembly: 

spheres for 9-fluorenyl methyloxycarbonyl-tyrosine (Fmoc-Yp-

OH),[18]fibers for Fmoc-Y-OH[14a,18], tubes/tapes for Fmoc-YpF-

NH2 and sheets for Fmoc-YF-NH2.[20]Three pathways were 

explored involving either, sequential enzyme addition (Pathways 

I and II) or one-pot system where both enzymes are present but 

their ratios were varied (Pathway III) (Figure 1). 

  

Figure 1. Schematicrepresentation of sequential ((blue and 

green arrows, PathwaysI and II)and competing (brown arrow, 

Pathway III) biocatalytic pathways from precursorsFmoc-Yp-OH 

and F-NH2. 
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Figure 2. Spectroscopic and microscopic analysis of biocatalytic self-assembly cascades through different pathways: A, F) HPLC data of time-dependant 

formation of various supramolecular intermediates, involved in Pathway I and II. B, G) FT-IR spectra at different time points involving biocatalytic Pathway I and II. 

Fmoc-Y-OH after 24h of ALP addition in Pathway Iand Fmoc-YF-NH2 after 168h of thermolysin addition in Pathway I; In Pathway II, Fmoc-YpF-NH2 (blue line) 

after 24h of thermolysin addition and Fmoc-YF-NH2 (mixture; orange line) after 168h of ALP addition. C, D, E) Transmission electron microscopic images of the 

supramolecular intermediates involved in PathwayI at time points 0h, 24h and 168h of enzyme exposure respectively. H, I, J) corresponding electron microscopic 

images of PathwayII at different time points.Figure insets represent digital images of respective macroscopic appearances of the corresponding supramolecular 

structures (Scale Bar- 500 nm). 

The first objective was to demonstrate that both enzymes can act 

in tandem so that different nanoscale morphologies could be 

accessed. In Pathway I, the first step is de-phosphorylation of 

Fmoc-Yp-OH to Fmoc-Y-OH which was monitored by high 

pressure liquid chromatography (HPLC), showing a near-

complete conversion (96 %) after 24h (Figure 2A, green line). A 

macroscopic transition could be observed from solution (Fmoc-

Yp-OH; 20mM) to a self-supporting hydrogel (Fmoc-Y-OH) 

(Figure 2Cand 2Dinset, Figure S1) coinciding with a nanosphere 

(approximately 20-30nm in diameter) to twisted nanofiber 

transition as observed by Transmission electron microscope 

(TEM) (micrometers in length and 20-30 nm in 

diameter)[14](Figure 2D, S3A, B, C). After 24h, thermolysin and 

80 mM F-NH2 were added which gave rise to formation of a milky 

suspension (Figure 2E inset, Figure S1), corresponding to near-

complete conversion (95%) to Fmoc-YF-NH2 (Figure 2A, orange 

line). Fmoc-YF-NH2 forms a sheet-like morphology (Figure 2E, 

S3 D, E, F).[20] 

The supramolecular(re)-organization of Fmoc- moieties was 

monitored using fluorescence spectroscopy. In the de-

phosphorylation step, we observe a reduced relative intensity of 

the peak around 380 nm, which is due to the loss of micelle like 

structure (Figure S2).[21] Fourier-transform infrared spectroscopy 

(FT-IR) was performed to investigate the changes in H-bonding 

patterns (Figure 2B) for Pathway I. A peak at 1670 cm-1arises 

upon the formation of Fmoc-Y-OH due to formation of H-bonded 

stacks of the carbamate groups.[23] Both of these show another 

broad peak below 1600 cm-1 caused by a portion of deprotonated 

carboxylic C-terminus.[24]Therefore, the dephosphorylation gives 

a loss of the π-stacking while favoring H-bonding, suggesting that 

a balance of both dictates supramolecular order. The subsequent 

formation of Fmoc-YF-NH2 gives rise to a red-shift of the 320 nm 

fluorescence emission, suggesting enhanced overlap of Fmoc- 

groups and a broad feature composed of a series of further red-

shifted broad peaks between 380 and 600 nm, indicating 

formation of higher order aggregates (Figure S2).The FT-IR 

shows that the condensation of Fmoc-Y-OH and F-NH2 to form 

Fmoc-YF-NH2 gives rise to two different amide vibrations: at 1625 

cm-1 and at 1650 cm-1, and the increment in frequency of the 

carbamate vibration. Both types of vibrations are in typical 

frequencies for H-bonded amide groups in Fmoc-dipeptide based 

nanostructures.[23] The shift of the carbamate to higher 

frequencies (1680 cm-1) is likely to be due to a destabilization of 

the carbamate arrangement to favor the incorporation of the 

amide groups to the H-bonded stacks. Thus, the FT-IR shows that 

the amide bond formation modifies the H-bonding arrangement, 

probably to accommodate the new π-stacking interactions shown 

with the fluorescence and the new H-bonds of the amide group. 

The FT-IR spectra of the enzymes and precursor (F-NH2) is 

provided in supporting information (Figure S10). 

In Pathway II, the sequence of addition of enzymes is reversed. 

Thermolysin first catalyzes the amide condensation reaction in 

presence of F-NH2 to give rise to 84% Fmoc-YpF-NH2 (Figure 2F; 

blue line).[20] Macroscopically, it forms a milky suspension 

immediately upon thermolysin addition (Figure 2Iinset, S4B). 

After adding ALP, it is evident that the de-phosphorylation 



 

 

 

reaction is relatively slow and eventually reaches 48% of Fmoc-

YF-NH2 (Figure 2F, orange line) after one week. It is likely that 

the observed slow kinetics are related to sterically hindered 

accessibility of the phosphate groups in the assembled state of 

Fmoc-YpF-NH2.  A macroscopic transition from the suspension 

state to an opaque, self-supporting gel is observed (Figure 2J 

inset, S4C). TEM shows a tube-or tape-like morphology for Fmoc-

YpF-NH2 after 24h (Figure 2I, S6 A, B, C) and subsequently, the 

mixture of Fmoc-YpF-NH2and Fmoc-YF-NH2gives rise to larger 

structures which appear to be a combination of tubes and 2D 

tapes (Figure 2J, S6D, E, F). It should be noted that the sheet-

like morphology of Fmoc-YF-NH2 is not observed in Pathway II, 

however the observation of tapes supports that 2D assemblies 

become more favored upon Fmoc-YpF-NH2de-phosphorylation. 

 

Fluorescence spectroscopy reveals a red-shift of the Fmoc- 

moiety (323 nm; Figure S5B) after 24h, indicating aggregation 

[23]and increase in supramolecular order upon formation of Fmoc-

YpF-NH2. Upon addition of ALP, an increase in relative peak 

intensity at 468nm is observed, which is associated with formation 

of extended Fmoc-stacks enabled by formation of Fmoc-YF-

NH2(Figure S5B). Analysis of Pathway II by FT-IR (Figure 2G) 

shows a similar carbamate peak at 1680 cm-1 and amide peak at 

1640 cm-1 for both Fmoc-YpF-NH2 (after 24h) and Fmoc-YF-NH2 

after 1 week of enzyme exposure. This observation suggests that, 

while the condensation modifies the H-bonding in Pathway II, the 

de-phosphorylation is in this case not as important for the H-

bonding as it was as first step in Pathway I. 

 

Having established that four distinct morphologies can be 

accessed when using this combination of enzymes and 

precursors (spheres for Fmoc-Yp-OH, fibers for Fmoc-Y-OH, 

tubes/tapes for Fmoc-YpF-NH2, sheets for Fmoc-YF-NH2 and a 

combination of longer tubes and tapes for Fmoc-YpF-NH2/Fmoc-

YF-NH2), we subsequently introduced both enzymes at the same 

time at varying ratios of 1:1, 1:10, 1:20 and 1:100 thermolysin/ALP 

(Pathway III) (keeping the phosphatase concentration fixed at 

50U). The concentration details of ratios of both enzymes are 

provided in Table S1 and digital images showing macroscopic 

appearance at different time points in Figure S7. 

 

When both enzymes were present at the activities used in the 

‘sequential’ experiments (1:1), the system is first dominated by 

thermolysin activity, giving rise to 85% conversion to Fmoc-YpF-

NH2 in 5 minutes, (similar to Pathway II) which subsequently starts 

de-phosphorylating and form 56% of Fmoc-YF-NH2 after 1 week 

(Figure 3A; orange line). The overall HPLC profile resembles that 

of the sequential enzyme addition experiment (Figure 2F) but 

shows faster kinetics that are likely related to enhanced access of 

the phosphate group due to dynamic hydrolysis/condensation of 

the amide bond. In TEM, we observe a mixture of nanotubes and 

2D tape-like morphology after 1 week of enzyme exposure 

(Figure 3F, S8A, B, C), which resembles the final morphology 

observed in Pathway II.  

 

At 1:10, simultaneous de-phosphorylation and condensation 

reactions are also observed, however it is clear that the higher 

thermolysin concentration favors amide bond formation prior to 

de-phosphorylation. The final composition of different 

supramolecular products after 1 week (Fmoc-YpF-NH2(48%), 

Fmoc-YF-NH2 (47%)) (Figure 3B), where Fmoc-YF-NH2is formed 

mostly by de-phosphorylation of Fmoc-YpF-NH2. This is also 

reflected in the transmission electron microscopy, where 

nanotube/sheet-like structures dominate (Figure 3G, S8 D, E, F). 

 

With lower thermolysin concentration (1:20), the reaction clearly 

undergoes competing condensation and de-phosphorylation 

(Figure 3C) where we observe a mixture of all components with 

Fmoc-Y-OH and Fmoc-YpF-NH2formed approximately at equal 

rates during the first 2 hours (Figure 3E). After 2h, we observe a 

decrease in Fmoc-Y-OH, as it achieved a concentration sufficient 

to favor direct formation of Fmoc-YF-NH2 via condensation with F-

NH2. After 1 week, Fmoc-YF-NH2, formed by condensation of 

Fmoc-Y-OH and de-phosphorylation of Fmoc-YpF-NH2, 

dominates (55%) and a mixture of sheets, fibers and tubular 

morphologies are observed (Figure 3H, S8 G, H, I). While final 

molecular compositions are similar for these three enzyme 

concentrations, the morphologies observed are different 

(tapes/tubes;tubes;sheets/tubes) which relates to the pathways of 

formation involving dramatic differences in relative concentrations 

of the transient intermediates Fmoc-Y and Fmoc-YpF-NH2 

(0.5/76; 15/57; 40/34) after 2h of exposure at enzyme ratios 1:1, 

1:10 and 1:20 respectively. 

 

At the lowest thermolysin concentration (1:100), the 

supramolecular transition initially resembles Pathway I.The initial 

stage of self-assembly is controlled by ALP (Figure3E), as can 

be seen with the formation of Fmoc-Y-OH, which is followed by 

simultaneous condensation of to lower levels of Fmoc-YpF-NH2 

and Fmoc-YF-NH2. The final composition of supramolecular 

products after 1 week is Fmoc-Y-OH (65%), Fmoc-YpF-NH2 

(11%) and Fmoc-YF-NH2 (24%) (Figure 3D).This ratio of 

products is reflected in the supramolecular morphology observed 

by TEM where we observe twisted nanofibers due to Fmoc-Y-OH 

and long tape (2D) and tubular structures typical for Fmoc-YF-

NH2 and Fmoc-YpF-NH2(Figure 3I, S8 J, K, L).  

 

FT-IR spectroscopic study for all concentrations of thermolysin 

(Figure S9) was performed to show the presence of H-bonding 

and stacking in the formation of supramolecular structures. In 

each case, we observe similar final spectra, with carbamate peak 

at 1680 cm-1 and amide peak at 1640 cm-1. 



 

 

 

 

Figure 3.Supramolecularbiocatalytic transformations observed in direct competition with ALP and thermolysin present in Pathway III. HPLC (A, B, C, D) time 

course at different ratios of thermolysin and ALP; A) 1:1 B) 1:10; C) 1:20; D)1:100. E) Represents the HPLC chromatogram for all different concentration ratios of 

enzymes at different time points to show the self-assembly kinetics observed at different concentrations. F, G, H, I) Represents the electron microscopy images 

after 1 week of enzyme exposure in the order of thermolysin concentrations in A, B, C, D respectively. Color arrows in the images represent corresponding 

peptide nanostructures(Scale bar- 1 µm) 

In summary, we have demonstrated a biocatalytic self-assembly cascade where, by using two biocatalysts in different sequence and 

ratios, the structure, composition and morphology of the structures formed could be dynamically regulated. This approach should be 

applicable for exploring supramolecular assemblies where pathway dictates structure and function.[25,15b]In addition, the use of 

competing enzymes performing in tandem without affecting each other’s function, paves the way to more complex supramolecular 

polymerizations. 
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