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ABSTRACT Combining (bio-)catalysis and molecular self-assembly provides an effective 

approach for the production and processing of self-assembled materials, by exploiting catalysis 

to direct the assembly kinetics and hence control the formation of ordered nanostructures. 

Applications of (bio-)catalytic self-assembly in biologically interfacing systems and in 

nanofabrication have recently been reported. Inspired by self-assembly in biological cells, efforts 

to confine catalysts on flat or patterned surfaces to exert spatial control over molecular gelator 

generation and nanostructure self-assembly have also emerged. Building on our previous work in 

the area, we demonstrate in this report the use of enzymes immobilized onto magnetic 

nanoparticles (NPs) to spatially localize the initiation of peptide self-assembly into nanofibers 

around NPs. The concept is generalized for both an equilibrium biocatalytic system that forms 

stable hydrogels and a non-equilibrium system that normally has a preset lifetime. 

Characterization of the hydrogels shows that self-assembly occurs at the site of enzyme 

immobilization on the NPs, to give rise to gels with a “hub-and-spoke” morphology where the 

nanofibers are linked through the enzyme-NP conjugates. This NP-controlled arrangement of 

self-assembled nanofibers enables remarkable enhancements in the shear strength of both 

hydrogel systems, as well as a dramatic extension of the hydrogel stability in the non-equilibrium 

system. We are also able to show that the use of magnetic NPs enables external control of both 

the formation of the hydrogel and its overall structure by application of an external magnetic 

field. We anticipate that the enhanced properties and stimuli-responsiveness of our NP-enzyme 

system will have applications ranging from nanomaterial fabrication to biomaterials and 

biosensing. 
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 1. Introduction  

The combination of (bio)catalysis and supramolecular self-assembly
1-5

 provides a 

powerful means to direct supramolecular materials formation.
6-11

 This approach is 

inspired by dynamic materials found in biological systems, where self-assembly is often 

coupled to, and regulated by, catalysis.
12-14

 
 
A number of enzymes have been utilized in 

biocatalytic self-assembly, including phosphatases, esterases and proteases.
12, 14-15

 These 

catalysts are typically dissolved in solutions of molecular precursors to enable catalytic 

formation of self-assembly gelator building blocks and consequent structure generation 

over time. 

The possibility of employing surface immobilized catalysts has also been investigated, 

in order to achieve spatial control over the location of the self-assembly process. Williams 

et al. first employed immobilized thermolysin on an amine functionalized glass surface to 

enable localized self-assembly of Fmoc-protected peptides on a surface.
16

 Vigier-Carriere 

et al. employed alkaline phosphatase immobilized in a polyelectrolyte multilayer to 

trigger the self-assembly and gelation of a Fmoc-protected tripeptide.
17

 More recently, 

they employed chymotrypsin adsorbed on a surface to catalyze the condensation of short 

modified peptides into oligomers, which self-assemble into a fibrillar network at the 

interface.
18

 In an example of non-enzymatic catalysts, Olive et al. employed patterned 

sulfonic acid groups to catalyze the local formation of supramolecular assemblies, leading 

to the formation of micropatterns of supramolecular structures.
13

 In addition, the Xu 
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 4

group has exploited localized biocatalytic assembly within living systems to influence the 

fate of cancer cells.
19-20

   

It is clear that surface confined biocatalytic self-assembly holds promise both in 

biologically interfacing systems and as a tool in bottom-up nanofabrication.
16, 19-22

 In fact, 

we recently highlighted the potential of selecting between gradually releasing and  

covalently immobilizing enzymes on a surface to obtain, respectively, a self-assembled 

bulk hydrogel and an ultrathin surface network of nanofibers.
23

 However, to our 

knowledge, there are no reports that specifically demonstrate localized biocatalytic 

nucleation and self-assembly of nanostructures from nanoparticle-immobilized enzymes. 

Moreover, we are not aware of reports where the location of the immobilized enzymes 

could be externally controlled for nanostructure self-assembly.   

In this study, we employed enzyme-magnetic nanoparticle (NP) conjugates for self-

assembly initiation and post-assembly control of a hydrogel. To illustrate the general 

applicability of our immobilized enzyme NP approach, we selected two biocatalytic self-

assembly systems that we have been studying: a thermodynamically controlled system 

based on thermolysin,
24

 and a kinetic system based on chymotrypsin.
25

 We followed the 

self-assembly process through a series of gelation experiments using reverse-phase high-

performance liquid chromatography (RP-HPLC) measurements. We characterized the 

peptide nanostructures by transmission electron microscopy (TEM) and circular 

dichroism (CD) spectroscopy, and analyzed how the structural morphology influenced the 

mechanical strength of our gels, which was measured by oscillatory rheometry. Finally, 

we investigated the further consequences of the spatial organization of the catalytic 
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 5

activity through manipulating the enzyme-NP conjugates with an externally applied 

magnetic field.  

 

2. Results and Discussion 

2.1. System Design and NP Preparation  

System 1 is a thermodynamically controlled system that exploits thermolysin (from 

Bacillus thermoproteolyticus) for reversible enzymatic condensation of peptide precursors 

to form self-assembling gelators (Fig. 1b).
24

 System 2 is a non-equilibrium, kinetically 

controlled system using chymotrypsin (from bovine pancreas) that has the potential to 

both generate self-assembly building blocks and break them down through competing 

acylation and hydrolysis reactions (Fig. 1b).
25

  

Magnetic nanoparticles (NPs) were chosen to enable externally applied spatial control 

over the self-assembly process (i.e. stimuli-responsive behavior), without requiring 

chemical or direct mechanical manipulation of the NPs. We immobilized thermolysin and 

chymotrypsin on commercially available iron oxide NPs that have an average diameter of 

500 nm (see section 1 in ESI and Fig. 1a). We found that the NP size chosen allowed for 

easy separation of the NPs with commercially available magnetic separation racks. 

 

Page 5 of 24

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 6

 

  

Figure 1: a) Schematic illustration of the enzyme immobilization by EDC/NHS coupling (see ESI). b) Reaction of the precursors 

with thermolysin-NP (System 1) and chymotrypsin-NPs (System 2) to give the self-assembly gelators. c) Schematics of the 

localized initiation of self-assembly onto the magnetic NPs and external manipulation of the formed hydrogel with a magnet. 
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 7

Fluorescence spectroscopy was performed to monitor the activity of immobilized 

thermolysin and chymotrypsin via a previously reported and highly sensitive Förster 

resonance energy transfer (FRET) assay (see ESI section 2).
26

 The NP-enzyme conjugates 

were washed multiple times to remove any weakly bound adsorbed enzymes. Significant 

activities arising from immobilized enzymes (“immobilized activities” in short) were 

measured on both thermolysin and chymotrypsin conjugates. Both NP systems gave 

activities equivalent to 5~10 µg/ml of “free” enzymes dissolved in solution (see ESI 

section 2).  

2.2.Gelation Behavior of Thermolysin System 1 

We have previously shown that thermolysin can catalyze amide bond formation 

between Fmoc-T and F-NH2 to generate Fmoc-TF-NH2 gelators, which then self-

assemble into nanofibrous hydrogels (Fig. 1b).
24

 In the present experiments, thermolysin-

NP conjugates were added to a solution of the non-assembling precursors Fmoc-T (20 

mM) and F-NH2 (80 mM) in a glass vial and left to equilibrate. Samples of the mixture 

were taken at a series of time points for analysis by RP-HPLC to characterize the catalytic 

conversion.  
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 8

 

Figure 2: HPLC conversion of the precursors into gelators (a and b) and CD spectra of the peptide system (c and d) over the 

course of the experiments. HPLC retention times and protocols are described in ESI section 6. See the main text for CD peak 

assignments. 

 

Fig. 2a shows that the conversion into Fmoc-TF-NH2 slowly increased over time, 

reaching ca. 3.5% at 3 days and a plateau of 6% after 12 days. This low conversion was 

unexpected from preliminary visual inspection, which showed the formation of a light 

brown clear gel by the 4th day (Fig. 3a, inset). In comparison, our previous study with 

surface-released thermolysin shows a conversion of 30% and consequent gelation at the 

same time point.
23

 Earlier studies using free enzymes show a conversion of ca. 35% after 

around 1h as a bulk gel is formed.
24
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 9

Setting aside the ability to form a gel for the moment, the low conversion observed is 

reasonable considering the system conditions. First, the overall concentration of the 

enzyme is much lower compared to previous studies (~5 µg/ml vs. 1 mg/ml).
23-24

 In 

addition, as shown previously,
23

 surface-immobilized thermolysin catalyzes the 

conversion into gelators and the subsequent self-assembly only in the vicinity of the 

immobilization surface (likely facilitated by the low solubility of the Fmoc-peptides 

formed). We also observed that the NPs had gradually precipitated to the bottom of the 

vial over the multi-day experiment, which further lowered the effective enzyme 

concentration. Nonetheless, the fact that a bulk gel was formed in System 1 implies that 

the enzyme-NP conjugates were sufficiently dispersed throughout the bulk of the solution 

to enable nanofiber self-assembly without enzyme release from the NPs (see ESI).  

The molecular organization of the self-assembled nanofibers in System 1 was first 

monitored with circular dichroism (CD) spectroscopy (Fig. 2c). The CD spectrum 

measured at the start of the experiment (CD measurement complete at t = 5 min) showed 

the appearance of a small positive peak around 220-230 nm. This peak grew in intensity 

upon gel formation, and it corresponds to the CD signature observed for gels formed with 

free enzymes, indicating the formation of chiral arrangements as previously reported, with 

the peak at 310 related to chirally organized fluorenyl groups.
27

  

Secondly, TEM images of the gel material revealed a high density of nanofibers around 

the biocatalytic NPs (Fig. 3a and 3b). Apart from some micellar aggregates attributed to 

the presence of unreacted precursor Fmoc-T,
24

 the images also show that the nanofibers 

emanating from the NPs were long and clearly defined, with a uniform diameter of ca. 15 

nm similar to the free enzyme system.
24-25

 This indicated that the self-assembly proceeded 
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 10

from the NP surface in a process similar to regular free enzymatic catalysis. Furthermore, 

these nanofibers emanating from the enzyme-NP conjugates would have increased the 

masses and enlarged the sizes of the NPs, retarding NP diffusion. Also, as fiber growth 

proceeded, the enzymes on the NP surface would have become covered with nanofibers. 

Both these effects would slow the mass transport of precursors to the immobilized 

enzymes, thus resulting in the slowed and reduced conversion into Fmoc-TF-NH2 

observed in HPLC measurements.  

2.3. Gelation Behavior of Chymotrypsin System 2 

In the presence of free chymotrypsin, the precursors F-NH2 and the dipeptide DF-OMe 

(i.e. aspartame) are known to form the tripeptide gelator DFF-NH2, which self-assembles 

into a hydrogel composed of nanofibers (Fig. 1b). However, in a competing reaction, 

DFF-NH2 is hydrolyzed also by chymotrypsin to give water soluble DF and F-NH2. As a 

result of these competing processes, with the transacylation reaction proceeding at a faster 

rate than the hydrolysis, previous studies using free enzymes show that a gel is rapidly but 

transiently formed and the gel transitioned back to a sol in approximately 24 h under 

typical conditions.
25

 

In the present study, an opaque dark brown gel was formed when we mixed the 

chymotrypsin-NP conjugates with the precursors DF-OMe (20 mM) and F-NH2 (40 mM). 

This reaction proceeded within approximately 30 min, much quicker compared to the 

thermolysin System 1 but slower compared to the free chymotrypsin enzyme system 

where gelation occurs within minutes. HPLC analysis confirmed that the conversion into 

the tripeptide gelator DFF-NH2 was complete within approximately 6 h (Fig. 2b and Fig. 

S5). The CD spectrum for System 2 shows a clear positive peak around 220 nm at t=5 
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 11

min (Fig. 2d). This peak corresponds to the formation of chiral supramolecular 

arrangements as previously reported. 
28

 

In contrast to previous studies with free chymotrypsin, the hydrogel formed with the 

chymotrypsin-NP conjugate remained stable for several months until the end of our study. 

Only HPLC analysis of the gel material was able to discern a slow hydrolysis, with the 

percentage of conversion remaining as high as 80% after one month (Fig. 2b), much higher 

compared to that observed for the case of free chymotrypsin, where the percentage of 

conversion decreases to 10% after 72 h.
25

 Thus, the lifetime of the hydrogel was 

dramatically enhanced by at least 30-fold, from 24 h to the end of HPLC studies at 1 

month, simply by immobilizing the enzymes on the NPs. 

TEM images of System 2, analogous to those of System 1, confirmed the formation of a 

network of nanofibers emanating from the surface of the NPs (Fig. 3c and d). This meant that the 

enzyme-NP conjugates were trapped by interlocked fibers emanating from the NPs and 

could not freely diffuse. As a consequence, the NP-immobilized enzymes would only be 

able to act on the tripeptide self-assembly building blocks diffusing to or in immediate 

contact with them. However, all the tripeptides would have already been assembled into 

the nanofibers (i.e. sequestered) except for a minority exchanging with the solution phase. 

Thus, the degradation of the self-assembled fibers was considerably retarded and the 

lifetime of the gel was significantly extended. 
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 12

 

Figure 3: TEM images of the nanostructure formation catalyzed by the enzymes immobilized on the NPs for System 1 

(a and b) and System 2 (c and d). The enzyme-NP conjugates are indicated by dashed circles for clarity. In the inset: 

images of the gels formed for System 1 (a) and System 2 (c).  

 

2.4. Rheological Study of NP Connected Nanofibrous Hydrogel 

As described in section 2.2, it is remarkable that the low precursor conversion observed 

in System 1 was still sufficient to form a bulk hydrogel. Moreover, TEM studies show 

nanofibrous networks connected by nanoparticle nodes (i.e. a hub-and-spoke morphology: 

Fig. 3) for both the thermolysin and chymotrypsin systems. A modification of 

nanostructural arrangement usually leads to a change in physical properties. Thus, we 

characterized the mechanical properties of the enzyme-NP catalyzed hydrogels using 

strain controlled frequency sweep rheometry (Fig. 4). 
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Figure 4: Dynamic frequency sweep experiments (0.06% maximum strain). a) FmocTF-NH2 gels prepared with free 

thermolysin. G’= 35.5×103 Pa. b) Fmoc-TF-NH2 gels prepared with thermolysin-NPs conjugate. G’= 51.5×103 Pa. c) 

DFF-NH2 gels prepared with free chymotrypsin. G’= 1.89×103 Pa. d) DFF-NH2 gels prepared with the chymotrypsin-

NP conjugates. G’= 15.42×103 Pa. All G’ values quoted refer to the average between 0.1 and 10 Hz. 

 

For System 1, the use of the NP design resulted in a 44% increase of the storage 

modulus G’, from 36 × 10
3 

Pa for the gel formed with free thermolysin, to 52 × 10
3
 Pa for 

the gel formed with the enzyme-NP conjugates (values referring to the average in the 

range between 0.1 and 10 Hz). However, even this modest increase in G’ (and actually 

also in G’’) is surprising because the conversion of the precursors to the self-assembling 

gelators was much lower in the NP system (6% vs. 81%
24
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 14

nanofiber hub-and-spoke morphology greatly enhanced the mechanical properties of a 

self-assembled hydrogel.  

The effect of incorporating the NPs is more dramatically evident in System 2, where G’ 

increased by almost one order of magnitude, from 1.9 × 10
3
 Pa for the gel obtained with 

free chymotrypsin to 15 × 10
3
 Pa for the gel obtained with the enzyme-NP conjugates. 

Unlike System 1, high conversion of the precursors was obtained in System 2 using both 

the NP-mediated and free enzyme processes. We can therefore attribute the large increase 

in shear stiffness to the immobilization of the enzyme on the NPs and the resulting 

nanofiber arrangement around the NPs.   

Saiani et al. likewise observed that the mechanical properties of a self-assembled gel can 

be improved with a heterogeneous distribution of nanofibers.
29

 In their study, 

macroscopic increases in gelator concentrations were correlated with increases in the 

microscale heterogeneity of the nanofiber distribution. Although Saiani el al., did not 

study the mechanisms of nanofiber initiation and aggregation in detail, their results do 

suggest that higher enzyme concentrations, which give higher rates of self-assembly, may 

promote localized distributions of nanofibers. In our system, the large number of enzymes 

that can be immobilized on each NP acts to increase the local concentration of gelators 

formed. Moreover, the slow diffusion of NPs (relative to dissolved enzymes) reduces the 

spatial distribution of gelators formed. Therefore, using our NP approach, localization of 

self-assembly and enhancement in properties may be enabled for a wide range of enzyme 

kinetics, as illustrated by Systems 1 and 2.  
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2.5. External Manipulation of Hydrogel System 

The magnetic nature of our enzyme-NP conjugates offered a convenient way to 

manipulate our self-assembly system. Given the long time required for System 1 to gel, 

we focused on the chymotrypsin System 2. In a first set of experiments to test the basic 

response to an externally applied magnetic field, 100 µl of the mixture of precursors and 

chymotrypsin-NP conjugates was placed within a 96-well cell culture plate, and a small 

permanent magnet was introduced, immediately after mixing the components. We tested 

the magnet placement in three different positions (Fig. S6): on top of the well (Position 

1), and 1.2 cm and 2.4 cm from the side of the well (Positions 2 and 3, respectively). The 

system was then left to equilibrate. 

When the magnet was placed in Position 1, the NPs immediately migrated to the top of 

the solution, “switching off” the gelation process (Fig. S6a). When the magnet was placed 

in Position 2, formation of a gel with a gradation of color was observed overnight (Fig. 

S6b). When the magnet was in position 3, no effect on the gel appearance was observed 

(Fig. S6c), but the gelation occurred slower compared to the case when no magnet was 

introduced (~4 h compared to 30 min), suggesting that the NPs were displaced by the 

magnet to some extent.  

The color gradation of the gel could actually indicate a gradient in the density of self-

assembled nanofibers across the gel, resulting from the slow migration of the NPs 

towards the magnet. Such a variation in nanofiber density could presumably correspond 

to a gradient in mechanical properties. However, local mechanical characterization of a 

soft hydrogel is challenging and awaits further study.    
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In a second experiment, to investigate the effect of a magnetic field after the gel has 

formed, the magnet was placed next to a vial containing an already formed gel (Fig. 5). 

This gel was observed to slowly shrink over time, approximately by 50% after 1 weak, 

and finally reaching approximately 15% of its original volume after one month. The 

change in the gel volume after 1 month was permanent (removal of the magnet does not 

restore gel volume). HPLC analysis showed a much lower concentration of DFF-NH2 in 

the transparent supernatant outside the gel (conversion of less than 20%) than in the 

contracted gel part of the system (conversion remaining as high as 70% after 1 month; see 

section 9 in ESI). This difference in DFF-NH2 content is consistent with the TEM 

characterization that shows very few fibers in the supernatant, but a high density of fibers 

in the contracted gel (Fig. 5).  

 

  

Figure 5: (a) Images showing the effect of a magnetic field on the DF-FNH2 gel formed with the chymotrypsin-NPs. 

The gel shrank to ~15% of its initial volume after 1 month. TEM images of transparent supernatant collected upon 

separation with the magnetic cube (b) and of the compacted gel (c). 

 

1 day 1 week 1 month

a)

c)b)

2µm 2µm
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This second experiment shows that the gel may be separated together with the NP 

conjugates, even when the strength of the nanofibrous network and the osmotic pressure 

associated with “squeezing out” the supernatant are acting against the NPs. This implies 

that the self-assembled nanofibers were strongly associated with the NP surface (as also 

suggested by the significant enhancement of mechanical properties for the NP-mediated 

hydrogels: Fig. 4). This integration was possible even though the gels were formed from a 

relatively low precursor conversion (Fig. 2), which underscores the importance of the 

nanofiber hub-spoke organization.  

In fact, a strong association of the nanofibers with the NPs as well as the relatively slow 

precursor conversion kinetics observed (see sections 2.2 and 2.3) are both expected, if 

gelator production and nanofiber self-assembly were localized on the enzyme-NP surfaces 

such that nanofibers could be concentrated and adhered around the NPs. This was indeed 

observed in TEM (Fig. 3). The possibility to closely specify the location of self-assembly 

was also suggested by our previous observation of nanofiber networks on enzyme-

functionalized flat surfaces.
23

 Thus the overall experimental evidence supports the 

hypothesis that surface-immobilized enzymes could direct nucleation and self-assembly 

of nanostructures. 

 

3. Conclusion 

We demonstrated the use of enzymes immobilized on magnetic NPs for both an 

equilibrium and a non-equilibrium biocatalytic self-assembling peptide hydrogel system. 

By simply immobilizing the biocatalyst on NPs and hence localizing the initiation of 

nanofiber self-assembly, we could change the hydrogel nanostructural organization from 
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a random arrangement to an overall “hub-and-spoke” morphology where the nanofibers 

can be linked through the enzyme-NP conjugates. This resulted in up to a ~10-fold 

increase of the mechanical modulus of the hydrogel compared to a conventional soluble 

enzyme system.  We hypothesize that the nodes of concentrated nanofibers enhance the 

mechanical integrity of the fibrous network.  Localization of the enzyme also dramatically 

restricted the enzyme’s ability to mediate degradation side reactions that would otherwise 

have dissipated the nanofibers in a non-equilibrium system, and thus enabled 

unprecedented control (a >30-fold extension) in the lifetime of a self-assembled hydrogel.  

In addition, we demonstrated magnetic manipulation of the self-assembly system. 

Application of an external magnetic field enabled “switching off” of self-assembly. 

Application post-gelation could pull the NPs along with their associated nanofibers, 

resulting in a more than 6-fold compaction in the hydrogel volume. If functional groups 

were incorporated into the nanofibers, behaviors that depend on chemical concentrations 

may also be enabled. The expulsion of the sol phase is also essentially a mechanism for 

material release.  

In summary, by immobilizing the (bio)catalyst on magnetic NPs and hence localizing 

the nucleation of (bio)catalytic nanofiber self-assembly, it is possible not only to enhance 

the mechanical properties of a nanofibrous hydrogel network, but also to control the 

timing of its formation, its lifetime, as well as to confer stimuli-responsiveness to the self-

assembled nanostructure.  
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